Modèles de prévision Séries temporelles

Arthur Charpentier ¹

UQAM, ACT6420, Hiver 2011

15 mai 2012

 $^{^{1}} charpentier.arthur@uqam.ca,~url:~http://freakonometrics.blog.free.fr/$

Contents

1	Intr	oducti	on générale et notations				
	1.1 Approches temps/fréquences : un peu d'histoire						
		1.1.1	Analyse harmonique				
		1.1.2	Modèles autoregressifs et moyennes mobiles				
		1.1.3	L'approche temporelle : concept de corrélation sérielle 10				
		1.1.4	L'équivalence entre les deux approches temps/fréquence				
	1.2	Les dé	eveloppements récents				
		1.2.1	Les modèles $ARMA$, $ARIMA$ et $SARIMA$: modèles linéaires 1				
		1.2.2	Modèles ARCH - volatilité stochastique				
		1.2.3	Les processus à mémoire longue				
		1.2.4	Les processus multivariés				
		1.2.5	Exemple : histoire de la prévision des modèles économiques				
			$(macro\'{e}conomiques)$				
		1.2.6	Remarque sur les données hautes fréquences				
	1.3	Théor	ie des processus à temps discret				
		1.3.1	Stationnarité des processus				
		1.3.2	Propriété de Markov en temps discret				
	1.4	Objec	tifs de l'études des séries temporelles				
		1.4.1	Description et modélisation				
		1.4.2	Prévision				
		1.4.3	Filtrage				
	1.5	Conse	ils bibliographiques (en français, et en anglais)				
2	Pro	priátás	s des processus univariés en temps discret				
4	2.1						
	$\frac{2.1}{2.2}$	· · · · · · · · · · · · · · · · · · ·					
	2.3						
	$\frac{2.3}{2.4}$						
			Autocovariance et autocorrélation				
		2.4.2	Densité spectrale * * *				
		2.4.3	Estimation de la fonction d'autocorrélation				
		2.4.4	Estimation de la densité spectrale * * *				
	2.5		ntre temps continu et temps discret $\star \star \star \ldots \ldots 3$				
3	Dág	niconn	alisation par regression linéaire 37				
J	3.1		ntation des données				
	$\frac{3.1}{3.2}$		dèle linéaire				
	5.4	3.2.1	Hypothèses sur les erreurs				
		3.2.1 $3.2.2$	Composante saisonnière du modèles				
		3.2.2 $3.2.3$	Composante tendancielle				
		3.2.4	Modèle trimestriel de Buys-Ballot (1847)				
		0.4.4	modele dimicionici de Duys-Danot (1041)				

3.3		Estima	ateur des moindres carrés ordinaires (mco)
		3.3.1	Solutions générales
		3.3.2	Cas particulier : le modèle trimestriel de Buys-Ballot
		3.3.3	Généralisation des formules de Buys-Ballot (tendance linéaire) 4
	3.4	Applic	eation au trafic voyageur
		3.4.1	Série agrégée par trimestre
		3.4.2	Analyse sur données mensuelles
	3.5	Propri	iétés statistiques des estimateurs
	3.6		cation au traffic sur l'autoroute A7
	3.7		ion à un horizon h
4	Dés	aisonn	alisation par moyennes mobiles 55
	4.1		alités sur les moyennes mobiles
		4.1.1	Notion d'opérateur retard L
		4.1.2	Les moyennes mobiles
		4.1.3	L'espace des opérateurs moyenne-mobile
	4.2		rs propres associés à une moyenne mobile
		4.2.1	Les séries absorbées : $\lambda = 0$
		4.2.2	Absorbtion de la composante saisonnière
		4.2.3	Les séries invariantes : $\lambda = 1 \dots 50$
		4.2.4	Transformation de suites géométriques (r^t)
		4.2.5	Moyenne mobile différence $\Delta_p = (\mathbb{I} - L)^p$
		4.2.6	Moyenne mobile différence saisonnière $\Delta_{p,s} = (\mathbb{I} - L^s)^p$ 6
		4.2.7	Moyenne mobile impaire
		4.2.8	Moyenne mobile paire
	4.3	Notion	ns de 'bruit blanc'
		4.3.1	Transformation d'un bruit blanc
	4.4	Les pr	$\operatorname{coc\'edures} X11 \text{ et } X12 \star \star \star \ldots $
		4.4.1	Un algorithme simple de désaisonnalisation
		4.4.2	L'algorithme de base de la méthode $X11$ 6
5	La 1	orévisi	on par lissage exponentiel 6'
	5.1		pe du lissage exponentiel simple
		5.1.1	Méthode adaptative de mise à jour (ordre 1) 6
		5.1.2	Choix de la constante de lissage
		5.1.3	Lien entre robustesse de la prévision et choix de β 6
		5.1.4	Exemple d'application
	5.2	Princi	pe de lissage exponentiel double
		5.2.1	Méthode adaptative de mise à jour (ordre 1)
		5.2.2	Application de la méthode de lissage exponentiel double
	5.3	Applic	eation au traffic sur l'autoroute A7
	5.4		e exponentiel multiple, ou généralisé
		_	Méthode adaptative de mise à jour (ordre 1)

	5.5	Les méthodes de Holt-Winters (1960)	79
		5.5.1 Méthode non saisonnière	79
		5.5.2 La méthode saisonnière additive	30
	5.6	Exemple de mise en pratique des méthodes de lissage	31
		5.6.1 Présentation des données	31
		5.6.2 Lissage "linéaire"	32
		5.6.3 Lissage exponentiel simple	33
		5.6.4 Lissage exponential double	33
6	i Intr	oduction aux modèles linéaires ARIMA	34
	6.1	A quoi ressemblent les processus (S)ARIMA?	34
	6.2	Rappels sur les espaces \mathcal{L}^2	34
		6.2.1 Propriétés topologiques	34
		6.2.2 Rappel sur les vecteurs et processus gaussiens	35
		6.2.3 Régression affine dans \mathcal{L}^2	35
		6.2.4 La notion d'innovation	37
	6.3	Polynômes d'opérateurs retard L et avance F	39
		6.3.1 Rappels sur les opérateurs retards	39
			39
	6.4	Fonction et matrices autocorrélations	92
		6.4.1 Autocovariance et autocorrélation	92
		6.4.2 Autocorrélations partielles	
		6.4.3 Densité spectrale $\star\star\star$	
		6.4.4 Autocorrélations inverses * * *	99
		6.4.5 Complément : autocorrélogrammes de fonctions déterministes 10	00
	6.5	Les processus autorégressifs : $AR(p)$)1
		6.5.1 Réécriture de la forme $AR(p)$)2
		6.5.2 Propriétés des autocorrélations - les équations de Yule-Walker 10	
		6.5.3 Le processus $AR(1)$)6
		6.5.4 Le processus $AR(2)$	11
	6.6	Les processus moyenne-mobile : $MA(q)$	13
		6.6.1 Propriétés des autocorrélations	
		6.6.2 Le processus $MA(1)$	16
		6.6.3 Le processus $MA(2)$	
	6.7	Les processus $ARMA(p,q)$	19
		6.7.1 Propriétés des autocorrélations	20
		6.7.2 Densité spectrale des processus $ARMA(p,q)$	21
		6.7.3 Les processus $ARMA(1,1)$	
	6.8	Introduction aux modèles linéaires non-stationnaires	
	6.9	Les processus $ARIMA(p,d,q)$	
		6.9.1 Processus $ARIMA$ et formes AR ou MA	
	6.10	Les modèles $SARIMA$	
		Théorème de Wold	

	6.12	Théori	ie spectrale et processus $ARIMA \star \star \star$	130
		6.12.1	Théorie spectrale et notion de filtre	131
		6.12.2	Le spectre d'un processus $ARMA$	132
		6.12.3	Estimation de la densité spectrale d'un processus	133
7	Esti	mation	n des modèles ARIMA : Box-Jenkins	137
	7.1	Estima	ation du paramètre d'intégration d	137
		7.1.1	Approche empirique par l'autocorrélogramme	137
		7.1.2	Tests de racine unité	137
		7.1.3	Tests de racines unitaires saisonnières	142
		7.1.4	Complément sur la notion de sur-différentiation	144
	7.2	Estima	ation des ordres p et q d'un modèle $ARMA(p,q)$	144
		7.2.1	Problèmes d'unicité de la représentation $ARMA$	
		7.2.2	Comportement asymptotique des moments empiriques	146
		7.2.3	Méthode pratique d'estimation des ordres p et q	147
		7.2.4	Cas d'un processus $MA(q)$	148
		7.2.5	Cas d'un processus $ARMA(p,q)$	
		7.2.6	Propriété des estimateurs	
	7.3	Test d	e bruit blanc et de stationnarité	152
		7.3.1	Analyse des fonctions d'autocorrélation	152
		7.3.2	Statistique de Box-Pierce, ou test de "portmanteau"	153
		7.3.3	Compléments : les tests de normalité	
		7.3.4	Complément : Test de rupture et de changement de tendance	156
	7.4	Estima	ation des paramètres d'un modèle $ARMA(p,q)$	
		7.4.1	Attention à la constante	161
		7.4.2	Estimation pour les modèles $AR(p)$ par la m éthode des moindres	
			carrés	164
		7.4.3	Vraissemblance d'un processus $ARMA(p,q)$	165
		7.4.4	Résolution du programme d'optimisation	167
		7.4.5	Comparaison des différentes méthodes d'inférence	172
		7.4.6	Tests statistiques de validation du modèle	173
	7.5	Choix	d'un modèle	174
		7.5.1	Critère de pouvoir prédicitf	174
		7.5.2	Critère d'information	174
	7.6	Applie	e <mark>ation</mark>	175
		7.6.1	Identification du modèle : recherche des paramètres d, p et q	175
		7.6.2	Estimation du modèle ARIMA	176
		7.6.3	Vérification	176
8	Pré	visions	à l'aide des modèles ARIMA : Box-Jenkins	177
	8.1	Prévis	ions à l'aide d'un modèle $AR(p)$	177
	8.2		ions à l'aide d'un modèle $MA\stackrel{\frown}{(q)}$	
		8.2.1	Utilisation de l'écriture $AR(\infty)$ du processus $MA(q)$	

		8.2.2	Utilisation de la formule de mise à jour des résultats	179
	8.3	Prévis	ions à l'aide d'un modèle $ARMA(p,q)$	179
		8.3.1	Utilisation de la forme $AR(\infty)$ pu processus $ARMA(p,q)$	179
		8.3.2	Utilisation de la forme $MA(\infty)$ pu processus $ARMA(p,q)$ et des	
			formules de mise à jour	180
	8.4	Prévis	ions dans le cas d'un processus $ARIMA(p,d,q)$	180
		8.4.1	Utilisation de l'approximation AR	
		8.4.2	Utilisation de l'approximation MA	182
	8.5	Interv	alle de confiance de la prévision	182
	8.6	Prévis	ion pour certains processus AR et MA	183
		8.6.1	Prévision pour un processus $AR(1)$	183
		8.6.2	Prévision pour un processus $MA(1)$	184
		8.6.3	Prévision pour un processus $ARIMA(1,1,0)$	186
	8.7	Applic	cation	
		8.7.1	Example de prévision : cas d'école	187
		8.7.2	Exemple d'application : cas pratique	189
9	Mis	e en o	euvre de la méthode de Box & Jenkins	190
	9.1		cation de la série des taux d'intérêt à 3 mois	190
		9.1.1	Modélisation de la série	
		9.1.2	Estimation des paramètres d'une modélisation $ARIMA(1,1,1)$	192
		9.1.3		193
		9.1.4		193
		9.1.5		194
		9.1.6		194
		9.1.7	Choix du modèle	
	9.2	Modél	isation du taux de croissance du PIB américain	195

Remarque 1. Ces notes de cours sont basées sur de vieilles notes de cours datant de 2005, utilisées à l'Université Paris 9 Dauphine. Les notes étaient alors basées sur des codes SAS, mais elles sont ajourd'hui en R.

1 Introduction générale et notations

L'étude des séries temporelles, ou séries chronologiques, correspond à l'analyse statistique d'observations régulièrement espacées dans le temps. Elles ont été utilisées en astronomie ('on the periodicity of sunspots', 1906), en météorologie ('time-series regression of sea level on weather', 1968), en théorie du signal ('Noise in FM receivers', 1963), en biologie ('the autocorrelation curves of schizophrenic brain waves and the power spectrum', 1960), en économie ('time-series analysis of imports, exports and other economic variables', 1971)...etc.

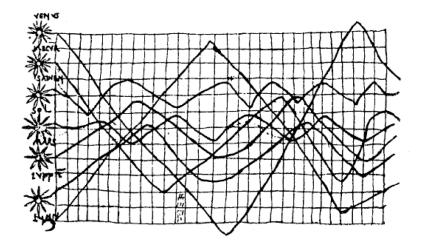
1.1 Approches temps/fréquences : un peu d'histoire

De façon générale, quand on parle de séries stationnaires, on a en tête une représentation de la forme X_t , où $t \in \mathbb{Z}$, représentant les observations (potentielles) du processus, dont on peut définir un ensemble d'autocovariance $\gamma(t,s) = \mathbb{E}([X_t - \mu][X_s - \mu])$ qui ne dépend que la distance entre t et s, $\gamma(t,s) = \gamma(t+h,s+h)$ pour tout $h \in \mathbb{Z}$ (notion 'faible' de stationnarité). On demande généralement à cette autocovariance $\gamma(t,s)$ de tendre vers 0 quand la différence entre t et s tend vers l'infini : la covariance entre des éléments très éloignés dans la série tend vers 0.

Cette approche, basée sur l'utilisation des corrélations, correspond à l'analyse de type 'temporelle' : elle consiste à étudier les corrélations croisées de fonctions de la série (X_t) . Ces méthodes sont généralement paramétriques de type moyenne-mobiles (moving average MA) ou autorégressives (AR) - voire les deux (ARMA). Toutes ces méthodes consistants à estimer des paramètres peuvent généralement être vus comme des généralisations de la régression linéaire.

L'autre approche également utilisée est celle basée sur l'étude des fréquences'. Cette vision est une généralisation des méthodes utilisées en analyse de Fourier. L'idée est ici d'approximer une fonction analytique par une somme pondérée de fonctions sinus ou cosinus.

Historiquement, ce sont les astonomes qui les premiers ont travaillé sur des séries chronologiques. La reproduction ci-dessous est tiré d'un manuscrit du X^e siècle, représentant l'inclinaison des orbites des planètes en fonction du temps. C'est en particulier grâce à ce genre de données que Kepler a pu énoncer ses lois sur le mouvement des planètes.



Ces visualisations graphiques ont permis, grâce aux différents outils mathématiques mis en place au $XVIII^e$ et XIX^e siècles, de mettre en place les premières techniques d'étude des séries chronologiques², parmi lesquelles, l'analyse harmonique.

1.1.1 Analyse harmonique

Les astronomes ont été les premiers à utiliser l'analyse de Fourier pour des séries chronologiques. Leur but était de détecter des saisonalités cachées au sein de leurs données. Ainsi, Lagrange a utilisé ces méthodes pour détecter de la périodicité cachée en 1772 et en 1778. Un demi-siècle plus tard, en 1847, Buys et Ballot, dans Les changements périodiques de températures' ont proposé des méthodes pour étudier la périodicité de données astronomiques. Toutefois, il a fallu attendre 1889 pour que Sir Arthur Shuster introduise le périodogramme, qui constitue la base des méthodes spectrales d'analyse de séries chronologiques.

L'idée est la suivante : on recherche un modèle sous-jacent de la forme

$$Y_t = \sum \rho_j \cos \left[\omega_j t - \theta_j\right] + \varepsilon_t = \sum \left[\alpha_j \cos \left(\omega_j t\right) + \beta_j \sin \left(\omega_j t\right)\right] + \varepsilon_t,$$

où (ε_t) est une suite de variables aléatoires indépendantes identiquement distribuées, qui correspondront à un 'bruit blanc' (cette notion serait longuement développée par la suite).

Le facteur ρ_j (ou $\sqrt{\alpha_j^2 + \beta_j^2}$) correspond à l'amplitude de la *j*-ème composante périodique, et indique le poids de cette composante au sein de la somme.

²En fait, comme le note Bernstein dans Against the Gods (the remarkable story of risk), les grecs ou les hébreux ont observés des phénomènes cycliques (par exemple), mais ils n'ont jamais pensé à faire de la prévision. Il a fallu attendre la Renaissance pour que l'avenir ne soit plus qu'une question de chance ou un fruit du hasard. Y compris au XVIIIème siècle, prévoir des phénomène futurs pouvait faire croire à une tentative de rivaliser avec les dieux: Halley remarqua que la même comète fut aperçue en 1531, en 1607 et en 1682 (cette comète avait été observée d'ailleurs depuis 240 avant J.C.), et il prévoit qu'on la reverra en 1758 (ce fut effectivement le cas, au grand émoi de toute l'Europe, puisque tous les 76 ans, la comète, dite de Halley, arrive en vue de la terre).

A partir d'un échantillon $Y_0, ..., Y_{T-1}$, et en considérant les fréquences $\omega_j = 2\pi j/T$, le **périodogramme** est défini par

$$I(\omega_j) = \frac{2}{T} \left[\left(\sum Y_t \cos(\omega_j) \right)^2 + \left(\sum Y_t \sin(\omega_j) \right)^2 \right] = \frac{T}{2} \left(a^2(\omega_j) + b^2(\omega_j) \right).$$

Il est alors possible de montrer que $2I(\omega_j)/T$ est un estimateur consistant de ρ_j^2 (au sens où cet estimateur converge en probabilité quand le nombre d'observations augmente). Cette convergence à été longuement étudiée par Yule en 1927.

En 1924, Whittaker et Robinson ont utilisé cette théorie sur la brillance de l'étoile T-Ursa Major, observée sur 600 jours, et ont montré que la brillance pouvait être modélisée (presque parfaitement) à l'aide de 2 fonctions harmoniques, de périodes respectives 24 et 29 jours.

Si cette théorie a donné de très bons résultats en astronomie, son application en économie a conduit à des résultats nettement moins concluants. En 1921 et 1922, Beveridge a utilisé cette théorie sur le prix du blé (wheat prices and rainfall in western europe'). La série présentait tellement de pics qu'au moins 20 périodicités étaient possibles... et plus encore si l'on commençait à prendre en compte de facteurs économiques ou météorologiques.

Si les phénomènes astronomiques permettent d'utiliser cette théorie, c'est parce que des cycles parfaitement réguliers sont observés. Toutefois, cette méthode s'est révélée plus compliquée à mettre en oeuvre en sciences humaines.

1.1.2 Modèles autoregressifs et moyennes mobiles

Deux articles en 1927 ont ouvert une autre voie : l'article de Yule ('on the method of investigating periodicities in disturbated series with sepcial reference to Wolfer's sunspot numbers') et celui de Slutsky ('the summation of random causes as the source of cyclical processes').

Yule a introduit dans la littérature les modèles autorégressifs, en considérant des modèles de la forme

$$Y_t = \alpha Y_{t-1} + \beta Y_{t-2}.$$

Etant données deux valeurs initiales, cette suite présente un comportement saisonnier, fonction des paramètres α et β . Yule remarque qu'en fait, le comportement dépend des racines (complexes) de l'équation $z^2 - \alpha z - \beta = 0$, et plus particulièrement de leur position par rapport au disque unité. Si leur module est inférieur à 1, alors on observe un comportement sinusoïdal amorti. En fait, la forme générale des solutions sera

$$Y_t = A\rho^t \cos\left(\omega t - \theta\right)$$
, lorsque $0 < \rho < 1$.

Le modèle autorégressif proposé par Yule est le suivant

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t, \tag{1}$$

où (ε_t) correspond à un 'bruit blanc' : un bruit blanc correspond à un processus 'indépendant' (ou, plus faiblement, non corrélé avec son passé). Néanmoins, des hypothèses plus fortes doivent parfois être faites : on veut que ce bruit soit également indépendant du passé de la variable Y_t , i.e. ε_t indépendant de Y_{t-h} pour tout $h \geq 1$, et on parle alors d'innovation du processus (Y_t) .

Remarque 2. Le terme bruit blanc' vient de la théorie du signal. Comme pour la lumière blanche (qui est un mélange de toutes les couleurs), le bruit blanc est composé de toutes les fréquences, où la densité spectrale de puissance est la même pour toutes les fréquences. Ce bruit ressemble à un souffle.

Slutsky a introduit les moyennes mobiles la même année que Yule a introduit les processus autorégressifs... mais son article, écrit en 1927 en russe n'a été traduit qu'en 1937 en anglais. Pour cela, il a utilisé des nombres générés par la lotterie officielle, et a réussit à générer une série décrivant le cycle économique en Angleterre, de 1855 à 1877. La forme générale était la suivante,

$$Y_t = \mu_0 \varepsilon_t + \mu_1 \varepsilon_{t-1} + \dots + \mu_q \varepsilon_{t-q}, \tag{2}$$

où (ε_t) est un bruit blanc, correspondant à ces nombres générés par la lotterie officielle : on obtient des variables indépendantes entre elles (*cf tables de nombres aléatoires*), mais surtout indépendantes du cycle économique. Cette écriture a suggéré d'élargir la relation (1) sous une forme proche de (2), à savoir

$$\phi_0 Y_t + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} = \varepsilon_t.$$

Les processus introduits par Yule deviendront les processus AR(p) et ceux introduits par Slutsky les processus MA(q). L'analogie entre les deux processus sera même poussée plus loin lorsqu'il sera montré que les processus AR(p) et MA(q) sont respectivement des processus $MA(\infty)$ et $AR(\infty)$, sous certaines conditions.

1.1.3 L'approche temporelle : concept de corrélation sérielle

Si l'approche spectrale repose sur l'utilisation du spectre (ou du périodogramme), l'approche temporelle repose sur l'autocorrélogramme, ou plus généralement sur l'utilisation de la corrélation sérielle. Poynting est le premier a introduire cette idée, en 1884, en étudiant la relation entre le mouvement du prix du blé, et les importations de coton et de soie. Le coefficient de corrélation sérielle a été définit par Hooker en 1901, dans une étude sur le taux de mariage en Angleterre, et l'indice du commerce. Etant données deux séries temporelles, (X_t) et (Y_t) , la covariance sérielle est définie par $c_k(X,Y) = cov(X_t,Y_{t+k})$ et la corrélation sérielle sera alors $r_k(X,Y) = c_k(X,Y)/c_0(X,Y)$.

Le coefficient d'autocorrélation est alors obtenu en considérant $\rho_k = corr(X_t, X_{t+k}) = r_k(X, X)$. Les années 30 ont alors vu l'éclosion des résultats de base dans le domaine des séries chronologiques, sous l'impulsion de Khintchine, Cramer, Wold, Kolmogorov, Wiener...etc. Ces auteurs ont développé une théorie des séries temporelles, en considérant qu'une série chronologique est une réalisation d'un processus aléatoire.

1.1.4 L'équivalence entre les deux approches temps/fréquence

Dans un premier temps, l'analyse harmonique a été généralisée pour passer d'une somme de Fourier à une intégrale de Fourier

$$Y_{t} = \int_{0}^{\pi} \left[\cos(\omega t) dA(\omega) + \sin(\omega t) dB(\omega) \right].$$

Cette simple idée de lissage du périodogramme a permis de contourner les problèmes qu'avait pu observer Beveridge lorsqu'il cherchait des périodicités cachées dans des disciplines autres que l'astronomie.

La synthèse entre ces deux branches (la première travaillant en temps, avec des autocorrélations, et la seconde travaillant sur le spectre de la série) a été faite dans les années 30, en parallèle aux Etats-Unis par Norbert Wiener ('generalised harmonic analysis', 1930) et en Union Soviétique par Khintchine ('korrelationstheorie der stationaren stochastichen prozesse', 1934). Leur résultat est de mettre en avant une relation bijective entre la fonction d'autocovariance d'un processus stationnaire, et sa densité spectrale :

$$g\left(\omega\right) = \frac{1}{2\pi} \sum_{h=-\infty}^{+\infty} \gamma\left(h\right) \cos\left(\omega h\right) \text{ ou } \gamma\left(h\right) = \int_{0}^{\pi} \cos\left(\omega h\right) g\left(\omega\right) d\omega, \text{ où } \gamma\left(h\right) = \cos\left(X_{t}, X_{t-h}\right).$$

Et si l'analogie entre autocorrélogramme et densité spectrale existe d'un point de vue théorique, il est possible de mettre en avant le même genre de relation entre les autocorrélations empiriques et le périodogramme empirique.

1.2 Les développements récents

L'étude des séries temporelles semble avoir atteint sa maturité au cours des années 70 où des développements significatifs sont apparus. En 1965, Cooley et Tukey ont beaucoup aidé l'étude spectrale des séries grâce à leur article 'an algorithm for the machine calculation of complex Fourier series', introduisant la Fast Fourier Transform (FFT). Cet algorithme a permis de calculer rapidement des périodogrammes. A la même époque, en 1970, Box et Jenkins ont publié leur ouvrage 'Time series analysis, forecasting and control', montrant que l'étude des séries temporelles à l'aide de processus de type ARMA (obtenus en associant les écritures (1) et (2) des processus AR et MA) pouvait s'appliquer à de nombreux domaines, et pouvait être facilement implémentée informatiquement³.

1.2.1 Les modèles ARMA, ARIMA et SARIMA : modèles linéaires

Les modèles ARMA sont un mélange des modèles (1) et (2) proposés par Yule et Slutsky. Un processus (X_t) est un processus ARMA(p,q) s'il existe un bruit blanc (ε_t) (c'est à

³Sur les méthodes de prévision en économie, il peut être intéressant de se reporter à 'The past, present and future of macroeconomic forecasting' de Francis Diebold (1997).

dire un processus stationnaire tel que ε_t et ε_{t-k} soient indépendants, pour tout k, pour tout t) tel que

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$
, pour tout t .

Sous certaines conditions, ces processus sont stationnaires. Comme nous le verrons par la suite, ces processus peuvent s'écrire sous la forme

$$\Phi(L) X_t = \Theta(L) \varepsilon_t$$
, où $\Phi(L) = \mathbb{I} - \phi_1 L - \dots - \phi_p L^p$ et $\Theta(L) = \mathbb{I} + \theta_1 L + \dots + \theta_q L^q$,

L représentant l'opérateur retard, au sens où $LX_t = X_{t-1}$, et avec la convention $L^p = L \circ L^{p-1}$, soit $L^pX_t = X_{t-p}$: la série (Y_t) telle que $Y_t = L^pX_t$ est alors la série (X_t) retardée de p périodes.

Parallèlement, on dira qu'un processus non-stationnaire est intégré d'ordre 1, si en le différenciant une fois, on obtient un processus stationnaire : (X_t) (non-stationnaire) sera dit intégré d'ordre 1 si le processus (Y_t) définit $Y_t = \Delta X_t = X_t - X_{t-1} = (1-L)X_t$ est stationnaire. On dira, par extension, que (X_t) est intégré d'ordre d si (X_t) est non-stationnaire, ..., (Y_t) où $Y_t = (1-L)^{d-1}X_t$, est non-stationnaire, et (Z_t) où $Z_t = (1-L)^d X_t$, est stationnaire. On appelera alors processus ARIMA(p,d,q) un processus (X_t) pouvant se mettre sous la forme

$$\Pi(L) X_t = \Phi(L) (1 - L)^d X_t = \Theta(L) \varepsilon_t$$
, où (ε_t) est un bruit blanc.

Pour les données réelles, on notera que d = 1, 2 ou 3 (au maximum). Cela signifie que (Y_t) définit comme différence d'ordre d du processus (X_t) , soit $Y_t = (1 - L)^d X_t$, 'suit un processus $ARMA(p,q)^{**4}$.

On parlera d'ailleurs de présence de racine unité : 1 est alors racine du polynôme autorégressif $\Pi(z)$. Par généralisation, on peut considérer le cas où $\exp(2i\pi/s)$ est racine du polynôme autorégressif : c'est à dire que $\Pi(L) = (1 - L^s) \Phi(L)$. On dira alors que l'on est présence d'une racine unité saisonnière, qui engendreront les modèles SARIMA.

Les modèles intégrés sont très présents dans les séries économiques, par exemple les séries d'indices boursiers, d'indice de production, d'indice de prix.... Les modèles SARIMA sont également très présents dès lors que les séries sont très saisonnières (avec une forte péridicité trimestrielle, annuelle...etc).

Remarque 3. Parmi les transformations usuelles des variables, la transformation par (1-L) est parmi les plus utilisées : on ne considère alors plus la série brute (X_t) mais la variation (brute) $Y_t = X_t - X_{t-1}$. Dans le cas où X_t est un prix (par exemple un indice boursier, CAC40 ou SP500), on considère également souvent la variable obtenue comme différence des logarithmes des prix $Z_t = \log X_t - \log X_{t-1}$, qui est alors le rendement ou le taux de croissance ("return").

 $^{^4}$ Ceci n'est qu'une notation : comme nous le verrons par la suite, les processus ARIMA sont un peu plus compliqués que les processus ARMA puisqu'il faut prendre en compte des conditions initiales : (Y_t) ne suit qu'asymptotiquement un processus ARMA (p,q).

1.2.2 Modèles ARCH - volatilité stochastique

Dans les années 80, des développements ont été apportés dans l'étude de la non-linéarité de certaines séries, et sur leur modélisation. En 1982, Engle a introduit la classe des modèles ARCH (autorégressifs conditionnellement hétéroscédastiques⁵). Ces modèles ont été introduits pour palier à une observation empirique qui n'était pas prise en compte par les modèles : la volatilité conditionelle d'une série (Y_t) n'a aucune raison d'être constante. Dans les modèles AR(1), la variance conditionnelle de X_t sachant X_{t-1} est constante : $V(X_t|X_{t-1}) = \sigma^2$ où $V(\varepsilon_t) = \sigma^2$ (notion d'homoscédasticité). Engle a cherché un modèle dans lequel la variance conditionnelle de X_t sachant X_{t-1} dépendrait de X_{t-1} , et plus particulièrement, $V(X_t|X_{t-1}) = \left[\alpha + \beta X_{t-1}^2\right]\sigma^2$. Pour cela, il a considéré les modèles de la forme

$$X_t = \varepsilon_t \sqrt{h_t}$$
, où $h_t = \alpha_0 + \alpha_1 X_{t-1}^2$.

Cette classe de modèle, appelée ARCH(1) a été généralisée sous la forme ARCH(p),

$$X_t = \varepsilon_t \sqrt{h_t}$$
, où $h_t = \alpha_0 + \alpha_1 X_{t-1}^2 + \dots + \alpha_p X_{t-p}^2$.

Cette forme pour h_t a permis l'analogie entre les modèles AR et les modèles ARCH. De plus, cette classe de modèles ARCH a été généralisée de la même façon que les ARMA généralisent les AR, en considérant des fonctions h_t de la forme

$$h_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i}^2 + \sum_{j=1}^{q} \beta_j \varepsilon_{t-j},$$

générant ainsi les modèles GARCH.

1.2.3 Les processus à mémoire longue

D'autres avancées ont été faites sur la **mémoire longue** de certaines séries. Les processus stationnaires de type AR ont un autocorrélogramme qui converge vers 0 de façon exponentielle $(\gamma(h) = \alpha\beta^h)$. Les processus à mémoire longue seront caractérisés par une décroissance de leur autocorrélogramme suivant une fonction puissance $(\gamma(h) = \gamma h^{\delta})$.

Plusieurs classes de processus appartiennent à cette série,

- (i) les processus self-similaires, introduits par Kolmogorov en 1958 et développés par Mandelbrot (1965) : ces processus sont caractérisés par l'existence d'une constante H (dite de self-similarité) telle que, pour tout constante c, la distribution de Y_{ct} soit égale à celle de $c^H Y_t$. On retrouve dans cette classe les processus de Levy.
- (ii) les processus FARMA, généralisation des modèles ARIMA décrits par Box et Jenkins. Ces modèles ARIMA étaient obtenus en considérant que les différences premières

⁵Pour rappel, un modèle économétrique est dit homoscédatique si la variance des erreurs (centrées) $\mathbb{E}\left(\varepsilon_t^2\right)$ est constante - quelque soit la période d'étude. Dans le cas contraire, on parlera d'hétéroscédasticité. Les modèles sont ici conditionnellement hétéroscédatistique car $E\left(\varepsilon_t^2|\underline{\varepsilon_{t-1}}\right)$ dépend de t.

 $\Delta^d X_t$ (où $\Delta X_t = X_t - X_{t-1}$, $\Delta^2 X_t = \Delta (\Delta X_t)$...etc) suivent un processus ARMA(p,q). On parle alors de processus ARMA intégré. Les processus FARIMA ont été obtenus en considérant, formellement, les cas où d n'est pas entier, compris entre -1/2 et 1/2. Cette généralisation, proposée par Granger en 1980, repose sur la manipulation des séries d'opérateurs retard (L), et sur le développement en série entière de $(1-L)^d$.

(iii) l'aggrégation de processus AR(1) a également été proposée par Granger en 1980 et cette classe de processus a été étudiée par Gourieroux et Gonçalves en 1988. On considère des processus vérifiant, pour tout $t \ge 0$,

$$X_{i,t} = \Phi_i X_{i,t-1} + C_i \varepsilon_t + \eta_{i,t}$$
 pour $i = 1, 2, ...$

1.2.4 Les processus multivariés

Enfin, d'autres développements ont été fait dans l'étude des processus multivariés. Si l'on se place uniquement en dimension 2, on comprend que la généralisation des processus univariés à une dimension supérieur est relativement compliquée.

(i) les modèles VAR - vecteurs autorégressifs - sont une généralisation des modèles AR en dimension n. Si l'on considère par exemple un couple \mathbf{Z}_t de deux variables (X_t, Y_t) que l'on souhaite expliquer par leur passé, on obtient un modèle de la forme

$$\begin{bmatrix} X_t \\ Y_t \end{bmatrix} = \begin{bmatrix} \phi_1 & \alpha_1 \\ \beta_1 & \psi_1 \end{bmatrix} \begin{bmatrix} X_{t-1} \\ Y_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_t \\ \eta_t \end{bmatrix}, \text{ soit } \boldsymbol{Z}_t = A_1 \boldsymbol{Z}_{t-1} + U_t,$$

où la matrice A_t est composée des coefficients autoregressifs 'usuels' $(\phi_1 \text{et } \psi_1)$ mais aussi des notions relatives à la notion de causalité, X_t dépendant de Y_{t-1} , et Y_t dépendant de X_{t-1} .

(ii) la cointégration est une notion relative au comportement des plusieurs variables intégrées, et à la relation qui les unit à long terme : on considère (X_t) et (Y_t) non-stationnaires, et intégrées d'ordre d, satisfaisant une relation du type

$$X_t = \alpha + \beta Y_t + \varepsilon_t.$$

Plus formellement, si le vecteur (\mathbf{Z}_t) est intégré d'ordre d, on dira que les séries $Z_t^1, Z_t^2, ..., Z_t^n$ sont cointégrées si et seulement s'il existe une relation linéaire non-nulle des composantes qui soient intégrées d'ordre strictement inférieur à d

(iii) le modèle 'filtre de Kalman'. Ce modèle est un cas particulier d'une classe plus large de modèles, les modèles espace d'états, de la forme

$$\begin{cases} \boldsymbol{Z}_{t+1} = A_t \boldsymbol{Z}_t + \boldsymbol{\varepsilon}_t \\ \boldsymbol{Y}_t = C_t \boldsymbol{Z}_t + \boldsymbol{\eta}_t, \end{cases}$$

où (\boldsymbol{Y}_t) est le vecteur que l'on étudie, (\boldsymbol{Z}_t) est un vecteur aléatoire $(=\acute{e}tat)$ inconnu, A_t et C_t sont des matrices déterministes, et $(\boldsymbol{\varepsilon}_t, \boldsymbol{\eta}_t)$ est un bruit blanc normal. L'idée est d'estimer récursivement \boldsymbol{Z}_t en fonction de $\boldsymbol{Y}_0, ..., \boldsymbol{Y}_t$.

1.2.5 Exemple : histoire de la prévision des modèles économiques (macroéconomiques)

La théorie économique inspirée de Keynes reposait sur l'utilisation de 'prévisions conditionnelles': sous certaines hypothèses, les prévisions d'une ou plusieurs variables étaient faites conditionellement à des comportements, au sein de modèles structurels. Plus particulièrement, dès 1936, Keynes proposait par exemple de lier la consommation C_t au revenu disponible R_t , sous la forme $C_t = \alpha R_t + \beta$: une prévision de R_t permettait de prévoir C_t . Brown avait proposé un modèle légèrement différent dès 1952, en intégrant le fait que les individus ont des habitudes de consommation, entrainant une inertie importante : $C_t = \alpha R_t + \beta + \gamma C_{t-1}$. Ces 'prévisions structurelles' ont toutefois cessé de faire référence à partir des années 70.

Les prévisions non-structurelles ont alors pu prendre en compte les différents cycles observés en économie (1977 : 'Business cycle modeling without pretending to have too much a priori theory' de Sargent et Sims) : des prévisions de séries économiques peuvent se faire sans nécessairement avoir de modèle structurel derrière. Les modèles utilisés sont toutefois relativement anciens puisqu'ils sont inspirés des modèles de Slutsky et Yule, tous deux datant de 1927, basés sur la notion de modèle autorégressif. La publication de l'ouvrage de Box et Jenkins en 1970 permettra une avancée rapide avec l'utilisation des modèles ARMA.

Toutefois, le lacune de la théorie de Box et Jenkins est qu'elle ne prend pas en compte des effets croisés de dépendance entre variables. Pour effectuer de la prévision d'un ensemble de variables, a priori liées, il convient d'effectuer une prévision 'globale': la théorie des modèles VAR (modèles autorégressifs vectoriels) a été introduite en économie sous l'impulsion de Sims en 1980, qui a travaillé sur des systèmes d'équations où toutes les variables sont alors endogènes (contrairement aux equations structurelles de $extit{Keynes}$). Cette théorie avait toutefois été étudiée dès les années 70 par Granger par exemple, qui avait travaillé sur la notion 'simple' de causalité entre variables.

Toutefois, la présence d'un certain nombre de variables non-stationnaires a posé un certain nombre de problèmes : Granger a alors introduit la notion de cointégration en 1981 : cette notion dit que deux variables X et Y peuvent suivre une tendance stochastique, mais la différence (ou le spread) X-Y peut être stationnaire. Cette notion sera à l'origine des modèles à tendance commune, permettant de travailler sur des systèmes d'équations où certaines variables sont cointégrées. En particulier, dès 1978, Hall se posait la question de savoir si la consommation par habitant n'était pas une martingale, ce qui conduirait à écrire $C_t = C_{t-1} + \varepsilon_t$ où ε_t est un aléa. Nelson et Plosser ont d'ailleurs noté, en 1982 qu'un grand nombre de séries macroéconomiques étaient caractérisées par la présence d'une racine unitaire (c'est à dire une écriture de la forme $C_t = C_{t-1} + X_t$). Et c'est finallement en 1987 que Campbell a proposé un modèle VAR sur la consommation C et le revenu R, puis un modèle VAR intégrant dans chaque équation un modèle à correction d'erreur.

Une autre piste qui a été explorée à la même époque est celle des modèles non-linéaires. Cette voie a été ouverte dès 1982 par Engle, qui introduisi de la dynamique dans la volatilité, à l'aide des modèles ARCH. Ces modèles ont été très utilisés en finance, mais aussi pour des modèles d'inflation.

Parmi des améliorations apportées dans les années 90, on peut noter les modèles avec cycles, avec rupture de tendance, à changement de régime...etc. La théorie des modèles à changement de régime repose sur l'idée que derrière les variables observées existent des variables cachées, non observées.

Pour résumer l'histoire des applications économiques des séries temporelles, on peut retenir le schéma suivant

- années 20: macroéconomie descriptive : description des cycles (courts = Slutsky, longs = Kondratieff)
- années 50 : début de la théorie des séries temporelles, avec comme objectif principal, la prévision
- années 60: application en macroéconomie, avec des modèles structurels : une vingtaine de variables, et 200 observations (maximum)
- années 70 : théorie de Box et Jenkins, s'appuyant sur un logiciel (modèle linéaire) : on considère les variables une à une, sur 200 observations (début, à la même époque, de la théorie des panels en microéconomie : 3000 individus suivis sur 3 ou 4 périodes)
- années 80 : en marcroénomie, modèles multivariés (causalité, cointégration, codépendance). Début de l'utilisation des modèles de séries temporelles sur données financières : beaucoup de variables, 2000 observations. Début des modèles à temps continu.
- années 90: données hautes fréquences sur les marchés financiers ($de~4000~\grave{a}~plus~de~2000000~observations$).

Des compléments peuvent se trouver dans l'article de Chris Chatfield (1997) intitulé 'Forecasting in the 1990s'.

Remarque 4. Les modèles que nous allons étudier dans ce cours sont basés sont basés sur l'étude de processus (X_t) où les variables observées sur supposées à valeurs réelles $X_1, X_2, ..., X_t, \in \mathbb{R}$. On observera ainsi des prix, des variations de prix, des taux, des montants...etc. Des nombres de voyageurs seront, a la rigueur, considérés comme une variable réelle, mais deux cas seront exclus de notre étude, a priori :

- les processus de comptage (ex : nombre d'accident pour un conducteur l'année t)
- les processus à valeurs dans un espace d'état fini

1.2.6 Remarque sur les données hautes fréquences

Remarque 5. Les modèles que nous allons étudier dans ce cours sont basés sont basés sur l'étude de processus (X_t) , observés à des dates régulières : $X_1, X_2, ..., X_t, ...$ Il peut s'agir, par exemple, de la version discrère d'un processus en temps continu : on observe $X_{t_1}, X_{t_2}, ..., X_{t_n}, ...$ où les dates t_i sont telles que $t_i - t_{i-1}$ soit constante pour tout i.

Dans le cas des données hautes fréquences, l'analyse est relativement différente, puisque l'aspect temporel doit être pris en compte. Par exemple, pour étudier la liquidité des marchés financiers, on considère les triplets de variables suivants : (T_i, V_i, P_i) ,

où T_i est la date de la *i*éme transaction, V_i le volume échangé lors de la transaction, et P_i le prix de cette transaction. Cette étude permet de changer l'échelle des temps : on ne considère plus le temps calendaire mais le temps des transactions.

La notion de base pour étudier ce genre de données est la théorie des modèles de durées. On considère (T_i) , la suite des dates de transaction, et τ_i la date écoulée entre la ième et la i-1ème transaction : $\tau_i = T_i - T_{i-1}$.

Toutefois, dans ce cours, nous ne traiterons pas de ces aspects, mais nous considèrerons plutôt des agrégations, ou des observations ponctuelles : P_t sera le prix observé à la date t (par exemple tous les jours, ou toutes les heures) et V_t le volume total échangé pendant la période (en une journée, ou une heure). Toutefois, il est à noter que même dans ce cas, où les volumes de données sont très importants, l'étude peut s'avérer plus complexe que dans le cas où l'on considère des séries économiques observées à 200 dates, en particulier à cause de la présence de multiples cycles (un cycle d'une journée sera observée sur des données horaires par exemple, puis des cycles mensuels, ou trimestriels (publication de comptes), ou encore annuels...).

1.3 Théorie des processus à temps discret

Deux types de processus sont utilisés dans la théorie des séries stationnaires

- (i) les processus stationnaires
- (ii) les processus markoviens

1.3.1 Stationnarité des processus

La stationnarité joue un rôle central dans la théorie des processus, car elle remplace $(de\ façon\ naturelle)$ l'hypothèse d'observation i.i.d. en statistique. Deux notions sont généralement considérées. La première notion de stationnarité peut se définir de façon forte par une stabilité en loi du processus : quels que soient $n, t_1, ..., t_n$ et h, on a l'égalité entre les lois jointes

$$\mathcal{L}(Y_{t_1},...,Y_{t_n}) = \mathcal{L}(Y_{t_1+h},...,Y_{t_n+h})$$

Cette définition toutefois peut être affaiblie : le processus est dit stationnaire au second ordre si

- la moyenne du processus est constante : $\mathbb{E}(Y_t) = m$ pour tout $t \in \mathbb{Z}$
- les autocovariances ne dépendent que de la différence entre les observations : $cov(X_t, X_s) = \gamma(|t s|)$

Cette dernière propriété implique en particulier que la variance de Y_t est constante : $V\left(Y_t\right) = \sigma^2$.

Remarque 6. Si l'on considère les lois marginales (à t fixé) du processus, la stationnarité (forte) signifie une stabilité de la loi marginale : la loi de Y_t et la loi de Y_s sont identiques pour $t \neq s$. La stationnarité du second ordre correspond uniquement à une stabilité des deux premiers moments : $\mathbb{E}(Y_t) = \mathbb{E}(Y_s)$ et $V(Y_t) = V(Y_s)$ pour $t \neq s$. Dans ce cas, rien n'empêche d'avoir des skewness et des kurtosis variables en fonction du temps.

Remarque 7. Si l'on considère la dépendance temporelle, la stationnarité du second ordre suppose uniquement une stabilité de la corrélation (moment d'ordre 2) : $cov(X_t, X_{t+h}) = cov(X_s, X_{s+h})$. La stationnarité au sens fort est beaucoup plus forte que cette condition sur le moment d'ordre 2, puisqu'elle suppose une stabilité de toutes les lois jointes⁶ : en particulier, cette condition implique l'égalité en loi des couples (X_t, X_{t+h}) et (X_s, X_{s+h}) .

La notion de stationnarité au second ordre, qui sera utilisée dans la première partie de ce cours, suppose uniquement une stabilité des deux premiers moments :

- la stationnarité au second ordre n'empêche pas une variation des moments d'ordres plus élevés (asymétrie de la loi ou épaisseur des queue fonctions du temps),
- la stabilité de la structure de dépendence entre X_t et X_{t+h} se résume à une stabilité du coefficient de corrélation (ou de covariance).

L'exemple le plus simple de processus stationnaire est le bruit blanc. Toutefois, de la même façon qu'il est possible de définir deux notions de stationnarité, il existe deux sorte de bruit blanc. Le processus (ε_t) est un bruit blanc faible s'il existe σ^2 telle que

$$\begin{cases} \mathbb{E}\left(\varepsilon_{t}\right) = 0 \text{ pour tout } t \\ V\left(\varepsilon_{t}\right) = \mathbb{E}\left(\varepsilon_{t}^{2}\right) = \sigma^{2} \text{ pour tout } t \\ cov\left(\varepsilon_{t}, \varepsilon_{t-h}\right) = \mathbb{E}\left(\varepsilon_{t}\varepsilon_{t-h}\right) = 0 \text{ pour tout } t, \text{ et pour tout } h \neq 0. \end{cases}$$

Aucune hypothèse d'indépendance n'est faite dans cette définition. Les variables aux différentes dates sont uniquement non corrélées (ce qui fera une différence importante, comme nous le verrons dans la partie sur les modèles ARCH). Cette hypothèse d'indépendance permet toutefois de définir un bruit blanc fort, i.e.

$$\begin{cases} \mathbb{E}\left(\varepsilon_{t}\right) = 0 \text{ et } V\left(\varepsilon_{t}\right) = \mathbb{E}\left(\varepsilon_{t}^{2}\right) = \sigma^{2} \text{ (finie) pour tout } t \\ \mathcal{L}\left(\varepsilon_{t}\right) = \mathcal{L}\left(\varepsilon_{t-h}\right) \text{ pour tout } t, h \\ \varepsilon_{t} \text{ et } \varepsilon_{t-h} \text{ sont indépendantes pour tout } t, \text{ et pour tout } h \neq 0. \end{cases}$$

On peut simuler un bruit blanc gaussien en utilisant

> epsilon=rnrom(100)

1.3.2 Propriété de Markov en temps discret

La théorie sur les chaînes de Markov (en temps discret) est également un élément important.

$$\left[\begin{array}{c} X \\ Y \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c} \mu_X \\ \mu_Y \end{array}\right], \left[\begin{array}{cc} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{array}\right]\right)$$

Un vecteur gaussien n'est pas uniquement un vecteur dont les lois marginales sont uniformes (cf cours de probabilité).

⁶Rappel : soient X_1 et X_2 de même loi, Y_1 et Y_2 de même loi, tels que $cov(X_1, Y_1) = cov(X_2, Y_2)$, alors on n'a pas égalité des lois jointes : $\mathcal{L}(X_1, Y_1) \neq \mathcal{L}(X_2, Y_2)$. En particulier, si X et Y suivent des lois normales $\mathcal{N}(\mu_X, \sigma_X^2)$ et $\mathcal{N}(\mu_Y, \sigma_Y^2)$ avec $corr(X, Y) = \rho$, alors on n'a pas nécessairement

Cette propriété correspond à l'idée que l'on souhaite résumer l'information contenue dans les variables passées du processus par un nombre fini de variables ($les\ variables\ d'état$). Dans le cas le plus simple, on souhaite que les variables d'état soient des valeurs retardées du processus : toute l'information est contenue dans les k valeurs les plus récentes

$$\mathcal{L}(X_t|X_{t-1}, X_{t-2}, X_{t-3}, ...) = \mathcal{L}(X_t|X_{t-1}, ..., X_{t-k}),$$

qui peut se réécrire, à l'ordre 1,

$$(X_t|X_{t-1}, X_{t-2}, X_{t-3}, ...) \stackrel{d}{=} (X_t|X_{t-1}).$$

Il est possible de montrer que cette relation est équivalente à

$$X_t = g(X_{t-1}, \varepsilon_t)$$
, où (ε_t) est un bruit blanc.

Toutefois, cette théorie, visant à chercher une fonction f telle que $X_t = f(X_{t-1}, \varepsilon_t)$ peut être difficile à implémenter. En économétrie, on cherche une relation du type $Y = g(X_1, ..., X_n, \varepsilon)$, permant d'expliquer une variable Y à l'aide de variables exogènes $X_1, ..., X_n$. Cette fonction g étant a priori difficile à exhiber, la méthode la plus simple est de considérer le cas linéaire. De la même façon, la théorie des modèles ARIMA vise à expliquer X_t en fonction de son passé (et éventuellement d'un bruit), de manière linéaire.

Remarque 8. Nous ne nous intéresserons, dans ce cours, que dans le cas où l'espace d'état E est \mathbb{R} , c'est à dire que nous ne traiterons pas le cas des "chaînes de Markov" (où X_t prend ces valeurs dans un espace d'état fini ou dénombrable)

	t discret	t $continu$
$E = \{i_1,, i_n,\}$	Chaînes de Markov	Processus de Poisson
$E = \mathbb{R}$	Séries Temporelles	Calcul Stochastique (Brownien)

Les chaînes de Markov correspondent par exemple au cas où X_t est à valeurs dans un ensemble fini $(\{i_1, ..., i_n, ...\})$ où dénombrable (\mathbb{N}) : par exemple les variables dichotomiques, où X_t vaut soit 0, soit 1.. Le calcul stochastique correspond au mouvement brownien, et aux processus de diffusion obtenus à partir du mouvement brownien. Le cas où le temps est continu et où les variables sont à valeurs dans \mathbb{N} (par exemple) correspond aux processus de comptage, aux processus de Poisson, à la théorie des files d'attente...etc.

1.4 Objectifs de l'études des séries temporelles

1.4.1 Description et modélisation

Le but est ici de déterminer les différentes composantes d'une série (X_t) , en particulier, obtenir la série corrigée des variations saisonnières (*méthodes de désaisonnalisation*). Pour les séries stationnaires, on peut aussi chercher à modéliser la série à l'aide d'un modèle ARMA, par exemple dans le but de faire de la prévision.

1.4.2 Prévision

Sur la base d'observation $X_1, ..., X_T$ le but est de faire une prévision, à la date T, de la réalisation en T+h, notée $\widehat{X}_T(h)$. Une première méthode est le lissage exponentiel, basé sur une formule de récurrence de la forme $\widehat{X}_T(1) = \alpha X_t + (1-\alpha) \widehat{X}_{T-1}(h)$, où α , compris entre 0 et 1, est généralement choisi de façon à minimiser la somme des carrés des erreurs de prévision.

Dans le cas des modèles ARMA, de nombreuses relations existent afin de faire de la prévision, avec un intervalle de confiance. Nous verrons comment ces intervalles de confiance sont modifiés si une modélisation ARCH est retenue, ou du type mémoire longue.

1.4.3 Filtrage

Le lissage consiste à transformer une série de façon à détecter (pour éliminer ou au contraire conserver) certaines caractérisques (composante saisonnière, points abérants...). Cette méthode permet également de détecter des ruptures au sein d'une série.

1.5 Conseils bibliographiques (en français, et en anglais)

Les principaux ouvrages servant de référence à ce cours sont les suivants,

- DROESBEKE, J. J., FICHET, B. & TASSI, P. (1995). 'Séries chronologiques théorie et pratique des modèles ARIMA', Economica
- GOURIEROUX,C. & MONFORT,A. (1995) 'Séries temporelles et modèles dynamiques', Economica

Des compléments d'informations sur différents points abordés peuvent être trouvés également dans

- BOURBONNAIS,R. & TERRAZA,M. (1998). 'Analyse des séries temporelles en économie', PUF
- BOX,G. & JENKINS,G.. (1970). 'Time Series analysis: forecasting and control', Holden-Day
- BROCKWELL, P.J. (1987) 'Time series: theory and methods' Springer-Verlag
- COUTROT, B & DROESBEKE, J.J. (1995) 'Les Méthodes de prévision' Presses Universitaires de France (Que sais-je? 2157)
- DACUNHA-CASTELLE,D. & DUFLO,M. (1985). 'Probabilités et Statistiques -Tome 2 : Problèmes à temps mobile' Masson
- HAMILTON, J. (1994). 'Time series analysis', Princeton University Press

- HARVEY, A.C. (1993) 'Time Series Models' Cambridge: MIT Press
- HYLLEBERG S. (1992), 'Modeling Seasonality' Oxford University Press
- LUTKEPOHL, H. (1991). 'Introduction to multiple time series analysis' Springer-Verlag
- MELARD, G. (1990) 'Méthodes de prévision à court terme'. Ellipses
- NERLOVE M, GRETHER D.M, CARVALHO J.L. (1995). 'Analysis of Economic Time Series' Academic Press.
- PINDYCK,R.S & RUBINFELD,L.D. (1984) 'Econometric models and economic forecasts' McGraw-Hill

2 Propriétés des processus univariés en temps discret

La pratique de l'analyse des séries temporelles vise à modéliser une série d'observations $x_1, ..., x_n$ par un processus aléatoire à temps discret, c'est à dire une suite (X_n) de variables aléatoires définies sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$, tel que l'on puisse penser que la série observée soit une réalisation du processus. En d'autres termes, $x_1, ..., x_n$ doit être obtenu comme tirage aléatoire de $X_1, ..., X_n$ suivant la probabilité \mathbb{P} , c'est à dire que se réalise un évènement ω tel que $x_i = X_i(\omega)$ pour i = 1, ..., n. Le but est alors, étant donnée une trajectoire $x_1, ..., x_n$ de reconstruire la dynamique du modèle sous-jacent, c'est à dire de comprendre la liaison entre X_i et son passé $X_{i-1}, X_{i-2}, ..., X_1$.

2.1 Rappels sur les martingales à temps discret

Un processus (à temps discret) sur un espace $(\Omega, \mathcal{A}, \mathbb{P})$ est une suite de variables aléatoires $(X_t, t \in \mathbb{N})$, à valeurs dans un espace mesuré (E, \mathcal{E}) (dans le cas qui nous intéresse, $E = \mathbb{R}$). On peut considérer le processus comme la variable aléatoire $X(t, \omega)$, défini sur l'espace produit $\Omega \times \mathbb{N}$ muni de la tribu produit.

Définition 9. Une filtration $\{\mathcal{F}_t, t \in \mathbb{N}\}$ est la donnée d'une suite croissante (au sens de l'inclusion) de sous-tribus de \mathcal{A} . On posera $\mathcal{F}_{\infty} = \sup \{\mathcal{F}_t, t \in \mathbb{N}\}$: il s'agit de la plus petit tribu qui contienne toutes les \mathcal{F}_t .

La filtration la plus usuelle est obtenue de la façon suivante : on observe une suite (X_t) de variables aléatoires, et on considère $\mathcal{F}_t = \sigma(X_0, ..., X_t)$, qui est la plus petite tribu qui rende mesurable les variables $(X_0, ..., X_n)$. On appellera filtration naturelle cette filtration, et on la notera (\mathcal{F}_t^X) .

On dira que (X_t) est adaptée à la filtration (\mathcal{F}_t) si pour tout t, X_t est \mathcal{F}_t -mesurable. La filtration naturelle est la plus petite filtration par rapport à laquelle le processus soit adapté. On dira que le processus (X_t) est prévisible si pour tout $t \geq 1$, X_t est \mathcal{F}_{t-1}^X -mesurable.

Définition 10. Le processus $\{X_t, t \in \mathbb{N}\}$ muni de la filtration $\{\mathcal{F}_t, t \in \mathbb{N}\}$ tel que pour tout t, X_t soit intégrable. On dira que (X_t) est une martingale si et seulement si, pour tout $t, \mathbb{E}(X_{t+1}|\mathcal{F}_t) = X_t$ presque sûrement.

Remarque 11. Si pour tout t, $\mathbb{E}(X_{t+1}|\mathcal{F}_t) \geq X_t$ presque sûrement, on dira que (X_t) est une sous-martingale, et si pour tout t, $\mathbb{E}(X_{t+1}|\mathcal{F}_t) \leq X_t$ presque sûrement, on dira que (X_t) est une sur-martingale.

Si (X_t) est une (\mathcal{F}_t) -martingale, alors pour tout $h \geq 0$, $\mathbb{E}(X_{t+h}|\mathcal{F}_t) = X_t$. De plus, si la martingale est de carré intégrable, les accroissements sont orthogonaux : si $\Delta X_t = X_t - X_{t-1}$, pour $s \neq t$, $\mathbb{E}(\Delta X_t \Delta X_s) = 0$. Une des conséquences est que, pour tout $h \geq 0$

$$\mathbb{E}\left(\left[X_{t+h} - X_t\right]^2\right) = \sum_{i=1}^h \mathbb{E}\left(\Delta X_{t+i}^2\right).$$

2.2 Rappels sur les Chaînes de Markov

Définition 12. Le processus $\{X_t, t \in \mathbb{N}\}$ est une chaîne de Markov d'ordre 1 si et seulement si, pour tout t,

$$\mathcal{L}(X_t|X_{t-1}, X_{t-2}, X_{t-3}, ...) = \mathcal{L}(X_t|X_{t-1}).$$

Autrement dit, compte tenu de la trajectoire $(X_{T-1} = x_{T-1}, X_{T-2} = x_{T-2}, ...)$ d'un processus (X_t) , la loi de X_T à l'instant T est entièrement déterminée par le fait que la valeur en T-1 soit x_{T-1} .

Théorème 13. Le processus $\{X_t, t \in \mathbb{N}\}$ est une chaîne de Markov d'ordre 1 si et seulement s'il existe une fonction g(.) mesurable et un processus ε_t tel que $X_t = g(X_{t-1}, \varepsilon_t)$ - avec (ε_t) une suite de variables aléatoires, indépendantes et de même loi.

Lorsque l'application q ne dépend par de t, la chaîne de Markov est dite homogène.

Exemple 14. Les processus AR(1): $X_t = \alpha + \beta X_{t-1} + \varepsilon_t$, où (ε_t) est un bruit blanc ind'ependant du passé du processus, sont markoviens.

Exemple 15. En particulier, les processus de la forme $X_t = X_{t-1} + \varepsilon_t$ correspond à une marche aléatoire :

- $si\ X_0 \in \mathbb{Z}$ et $\mathbb{P}(\varepsilon_t = -1) = \mathbb{P}(\varepsilon_t = +1) = 1/2$, on obtient la marche aléatoire symétrique sur \mathbb{Z} (jeu du pile ou face),
- $si \varepsilon_t$ suit une loi normale centrée, on obtient une discrétisation du mouvement brownien, ou un processus ARIMA(0,1,0) comme nous l'appelerons ici.

On notera que si l'on a parlé de chaîne d'ordre 1, c'est qu'il doit Altre possible d'introduire une chaîne d'ordre supérieur,

Définition 16. Le processus $\{X_t, t \in \mathbb{N}\}$ est une chaîne de Markov d'ordre p si et seulement si, pour tout t,

$$\mathcal{L}(X_t|X_{t-1}, X_{t-2}, X_{t-3}, ...) = \mathcal{L}(X_t|X_{t-1}, ..., X_{t-p}).$$

2.3 Notions de 'stationnairité'

Définition 17. Un processus (X_t) est stationnaire au second ordre si

- (i) pour tout t, $\mathbb{E}(X_t^2) < +\infty$,
- (ii) pour tout t, $\mathbb{E}(X_t) = \mu$, constante indépendante de t,
- (iii) pour tout t et pour tout h, $cov(X_t, X_{t+h}) = \mathbb{E}([X_t \mu][X_{t+h} \mu]) = \gamma(h)$, indépendante de t.

Définition 18. La fonction γ (.) sera appelée fonction d'autocovariance

On peut montrer aisément que γ (.) est une fonction paire, au sens où γ (h) = γ (-h) pour tout h

Remarque 19. Une des conséquences est que variance $V(X_t)$ est constante, indépendante de t, $V(X_t) = \gamma(0)$.

Proposition 20. Si $(X_t, t \in \mathbb{Z})$ est un processus stationnaire, et si $(a_i, i \in \mathbb{Z})$ est une suite de réels absolument convergente, i.e. $\sum_{i \in \mathbb{Z}} |a_i| < +\infty$, alors, le processus (Y_t) défini par

$$Y_t = \sum_{i \in \mathbb{Z}} a_i X_{t-i}, \text{ pour tout } t \in \mathbb{Z},$$

est un processus stationnaire.

Corollaire 21. En particulier, si $(a_i, i \in \mathbb{Z})$ est une suite de réels finie, la suite Y_t est stationnaire. Par exemple, si $a_0 = a_1 = 1/2$, et $a_i = 0$ pour $i \notin \{0, 1\}$:

$$Y_t = \frac{1}{2} (X_t + X_{t-1}),$$

est stationnaire dès lors que (X_t) est stationnaire. De même pour $Y_t = X_t - X_{t-1}$.

Définition 22. Un processus (X_t) est stationnaire au sens fort si pour tous $t_1, ..., t_n$ et h on a l'égalité en loi

$$(X_{t_1},...,X_{t_n}) \stackrel{\mathcal{L}}{=} (X_{t_1+h},...,X_{t_n+h}).$$

Remarque 23. Cette notion revient à dire que la loi temporelle est invariante en temps. Cette stationnarité est beaucoup plus forte que la stationnarité du second ordre, puisqu'on ne recherche pas la stabilité de la loi, mais seulement la stabilité des deux premiers moments.

Définition 24. On appelle bruit blanc (parfois appelé bruit blanc faible) un processus (ε_t) stationnaire dont les autocovariance sont toutes nulles : $\gamma(h) = 0$ pour $h \neq 0$.

Remarque 25. Nous avons vu dans la partie précédante que (X_t) est une martingale si et seulement si, pour tout t, $\mathbb{E}(X_{t+1}|X_t,X_{t-1},...)=X_t$ pour tout t, ou, de façon équivalente, cela signifie que $X_{t+1}=X_t+\varepsilon_t$ avec $\mathbb{E}(\varepsilon_{t+1}|\varepsilon_t,\varepsilon_{t-1},...)=0$ pour tout t. Cette notion est plus contraignante que celle de "marche aléatoire": en effet, la propriété de martingale implique l'indépendance des accroissements (ε_t) alors que la définition de la marche aléatoire n'implique que la nullité des corrélations des accroissements.

Définition 26. Un processus stationnaire (X_t) sera dit ergodique si pour tout $p \in \mathbb{N}^*$, et pour tout fonction borélienne de \mathbb{R}^p à valeurs dans \mathbb{R} , on a

$$\frac{1}{N} \sum_{i=1}^{N} f(X_{i+1}, X_{i+2}, ..., X_{i+p}) \to \mathbb{E}(f(X_1, X_2, ..., X_p)), \text{ quand } N \to \infty,$$

qui peut être vu simplement comme une généralisation de la loi de grand nombre.

La notion de stationnarité (faible, ou au second ordre) se définie par une invariance des moments d'ordre 1 et 2 au cours du temps. Par opposition, on dira qu'une série est non-stationnaire si elle n'est pas stationnaire. On peut noter que la classe des processus non-stationnaire est alors relativement vaste, et surtout hétérogène : il existe différentes sources de non-stationnarité, et à chaque origine de non-stationnarité est associée une méthode propre de stationnarisation. Nelson et Plosser ont retenu, en 1982, deux classes de processus non-stationnaires : les processus TS (trend stationary) et les processus DS (difference stationary) Les premiers correspondent à une non-stationnarité de type déterministe, alors que les seconds correspondent à une non-stationnarité de type stochastique.

Définition 27. (X_t) est un processus non-stationnaire TS s'il peut s'écrire sous la forme $X_t = f(t) + Z_t$ où f(t) est une fonction (déterministe) du temps, et (Z_t) est un processus stationnaire.

L'exemple le plus simple est celui de la tendance linéaire bruitée : $X_t = \alpha + \beta t + \varepsilon_t$. Ce processus est en effet non-stationnaire puisque son espérance vaut $\alpha + \beta t$ à la date t, et donc, dépend de t. Une des propriétés importantes de ce type de processus est qu'il n'y a pas persistance des chocs : l'influence d'un choc subit à un instant τ aura tendance à s'estomper au cours du temps, et la variable rejoint alors sa dynamique de long-terme, déterminée par f(t).

Définition 28. (X_t) est un processus non-stationnaire DS - ou intégré d'ordre d, noté I(d) - si le processus obtenu après d différenciation est stationnaire : $Z_t = \Delta^d X_t = (1-L)^d X_t$ est stationnaire

Comme nous le verrons par la suite, le fait qu'il faille différencier d fois, c'est à dire multplier par $(1-L)^d$, polynôme de l'opérateur retard L, revient à chercher la présence de **racines unité**: si le processus $\Phi(L)$ X_t est stationnaire, si 1 est une racine du polynôme Φ , alors (X_t) sera non-stationnaire. C'est pour cela que la plupart des tests de non-stationnarité sont des tests de détection de racine unité.

Pour obtenir les racines d'un polynôme, on peut utiliser la commande suivante, par exemple pour $\Phi(L) = (1 + 0.7L - 0.5L^2)$ ou $\Phi(L) = (1 + 0.7L - 0.2L^2)$,

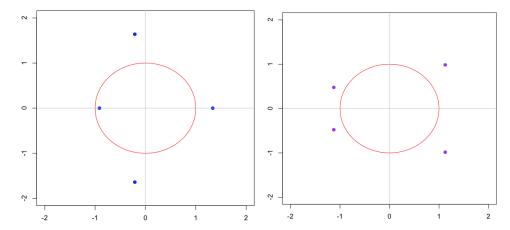
```
> library(polynom)
> Mod(polyroot(c(1,.7,-.5)))
[1] 0.8779734 2.2779734
> Mod(polyroot(c(1,.7,-.2)))
[1] 1.089454 4.589454
```

Il est aussi possible de visualiser les racines unités dans \mathbb{C} , par exemple pour $\Phi(L) = (1 + 0.5L - 0.4L^2 - 0.3L^4)$ ou $\Phi(L) = (1 + 0.5L - 0.4L^2 + 0.3L^4)$,

```
> PM=c(1,.5,-.4,0,-.3)
> plot(Re(polyroot(PM)),Im(polyroot(PM)),pch=19,col="blue",xlim=c(-2,2),ylim=c(-2,2))
> u=seq(-1,1,by=.01)
> lines(u,sqrt(1-u^2),col="red")
> lines(u,-sqrt(1-u^2),col="red")
```

```
> abline(h=0,col="grey")
```

- > abline(v=0,col="grey")
- > PM=c(1,.5,-.4,0,.3)
- > plot(Re(polyroot(PM)),Im(polyroot(PM)),pch=19,col="purple",xlim=c(-2,2),ylim=c(-2,2))



2.4 Fonction d'autocovariance et densité spectrale

2.4.1 Autocovariance et autocorrélation

Définition 29. Pour une série stationnaire (X_t) , on définit la fonction d'autocovariance, pour tout t, par

$$h \mapsto \gamma_X(h) = cov(X_t, X_{t-h}) = \mathbb{E}(X_t X_{t-h}) - \mathbb{E}(X_t) . \mathbb{E}(X_{t-h}).$$

Définition 30. Pour une série stationnaire (X_t) , on définit la fonction d'autocorrélation, pour tout t, par

$$h \mapsto \rho_X(h) = corr\left(X_t, X_{t-h}\right) = \frac{cov\left(X_t, X_{t-h}\right)}{\sqrt{V\left(X_t\right)}\sqrt{V\left(X_{t-h}\right)}} = \frac{\gamma_X(h)}{\gamma_X(0)}.$$

Cette fonction ρ_X (.) est à valeurs dans [-1, +1], et ρ_X (0) = 1.

Définition 31. Un processus (ε_t) sera appelé bruit blanc (faible) s'il est stationnaire, centré et non-autocorrélé :

$$\mathbb{E}\left(\varepsilon_{t}\right)=0,\ V\left(\varepsilon_{t}\right)=\sigma^{2}\ et\ \rho_{\varepsilon}\left(h\right)=0\ pour\ h\neq0.$$

On parlera de bruit blanc fort s'il est indépendant et identiquement distribué (i.i.d.): la notion d'indépendance est plus forte que la nullité des autocorrélations, et le fait que le processus soit identiquement distribué est plus fort que la stabilité des deux premiers moments.

Exemple 32. Processus MA(1): $X_t = \varepsilon_t + \theta \varepsilon_{t-1}$ où (ε_t) est un bruit blanc centré de variance σ^2 ,

$$\left\{ \begin{array}{l} \gamma\left(0\right) = \left[1 + \theta^{2}\right]\sigma^{2} \\ \gamma\left(1\right) = \theta\sigma^{2} \\ \gamma\left(h\right) = 0 \ si \ |h| \geq 2 \end{array} \right. , \ soit \ \rho\left(1\right) = \frac{\theta}{1 + \theta^{2}} \ et \ \rho\left(h\right) = 0 \ pour \ |h| \geq 2.$$

2.4.2 Densité spectrale ***

L'idée ici est que les coefficients d'autocovariance d'une série stationnaire correspondent aux coefficients de Fourier d'une mesure positive, appelée mesure spectrale du processus. Il est possible de montrer que cette mesure spectrale admet une densité, dite spectrale, par rapport à la mesure de Lebesgue sur $[-\pi,\pi]$, que nous noterons f_X . Dans le cas où la série des autocovariance est absolument convergente, la densité spectrale est alors définie comme la transformée de Fourier des coefficients d'autocovariance (dans le cas où la somme des $|\gamma_X(h)|$ tend vers l'infini, la somme est à prendre au sens de L^2): comme l'ont montré Cramér, Kolmogorov, ou encore Wiener, on les résultats suivants,

(i) la suite des fonctions d'autocovariance $\gamma_{X}(h)$ d'un processus stationnaire peut être écrit sous la forme

$$\gamma_X(h) = \int_{-\pi}^{+\pi} \exp(i\omega h) dF_X(\omega),$$

où $F_X(\omega)/\gamma_X(0)$ est une fonction de répartition,

(ii) tout processus stationnaire peut se mettre sous la forme $X_t = \int_{-\pi}^{+\pi} \exp(i\omega t) dz$ (ω) où $z(\omega)$ est une fonction aléatoire, complexe, à accroissements non corrélés. Cette représentation est appelée représentation de Cramér.

Définition 33. Soit (X_t) un processus stationnaire de fonction d'autocovariance $\gamma_X(.)$, la densité spectrale de (X_t) s'écrit

$$f_X(\omega) = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \gamma_X(h) \exp(i\omega h).$$

Proposition 34. Réciproquement, si $f_X(.)$ est la densité spectrale de (X_t) alors

$$\gamma_X(h) = \int_{-\pi}^{+\pi} f_X(\omega) \exp(i\omega h) d\omega.$$

Exemple 35. Un bruit blanc (ε_t) est caractérisé par

$$\begin{cases} \gamma_{\varepsilon}(0) = V(\varepsilon_t) = \sigma^2 \\ \gamma_{\varepsilon}(h) = 0, \ pour \ h \neq 0, \end{cases}$$

Alors sa densité spectrale est donnée par

$$f_{\varepsilon}(\omega) = \frac{\sigma^2}{2\pi}$$
 (= constante).

Proposition 36. Si la densité spectrale d'une série (Z_t) est constante, alors (Z_t) est un bruit blanc.

Proof. En effet

$$\gamma_Z(h) = \int_{-\pi}^{+\pi} f_Z(\omega) \exp(i\omega h) d\omega = K \underbrace{\int_{-\pi}^{+\pi} \exp(i\omega h) d\omega}_{=0 \text{ sauf si } h=0}$$

Cette nullité de la fonction d'autocorrélation est donc une charactéristique du bruit blanc.

Proposition 37. Si X_t est une moyenne mobile,

$$X_t = \sum_{k \in \mathbb{Z}} a_k \varepsilon_{t-k}$$
, où (ε_t) est un bruit blanc $BB(0, \sigma^2)$,

avec $\sum |a_j| < +\infty$. Si on considère $Y_t = \sum_{j \in \mathbb{Z}} \beta_j X_{t-j}$ alors, on a la relation suivante

$$f_{Y}\left(\omega\right) = f_{X}\left(\omega\right) \cdot \left|\sum_{j\in\mathbb{Z}} \beta_{j} e^{i\omega j}\right|^{2}.$$

Exemple 38. $Y_{t} = X_{t} - \phi X_{t-1} \ où \ |\phi| < 1, \ alors \ f_{Y}(\omega) = f_{X}(\omega) \ |1 + \phi e^{i\omega}|^{2}.$

2.4.3 Estimation de la fonction d'autocorrélation

Considérons un ensemble d'observations $X_1, ..., X_T$.

La moyenne empirique est donnée par

$$\overline{X}_T = \frac{1}{T} \sum_{t=1}^T X_t.$$

La fonction d'autocovariance empirique est donnée par

$$\widehat{\gamma}_{T}(h) = \frac{1}{T-h} \sum_{t=1}^{T-h} \left(X_{t} - \overline{X}_{T} \right) \left(X_{t-h} - \overline{X}_{T} \right),$$

et la fonction d'autocorrélation empirique est donnée par

$$\widehat{\rho}_{T}(h) = \frac{\widehat{\gamma}_{T}(h)}{\widehat{\gamma}_{T}(0)}.$$

Si ces estimateurs sont biaisés (à distance finie), ils sont malgré tout asymptotiquement sans biais.

Proposition 39. Les moments empiriques convergent vers les moments théoriques : $\overline{X}_T \to m$, $\widehat{\gamma}_T(h) \to \gamma(h)$ et $\widehat{\rho}_T(h) \to \rho(h)$ quand $T \to \infty$.

En fait, comme nous le verrons par la suite, nous avons même normalité asymptotique des moments empiriques.

Remarque 40. Bien que ces fonctions soient définies pour tout h tel que -T < h < T, la fonction d'autocovariance empirique fournit un estimateur très pauvre de $\gamma(h)$ pour des valeurs h proches de n. A titre indicatif, Box et Jenkins recommandent de n'utiliser ces quantités que si T > 50 et $h \le T/4$. "In pratice, to obtain usefull estimate of the autocorrelation function, we need at least 50 obsevations, and the estimated autocorrelations r_k could be calculated for k = 1, ..., K where K was not larger than, say, T/4".

Afin, par exemple, de faire de la selection de modèles, il est important de pouvoir dire si les autocovariances empiriques sont significativement non nulles. Il est alors possible d'utiliser le résultat suivant

Proposition 41. Si (X_t) est un processus linéaire, au sens où il satisfait $X_t = \sum_{j \in \mathbb{Z}} \phi_j \varepsilon_{t-j}$ où (ε_t) est une suite de variables i.i.d. centrées, telle que $\mathbb{E}(\varepsilon_t^4) = \eta \mathbb{E}(\varepsilon_t^2)^2 < +\infty$, où les ϕ_j définissent une série absolument convergente, et où η est une constante positive, alors, on a la formule dite de Bartlett,

$$\lim_{T \to \infty} Tcov\left(\widehat{\gamma}_{T}\left(h\right), \widehat{\gamma}_{T}\left(k\right)\right) = \eta \gamma\left(h\right) \gamma\left(k\right) + \sum_{i=-\infty}^{+\infty} \gamma\left(i\right) \gamma\left(i+k-h\right) + \gamma\left(i+k\right) \gamma\left(i-h\right).$$

Proof. Brockwell et Davis (1991) page 226.

Ce théorème n'est, en théorie, valable que pour un bruit blanc fort. On peut également montrer que ces autocorrélation vérifient une propriété encore plus forte,

Proposition 42. Si (X_t) est un processus linéaire, au sens où il satisfait $X_t = \sum_{j \in \mathbb{Z}} \phi_j \varepsilon_{t-j}$ où (ε_t) est une suite de variables i.i.d. centrées, telle que $\mathbb{E}(\varepsilon_t^4) = \eta \mathbb{E}(\varepsilon_t^2)^2 < +\infty$, et $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$, et où les ϕ_j définissent une série absolument convergente, et où η est une constante positive, alors, on a, pour tout $p \geq 0$,

$$\sqrt{n} \left(\begin{array}{c} \widehat{\gamma}_{T} \left(0 \right) \\ \vdots \\ \widehat{\gamma}_{T} \left(p \right) \end{array} \right) \to \mathcal{N} \left(\left(\begin{array}{c} \gamma \left(0 \right) \\ \vdots \\ \gamma \left(p \right) \end{array} \right), V \right),$$

où V est la matrice de variance-covariance définie par

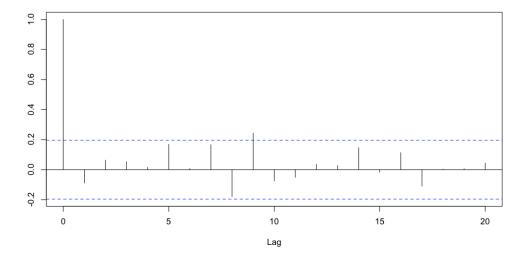
$$V = \left[\eta \gamma (h) \gamma (k) + \sum_{i=-\infty}^{+\infty} \gamma (i) \gamma (i+k-h) + \gamma (i+k) \gamma (i-h) \right]_{h,k=0,\dots,p}.$$

Proof. Brockwell et Davis (1991) page 227.

- > X=rnorm(100)
- > as.vector(acf(X))

Autocorrelations of series 'X', by lag

> plot(acf(X))



2.4.4 Estimation de la densité spectrale ***

Le périodogramme est observations est défini comme le module au carré de la transformé de Fourier discrète des observations, i.e.

$$I_{T}(x) = \frac{1}{2\pi T} \left| \sum_{t=1}^{T} X_{t} \exp\left(itx\right) \right|^{2} = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \widehat{\gamma}_{T}(h) \exp\left(i\omega x\right).$$

Le plus souvent, on estime le périodogramme aux fréquences de Fourier, i.e. $x_k = 2k\pi/T$ pour k = 1, ..., T, noté $I_{T,k}$. Sous des hypothèses de régularité de la densité spectrale, le périodogramme est un estimateur asymptotiquement sans biais de la densité spectrale. Mais il n'est pas consistant (on ne peut estimer que les T premier γ (h) intervenant dans la définition du périodogramme à partir de T observations).

Exemple 43. Dans le cas d'un processus i.i.d. gaussien, évalué aux fréquences de Fourierde $]0,\pi[$ forme une suite de variables indépendantes, et identiquement distribuées, suivant une loi du χ^2 , centré, à deux degrés de liberté.

Exemple 44. Pour les processus dit à mémoire longue, la densité spectrale s'exprime sous la forme

$$f(x) = |1 - \exp(ix)|^{-2d} f_*(x)$$

où f_* est une fonction positive. Les valeurs du périodogramme sont asymptotiquement biaisées, et asymptotiquement corrélées. Le fait que cette fonction ait un pôle (ici en 0) est d'ailleurs une caractérisation de la mémoire longue.

Cette densité spectrale permet d'obtenir un grand nombre de résultat. Par exemple, il est possible d'estimer directement la variance du processus d'innovation⁷, en utilisant la formule dite de Kolmogorov,

$$\sigma^{2} = 2\pi \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \log f_{X}(x) dx\right).$$

⁷Cette notion sera définie en détails par la suite.

Un estimateur de cette variance est alors

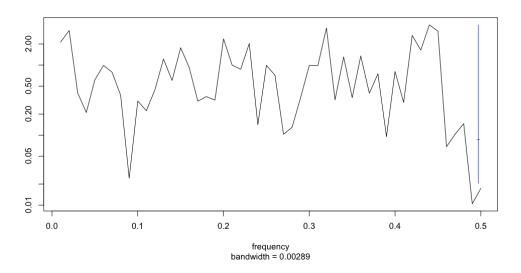
$$\widehat{\sigma}^2 = \frac{1}{T} \sum_{t=1}^{T} \log I_{T,k}.$$

Dans le cas des processus à mémoire longue, la densité spectrale est de la forme $f_X(x) \sim Cx^{-2d}$. Un estimateur non paramétrique de d peut être obtenu en régressant localement le log-périodogramme dans un voisinage de la fréquence nulle. On appelle alors estimateur GPH

$$\widehat{d} = \left(\sum_{k=1}^{m_T} L_{T,k}^2\right)^{-1} \sum_{k=0}^{m_T} L_{T,n} \cdot \log L_{T,k} \text{ où } L_{T,k} = -2\log|x_k| + \frac{2}{m_T} \sum_{j=1}^{m_T} \log I_{T,j},$$

et où m_T est une suite d'entiers positifs telle que $m_T \to 0 = \infty$ et $m_T/T \to 0$ quand $T \to \infty$.

> spec.pgram(X)



2.5 Lien entre temps continu et temps discret $\star\star\star$

Définition 45. Un mouvement brownien W_t est un processus stochastique, définit pour $t \in \mathbb{R}^+$, tel que $W_0 = 0$ et tel que, quelles que soient les dates $t_1 < t_2 < ... < t_k$, les variations du processus $W_{t_2} - W_{t_1}, W_{t_3} - W_{t_2}, ..., W_{t_k} - W_{t_{k-1}}$ sont indépendantes, avec $\mathbb{E}\left(W_{t_i} - W_{t_j}\right) = 0$ et $V\left(W_{t_i} - W_{t_j}\right) = \sigma^2\left(t_i - t_j\right)$. De plus, les variations du processus entre deux dates t_i et t_j (telles que $t_i < t_j$) sont normalement distribuées $W_{t_i} - W_{t_j} \sim \mathcal{N}\left(0, \sigma^2\left(t_i - t_j\right)\right)$.

Dans le cas où $\sigma^2 = 1$, on parlera de mouvement brownien standard. De plus, W_t est continu en t, sans être dérivable : bien que le processus soit continu, les variations ne sont pas bornées. Pour visualiser un mouvement browien il suffit de considérer une

marche aléatoire continue : on considère une marche aléatoire discrète $(X_t = X_{t-1} + \varepsilon_t$ où $\varepsilon_t \sim \mathcal{N}(0,1)$), pour laquelle on diminue les intervalles temporels entre deux dates consécutives,

Proposition 46. Soit $X_1, X_2, ..., X_T$ un échantillon i.i.d., centré, de variance σ^2 . Soit [.] la partie entière au sens où $[x] \le x < [x] + 1$ et $[x] \in \mathbb{Z}$, alors pour tout 0 < r < 1,

$$\frac{1}{\sqrt{[rT]}} \sum_{t=1}^{[rT]} X_t \stackrel{\mathcal{L}}{\to} \mathcal{N}\left(0, \sigma^2\right)$$

Ce résultat est parfois appelé "Théorème Centrale Limite Fonctionnel". Notons $\overline{X}_T^{(r)}$ la variable construite à partir des [rT] premières observations par

$$\overline{X}_T^{(r)} = \frac{1}{T} \sum_{t=1}^{[rT]} X_t,$$

du résultat précédant, il en découle que

$$\frac{\sqrt{T}\overline{X}_{T}^{(r)}}{\sigma} \stackrel{\mathcal{L}}{\to} \mathcal{N}\left(0, r\right) \text{ ou encore } \frac{\sqrt{T}\left(\overline{X}_{T}^{(r_{2})} - \overline{X}_{T}^{(r_{1})}\right)}{\sigma} \stackrel{\mathcal{L}}{\to} \mathcal{N}\left(0, r_{2} - r_{1}\right),$$

pour $r_1 < r_2$. Ceci permet de montrer que la suite des $\sqrt{T}.\overline{X}_T^{(.)}/\sigma$ est asymptotiquement distribuée comme un mouvement brownien, au sens où

$$\frac{\sqrt{T}\overline{X}_T^{(.)}}{\sigma} \stackrel{\mathcal{L}}{\to} W_.$$

Ce type de résultat est alors très utile pour obtenir des résultats analytiques sur les processus intégrés.

Considérons par exemple, une marche aléatoire définie par $X_t = X_{t-1} + \varepsilon_t$ où ε_t est un bruit blanc de variance σ^2 , soit $X_t = \varepsilon_1 + \varepsilon_2 + ... + \varepsilon_t$ pour tout t, avec la convention $X_0 = 0$. Notons $\overline{X}_T^{(r)}$ la variable construite à partir des [rT] premières observations par

$$\overline{X}_T^{(r)} == \frac{1}{T} \sum_{t=1}^{[rT]} X_t = \frac{1}{T} \left(\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_i \right), \text{ où } \frac{i-1}{T} \le r < \frac{i}{T},$$

on a alors

$$\sqrt{T} \int_0^1 \overline{X}_T^{(r)} dr = T^{-3/2} \sum_{t=1}^T x_{t-1},$$

et d'après le théorème central limite fonctionnel, $\sqrt{T.X_T^{(.)}} \stackrel{\mathcal{L}}{\to} \sigma W$. On obtient alors le résultat suivant

$$T^{-3/2} \sum_{t=1}^{T} X_{t-1} \stackrel{T \to \infty}{\to} \sigma \int_{0}^{1} W_{s} ds.$$

De façon analogue, on peut montrer que

$$T^{-2} \sum_{t=1}^{T} (X_{t-1})^2 \stackrel{T \to \infty}{\to} \sigma^2 \int_0^1 (W_s)^2 ds.$$

Ces résultats seront utilisés en particulier pour la détermination des propriétés asymptotiques des estimateurs obtenus à partir de séries intégrées.

La construction de l'intégrale stochastique s'obtient d'ailleurs comme passage à la limite sur des processus à temps discret⁸. Considérons un découpage en T subdivisions de l'intervalle de temps [0,1]: soit $s_t = t/T$ pour t = 0,1,...,T. Considérons ici (X_{s_t}) , noté (Y_t) , un processus défini pour t = 0,1,...,T. On appelera variation quadratique de la série chronologique (Y) la série chronologique définie par

$$\langle Y \rangle_t = \sum_{j=1}^t [Y_j - Y_{j-1}]^2 \text{ pour } t = 0, 1, ..., T$$

La variation quadratique du mouvement bronwien standard (W_t) est obtenu comme passage à la limite

$$\langle W \rangle_{t} = \lim_{T \to \infty} \sum_{j=1}^{t} [W_{j} - W_{j-1}]^{2} = t$$

De la même façon, l'intégrale stochastique se définit en temps discret par

$$Z_t = \int_0^t X_s dW_s = \sum_{i=1}^t \mathcal{X}_i [W_j - W_{j-1}]$$

où (X_s) est un processus discret : $X_s = \mathcal{X}_i$ pour $(i-1)/T \le s < i/T$, puis par passage à la limite, s'étend aux processus en temps continu.

Aussi, tous les modèles financiers en temps continu ont un analogue en temps discret. Mais si les modèles en temps continu sont autant utilisés, c'est principalement parce que le calcul stochastique et la formule d'Ito permet d'analyser les problèmes de façon élégante et relativement rapide.

Un processus suivant l'équation stochastique

$$dY_t = f(t, Y_t) dt + g(t, Y_t) dW_t$$
 ou $Y_t = Y_0 + \int_0^t f(s, Y_s) ds + \int_0^t g(s, Y_s) dW_s$

$$\int_0^t A_s ds = \lim_{T \to \infty} \frac{1}{T} \sum_{j=1}^s Y_s$$

⁸De façon plus simple, l'intégrale d'une fonction aléatoire par rapport à une mesure déterministe de définie déjà comme une limite : soit A_t un processus en temps continu, et considérons un découpage en T subdivisions de l'intervalle de temps [0,1] : soit $\tau_s = s/T$ pour s = 0,1,...,T. Considérons ici X_{τ_s} , noté Y_s , le processus défini pour s = 0,1,...,T, par $Y_s = A_t \mathbb{I}(Tt \le s < T(t+1))$, alors

peut être assimilé à un processus en temps discret vérifiant l'équation (approximation d'Euler)

$$Y_{t+1} - Y_t = f(t, Y_t) + g(t, Y_t) [W_{t+1} - W_t] = f(t, Y_t) + g(t, Y_t) \varepsilon_t$$

où (ε_t) est un bruit blanc gaussien, de variance 1.

Remarque 47. Réciproquement, en reprenant un exemple de Nelson (1990), un modèle à temps discret de type GARCH(1,1) - M (multivarié), défini par

$$\begin{cases} Y_t = Y_{t-1} + f(\sigma_t^2) + \sigma_t \varepsilon_t \\ \sigma_{t+1}^2 = \omega + \sigma_t^2 (\beta + \alpha \varepsilon_t) \end{cases}$$

où (ε_t) est un bruit blanc gaussien, est l'analogue en temps discret de l'équation de diffusion

$$\begin{cases} dY_t = f(\sigma_t^2) dt + \sigma_t dW_t^1 \\ d\sigma_t^2 = (\omega - \theta \sigma_t^2) dt + \alpha \sigma_t^2 dW_t^2 \end{cases}$$

où (W_t^1) et (W_t^2) sont deux mouvements browniens centrés, réduits et indépendants.

La décomposition tendance-cycle

L'analyse des séries temporelles (économiques par exemple) repose le plus souvent sur une décomposition tendance-cycle de la série. Toutefois, cette décomposition, si elle est très utilisée en pratique, ne repose pas sur une construction théorique unique. Il est alors souvent admis que la tendance correspond à l'équilibre de long terme, alors que le cycle correspond à la dynamique de court terme. Mais cette distinction ne suffit pas pour identifier clairement les deux composantes, et des hypothèses supplémentaires sont alors nécessaires.

Deux approches sont alors générallement utilisées : la première consiste à utiliser une théorie économique (c'est à dire un modèle structurel dont les composantes auront des interprétations économiques), alors que la seconde tend à utiliser des outils statistiques "neutres". Nous allons nous intéresser ici à cette seconde approche. Néanmoins, nous pouvons dès à présent noter que cette neutralité est difficile à mettre en oeuvre : il existe une infinité de façon de construire la tendance moyenne, par exemple. Il existe alors de nombreuses méthodes pour évaluer la croissance tendancielle.

Nous allons nous concentrer ici sur des décompositions additives de la forme $(X_t) = (T_t) + (C_t)$. Un modèle multiplicatif peut en effet se ramener à un modèle additif en passant au logarithme. Les méthodes traditionelles reposent sur deux techniques : l'estimation d'une tendance déterministe et le lissage. Des méthodes plus récentes se basent sur la notion de tendance stochastique, avec en particulier la méthode de Beveridge et Nelson, et les modèles à composantes inobservables.

Parmi les méthodes de lissage, l'approche la plus simple consiste à utiliser des moyennes mobiles on utilise alors une moyenne ($pond\acute{e}r\acute{e}e$) de la série (X_t) dont la durée correspond au cycle, qui conserve la tendance et élimine le cycle. La moyenne symétrique arithmétique est l'exemple le plus simple : on considère alors la série (Y_t) définie par

$$Y_{t} = M(X_{t}) = \frac{1}{2m+1} (X_{t-m} + X_{t-m+1} + \dots + Y_{t-1} + Y_{t} + Y_{t+1} + \dots + Y_{t+m})$$
 (3)

Ce type de filre, comme nous le verrons par la suite, conserve les tendances linéaires, et filtre (ou annule) les séries périodiques de période 2m + 1. Toutefois, deux problèmes apparaissent dans l'utilisation des filtres moyennes-mobiles

- les points extrêmes de la série ne peuvent être traités de la même façon que les autres points (effet de bord)
- les séries lissées sont souvent autocorrélées, non pas à cause de la structure de la série initiale, mais il s'agit d'une conséquence du processus de lissage (effet Slutsky-Yule).

D'autre méthodes de lissage existent, par exemple en utilisant la méthode PAT (phase average trend) ou le filtre de Hodrick-Prescott (1980).

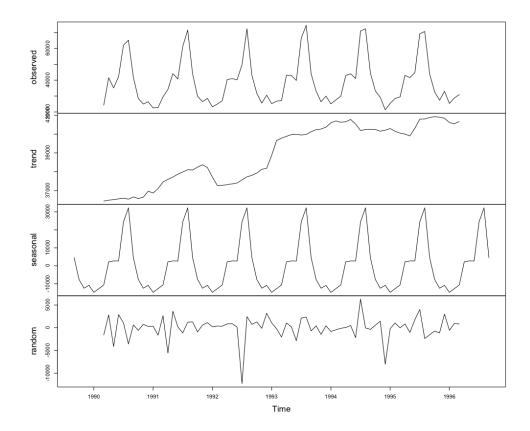
L'estimation d'un trend déterministe repose sur l'utilisation de fonctions simples, par exemple linéaires,

$$X_t = T_t + C_t = a + bt + C_t \tag{4}$$

Ces modèles apparaissent parfois dans la littérature sous le terme TS (trend stationary), et le cycle (supposé stationnaire) apparaît alors comme l'écart à la tendance. Cette tendance

est alors estimée par régression. Cette méthode sera celle developpée dans la première partie, même si elle a été fortement critiquée : la croissance à long terme est alors fixée de façon mécanique. Des modèles avec rupture de tendance ont ainsi été introduits.

```
> autoroute=read.table(
+ "http://freakonometrics.blog.free.fr/public/data/autoroute.csv",
+ header=TRUE,sep=";")
> a7=autoroute$a007
> X=ts(a7,start = c(1989, 9), frequency = 12)
> plot(decompose(X))
```



Il convient toutefois de noter que cette décomposition tendance-cycle ne sont pas adaptées pour les séries non-stationnaires, et il convient d'intégrer une composante stochastique dans la tendance. Le modèle de Beveridge et Nelson propose d'exprimer les composantes à l'aide d'une représentation ARIMA de la série. Les modèles à composantes inobservables repose surl'utilisation de modèles espace-état (e.g. filtre de Kalman). Ces deux méthodes sont présentées dans l'article de Doz, Rabault et Sobczack Décomposition tendance-cycle : estimations par des méthodes statistiques univariées (1995).

3 Désaisonnalisation par regression linéaire

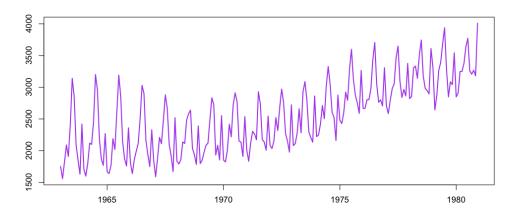
3.1 Présentation des données

Nous considérons ici une série chronologique, mensuelle, comportant une forte saisonalité, le trafic voyageur de la SNCF en France (Gouriéroux & Monfort (1995)),

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1963	1750	1560	1820	2090	1910	2410	3140	2850	2090	1850	1630	2420
1964	1710	1600	1800	2120	2100	2460	3200	2960	2190	1870	1770	2270
1965	1670	1640	1770	2190	2020	2610	3190	2860	2140	1870	1760	2360
1966	1810	1640	1860	1990	2110	2500	3030	2900	2160	1940	1750	2330
1967	1850	1590	1880	2210	2110	2480	2880	2670	2100	1920	1670	2520
1968	1834	1792	1860	2138	2115	2485	2581	2639	2038	1936	1784	2391
1969	1798	1850	1981	2085	2120	2491	2834	2725	1932	2085	1856	2553
1970	1854	1823	2005	2418	2219	2722	2912	2771	2153	2136	1910	2537
1971	2008	1835	2120	2304	2264	2175	2928	2738	2178	2137	2009	2546
1972	2084	2034	2152	2522	2318	2684	2971	2759	2267	2152	1978	2723
1973	2081	2112	2279	2661	2281	2929	3089	2803	2296	2210	2135	2862
1974	2223	2248	2421	2710	2505	3021	3327	3044	2607	2525	2160	2876
1975	2481	2428	2596	2923	2795	3287	3598	3118	2875	2754	2588	3266
1976	2667	2668	2804	2806	2976	3430	3705	3053	2764	2802	2707	3307
1977	2706	2586	2796	2978	3053	3463	3649	3095	2839	2966	2863	3375
1978	2820	2857	3306	3333	3141	3512	3744	3179	2984	2950	2896	3611
1979	3313	2644	2872	3267	3391	3682	3937	3284	2849	3085	3043	3541
1980	2848	2913	3248	3250	3375	3640	3771	3259	3206	3269	3181	4008

```
> sncf=read.table(
```

> plot(SNCF,lwd=2,col="purple")



^{+ &}quot;http://freakonometrics.blog.free.fr/public/data/sncf.csv",

⁺ header=TRUE, sep=";")

> SNCF=ts(as.vector(t(as.matrix(sncf[,2:13]))),

⁺ ,start = c(1963, 1), frequency = 12)

3.2Le modèle linéaire

La série X_t est la somme de 2 composantes déterministes : une tendance Z_t , d'une saisonnalité S_t et d'une composante aléatoire ε_t

$$X_t = Z_t + S_t + \varepsilon_t.$$

On suppose que Z_t et S_t sont des combinaisons linéaires de fonctions connues dans le temps, Z_t^i et S_t^j , i.e.

$$\begin{cases} Z_t = Z_t^1 \beta_1 + Z_t^2 \beta_2 + \dots + Z_t^m \beta_m \\ S_t = S_t^1 \gamma_1 + S_t^2 \gamma_2 + \dots + S_t^n \gamma_n. \end{cases}$$

Le but est d'estimer les $\beta_1, ..., \beta_m$ et $\gamma_1, ..., \gamma_n$ à partir des T observations.

$$X_t = \sum_{i=1}^m Z_t^i \beta_i + \sum_{j=1}^n S_t^j \gamma_j + \varepsilon_t \text{ pour } t = 1, ..., T.$$

Hypothèses sur les erreurs 3.2.1

On supposera l'hypothèse suivante vérifiée, à savoir que les erreurs sont centrées : $\mathbb{E}(\varepsilon_t)$ = 0, de même variance $V(\varepsilon_t) = \sigma^2$ et non-corrélées $cov(\varepsilon_t, \varepsilon_{t-h}) = 0$ pour tout h > 0.

3.2.2Composante saisonnière du modèles

La forme de S_t dépend du type de données, et de la forme de la saisonnalité. On considèrera ici des fonctions S_t^i indicatrices,

$$S_t^i = \left\{ \begin{array}{l} 0 \text{ si } t = \text{ mois } i \\ 1 \text{ si } t \neq \text{ mois } i \end{array} \right. \text{ ou } S_t^i = \left\{ \begin{array}{l} 0 \text{ si } t = 0 \text{ [modulo } i]} \\ 1 \text{ si } t \neq 0 \text{ [modulo } i]} \right..$$

Exemple 48. Pour des données trimestrielles, on a $S_t = S_t^1 \gamma_1 + S_t^2 \gamma_2 + S_t^3 \gamma_3 + S_t^4 \gamma_4$ où S_t^j est la fonction indicatrice du trimestre j.

Composante tendancielle

Cette composante a généralement une forme simple, reflétant la croissance moyenne.

Exemple 49. Pour une tendance linéaire, $Z_t = \beta_1 + \beta_2 t$ on pose $Z_t^1 = 1$ et $Z_t^2 = t$.

Plusieurs types de composantes tendancielles existent :

- (i) linéaire : $Z_t = \beta_0 + \beta_1 t$,
- (ii) exponentielle : $Z_t = \alpha \beta^t$, ou $Z_t = \alpha (1+r)^t$ ou encore $Z_t = \alpha \exp(rt)$,
- (iii) quadratique $Z_t = \beta_0 + \beta_1 t + \beta_2 t^2$,
- (iv) de Gompertz $Z_t = \exp(\alpha \beta^t + \gamma)$, (v) logistique $Z_t = [\alpha \beta^t \gamma]^{-1}$.

Le cas (i) se traite par régression simple $(cf\ partie\ suivante)$, le cas (ii) se ramène au cas (i) par transformation logarithmique, et le cas (iii) se traite par régression multiple. Il est également possible d'utiliser des modèles avec des ruptures :

$$Z_t = \begin{cases} \alpha_0 + \alpha_1 t \text{ pour } t \le t_0\\ \beta_0 + \beta_1 t \text{ pour } t > t_0. \end{cases}$$

Cette tendance est une des composante les plus compliquée à modéliser car il n'existe pas vraiment de méthode

3.2.4 Modèle trimestriel de Buys-Ballot (1847)

La désaisonnalisation par régression linéaire, dans le cas où la tendance est supposée linéaire, et les données sont trimestrielles, équivaut à tester le modèle linaire

$$X_t = \underbrace{a + \beta t}_{Z_t} + \underbrace{\gamma_1 S_t^1 + \gamma_2 S_t^2 + \gamma_3 S_t^3 + \gamma_4 S_t^4}_{S_t} + \varepsilon_t,$$

où Z_t est la tendance ($lin\'{e}aire$) et où S_t est la composante saisonnière. Supposons que les données commencent au 1er trimestre. Le modèle s'écrit alors, pour l'exemple du traffic SNCF

qui peut se réécrire, de façon matricielle,

$$\begin{pmatrix} 5130 \\ 6410 \\ 8080 \\ 5900 \\ 5110 \\ 6680 \\ 8350 \\ 5910 \\ 5080 \\ \vdots \\ X_t \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 1 & 0 & 0 \\ 1 & 3 & 0 & 0 & 1 & 0 & 0 \\ 1 & 4 & 0 & 0 & 0 & 0 & 1 \\ 1 & 5 & 1 & 0 & 0 & 0 & 0 \\ 1 & 6 & 0 & 1 & 0 & 0 & 0 \\ 1 & 7 & 0 & 0 & 1 & 0 & 0 \\ 1 & 8 & 0 & 0 & 0 & 1 & 1 \\ 1 & 9 & 1 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & t & S_t^1 & S_t^2 & S_t^3 & S_t^4 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \\ \varepsilon_7 \\ \varepsilon_8 \\ \varepsilon_9 \\ \vdots \\ \varepsilon_t \end{pmatrix}$$
 soit $X = Y\theta + \varepsilon$

L'écriture de l'estimateur des moindres carrés ordinaires s'écrit $\widehat{\theta} = (Y'Y)^{-1} Y'X$. Toutefos, cette écriture n'est possible que si Y'Y est inversible, ce qui n'est pas le cas ici car la première colonne (correspondant à la constante) est égale à la somme des 4 dernières (les composantes trimestrielles). Deux méthodes sont alors possibles pour faire malgré tout l'identification du modèle.

• ne pas tenir compte de la constante, et identifier le modèle

$$X_{t} = \beta t + \delta_{1} S_{t}^{1} + \delta_{2} S_{t}^{2} + \delta_{3} S_{t}^{3} + \delta_{4} S_{t}^{4} + \varepsilon_{t}, \tag{5}$$

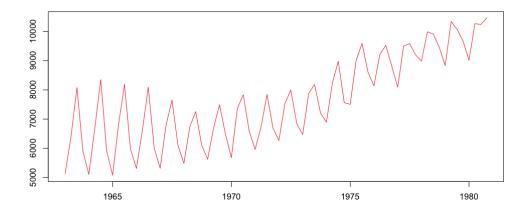
rajouter une contrainte, et identifier le modèle

$$\begin{cases}
X_t = \alpha + \beta t + \gamma_1 S_t^1 + \gamma_2 S_t^2 + \gamma_3 S_t^3 + \gamma_4 S_t^4 + \varepsilon_t \\
\text{sous contrainte } \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 = 0,
\end{cases}$$
(6)

Cette dernière contrainte est arbitraire, mais correspond à une interprétation bien précise. Considérons la série représentée ci dessous, avec une saisonnalité d'ordre 4 (données trimestrielles)

```
SNCFQ= ts(apply(matrix(as.numeric(SNCF),3,length(SNCF)/3),2,sum),
  start = c(1963, 1), frequency = 4)
> plot(SNCFQ,col="red")
> SNCFQ
                   Qtr3
                         Qtr4
1963
      5130
            6410
                   8080
                         5900
1964
      5110
            6680
                   8350
                         5910
1965
      5080
            6820
                   8190
                         5990
      5310
            6600
                   8090
                         6020
1966
```

... etc. Le graphique des données trimestrielles est le suivant



3.3 Estimateur des moindres carrés ordinaires (mco)

3.3.1 Solutions générales

On considère un modèle de la forme

$$X_t = \sum_{i=1}^m Z_t^i \beta_i + \sum_{j=1}^n S_t^j \gamma_j + \varepsilon_t \text{ pour } t = 1, ..., T.$$

La méthode des mco consiste à choisir les β_i et γ_j de façon à minimiser le carré des erreurs

$$(\widehat{\beta}_i, \widehat{\gamma}_j) = \arg\min\left\{\sum_{t=1}^{n} \varepsilon_t^2\right\}$$

$$= \arg\min\left\{\sum_{t=1}^{n} \left[X_t - \sum_{i=1}^{m} Z_t^i \beta_i + \sum_{j=1}^{n} S_t^j \gamma_j\right]^2\right\}.$$

Notations : $\beta = (\beta_1, ..., \beta_m)', \ \gamma = (\gamma_1, ..., \gamma_n)',$

$$Z = \begin{bmatrix} & & & & | & & & & \\ Z^1 & \dots & Z^m & & & & \\ & & & & & \end{bmatrix} = \begin{bmatrix} Z^i_t \end{bmatrix}_{\substack{i=1,\dots,n \\ t=1,\dots,T}} \text{ et } S = \begin{bmatrix} & & & & | & & \\ S^1 & \dots & S^n & & \\ & & & & \end{bmatrix} = \begin{bmatrix} S^j_t \end{bmatrix}_{\substack{j=1,\dots,n \\ t=1,\dots,T}}$$

Le modèle s'écrit

$$X = Z\beta + S\gamma + \varepsilon = [Z|S] \left\lceil \frac{\beta}{\gamma} \right\rceil + \varepsilon = Yb + \varepsilon,$$

et $\widehat{b} = \left(\widehat{\beta}, \widehat{\gamma}\right)'$ vérifie alors l'équation

$$Y'Y\widehat{b} = Y'X \text{ soit } [Z \ S] \begin{bmatrix} Z' \\ S' \end{bmatrix} \widehat{b} = \begin{bmatrix} Z' \\ S' \end{bmatrix} X,$$

et donc

$$\begin{bmatrix} \widehat{\beta} \\ \widehat{\gamma} \end{bmatrix} = \begin{bmatrix} Z'Z & Z'S \\ S'Z & S'S \end{bmatrix}^{-1} \begin{bmatrix} Z'X \\ S'X \end{bmatrix},$$

ce qui donne les coefficients

$$\begin{cases} \hat{\beta} = \left[Z'Z - Z'S (S'S)^{-1} S'Z \right]^{-1} \left[Z'X - Z'S (S'S)^{-1} S'X \right] \\ \hat{\gamma} = \left[S'S - S'Z (Z'Z)^{-1} Z'S \right]^{-1} \left[S'X - S'Z (Z'Z)^{-1} Z'X \right]. \end{cases}$$

Remarque 50. S'il n'y a pas d'effet saisonnier, $X = Z\beta + \varepsilon$, et on retrouve le modèle linéaire usuel, avec pour estimateur $mco \ \widehat{\beta} = [Z'Z]^{-1} Z'X$.

3.3.2 Cas particulier : le modèle trimestriel de Buys-Ballot

Pour le modèle

$$X_{t} = \beta_{1} + \beta_{2}t + S_{t}^{1}\gamma_{1} + S_{t}^{2}\gamma_{2} + S_{t}^{3}\gamma_{3} + S_{t}^{4}\gamma_{4} + \varepsilon_{t},$$

il est possible d'expliciter les différents coefficients. L'équation

$$\begin{cases} \min_{\beta,\gamma} \sum_{t=1}^{T} \left[X_t - \beta_1 - \beta_2 t - \sum_{j=1}^{4} S_t^j \gamma_j \right]^2 \\ \text{sous contrainte (*) } \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 = 0, \end{cases}$$

peut se réécrire

$$\left\{ \min_{\beta,\gamma} \sum_{t=1}^{T} \left[X_t - \beta_2 t - \sum_{j=1}^{4} S_t^j \delta_j \right]^2 \text{ où } \left\{ \begin{array}{l} \beta_1 = \left[\delta_1 + \delta_2 + \delta_3 + \delta_4 \right]/4 \\ \gamma_j = \delta_j - \beta_1, \end{array} \right. \right.$$

En notant N le nombre d'années entières (N = T/4), on pose

 \widetilde{x}_n : moyenne des X_t relatives à l'année n

 \overline{x}_j : moyenne des X_t relatives au trimestre j

 \overline{x} : moyenne de toutes les observations X_t

On a alors les estimateurs suivant

$$\widehat{\beta}_2 = 3 \frac{\sum_{n=1}^N n \widetilde{x}_n - \frac{N(N+1)}{2} \overline{x}}{N(N^2 - 1)}$$

$$(7)$$

$$\hat{\delta}_{j} = \overline{x}_{j} - [j + 2(N - 1)] \hat{\beta}_{2} \text{ pour } j = 1, 2, 3, 4$$
 (8)

d'où finallement

$$\begin{cases}
\widehat{\beta}_1 = \left[\widehat{\delta}_1 + \widehat{\delta}_2 + \widehat{\delta}_3 + \widehat{\delta}_4\right] / 4 \\
\widehat{\gamma}_j = \widehat{\delta}_j - \widehat{\beta}_1
\end{cases} \tag{9}$$

3.3.3 Généralisation des formules de Buys-Ballot (tendance linéaire)

Les relations obtenues dans le cas précédant peuvent en fait être généralisées dans le cas d'une périodicité m, et en notant (de la même façon que précédemment) N le nombre d'années entuères. L'modèle s'écrit alors

$$X_t = \beta_1 + \beta_2 t + S_t^1 \gamma_1 + S_t^2 \gamma_2 + S_t^3 \gamma_3 + \dots + S_t^m \gamma_m + \varepsilon_t.$$

L'équation

$$\begin{cases} \min_{\beta,\gamma} \sum_{t=1}^{T} \left[X_t - \beta_1 - \beta_2 t - \sum_{j=1}^{m} S_t^j \gamma_j \right]^2 \\ \text{sous contrainte (*) } \gamma_1 + \gamma_2 + \gamma_3 + \dots + \gamma_m = 0, \end{cases}$$

admet alors pour solution, en notant

$$\widehat{\beta}_2 = \frac{12}{m} \frac{\sum_{n=1}^{N} n\widetilde{x}_n - \frac{N(N+1)}{2}\overline{x}}{N(N^2 - 1)}$$

$$\widehat{\beta}_1 = \overline{x} - \widehat{\beta}_2 \frac{Nm+1}{2}$$

$$\widehat{\gamma}_j = \widetilde{x}_j - \overline{x} - \widehat{\beta}_2 \left[j - \frac{m+1}{2} \right]$$

3.4 Application au trafic voyageur

3.4.1 Série agrégée par trimestre

Consiédérons la série du trafiic SNCF agrégée par trimestre, représentée ci-dessous, avec en ligne les années, et en colonne les trimestres,

$n \setminus j$	1	2	3	4	\widetilde{x}_n
1	5130	6410	8080	5900	6380
2	5110	6680	8350	5910	6513
3	5080	6820	8190	5990	6520
4	5310	6600	8090	6020	6505
5	5320	6800	7650	6110	6470
6	5486	6738	7258	6111	6398
7	5629	6696	7491	6494	6578
8	5682	7359	7836	6583	6865
9	5963	6743	7844	6692	6811
10	6270	7524	7997	6853	7161
11	6472	7871	8188	7207	7435
12	6892	8236	8978	7561	7917
13	7505	9005	9591	8608	8677
14	8139	9212	9522	8816	8922
15	8088	9494	9583	9204	9092
16	8983	9986	9907	9457	9583
17	8829	10340	10070	9669	9727
18	9009	10265	10236	10458	9992
\overline{x}_j	6605	7932	8603	7425	7641

Considérons alors un modèle de la forme suivante, avec une saisonnalité en 4 composantes (les données étant trimestrielles : chaque composante correspondant à un trimestre), et une tendance supposée linéaire ($Z_t = \beta_1 + \beta_2 t$),

$$X_{t} = \beta_{1} + \beta_{2}t + S_{t}^{1}\gamma_{1} + S_{t}^{2}\gamma_{2} + S_{t}^{3}\gamma_{3} + S_{t}^{4}\gamma_{4} + \varepsilon_{t},$$

Compte tenu de la sur-identification de ce modèle, on rajoute la contrainte que la somme des γ_j soit nulle (c'est à dire que la composante saionnière soit centrée : $\mathbb{E}(S_t) = 0$). On peut alors faire l'estimation de la façon suivante :

- (i) on estime le modèle (5), c'est à dire sans contrainte, et sans constante β_1
- (ii) et on se ramène au modèle (6) en utilisant les relations.

Pour l'étape (i) deux méthodes analogues sont possibles : soit en utilisant les expressions des estimateurs, soit en effectuant la régression sous EViews

• Calcul direct des estimateurs

	$n \backslash j$	T1	T2	T3	T4	\widetilde{x}_n	$n \times \widetilde{x}_n$
1963	1	5 130	6 410	8 080	5 900	6 380,00	6 380,00
1964	2	5 110	6 680	8 350	5 910	$6\ 512,\!50$	$13\ 025,\!00$
1965	3	5 080	6 820	8 190	5 990	6 520,00	19 560,00
1966	4	5 310	6 600	8 090	6 020	6 505,00	26 020,00
1967	5	5 320	6 800	7650	6 110	$6\ 470,00$	32 350,00
1968	6	$5\ 486$	6 738	$7\ 258$	6 111	$6\ 398,25$	$38\ 389{,}50$
1969	7	$5\ 629$	6 696	$7\ 491$	6 494	6577,50	$46\ 042{,}50$
1970	8	$5\ 682$	7 359	7 836	6 583	6 865,00	54 920,00
1971	9	5 963	6743	7 844	6 692	6 810,50	$61\ 294{,}50$
1972	10	$6\ 270$	$7\ 524$	7 997	6 853	7 161,00	71 610,00
1973	11	$6\ 472$	7 871	8 188	7 207	7 434,50	81 779,50
1974	12	6892	8 236	8 978	7 561	7 916,75	95 001,00
1975	13	7505	9 005	9 591	8 608	8 677,25	$112\ 804,25$
1976	14	8 139	9 212	9 522	8 816	8 922,25	$124\ 911,\!50$
1977	15	8 088	$9\ 494$	9.583	9 204	9 092,25	$136\ 383,75$
1978	16	8 983	9 986	9 907	$9\ 457$	9 583,25	153 332,00
1979	17	8 829	10 340	$10\ 070$	9 669	9 727,00	165 359,00
1980	18	9 009	$10\ 265$	$10\ 236$	10 458	9 992,00	179 856,00
	\overline{x}_j	6 605	7 932	8 603	7 425	7641, 39	

Pour chacune des années et chacun des trimestre, il est possible de calculer des moyennes : aussi, la moyenne pour 1963 était de 6380, et de 7435 pour 1973, et de façon analogue, la moyenne pour le premier trimestre est de 6605, et de 8603 pour le troisième. La moyenne totale est alors de 7641, pour ces 72 observations. Aussi, N=18 (on a 18 années d'observations), et la pente de la droite de la tendance est donnée par

$$\widehat{\beta}_2 = \frac{3}{N\left(N^2 - 1\right)} \left[\sum_{n=1}^N n\widetilde{x}_n - \frac{N\left(N + 1\right)}{2} \overline{x} \right] = \frac{3}{18\left(18^2 - 1\right)} \left[1 \text{ 419 019-1 306 678} \right] \approx 57.97$$

en utilisant les moyennes par trimestre, et par année, données dans le tableau ci-dessus, et

$$\widehat{\delta}_{j} = \overline{x}_{j} - [j + 2(N - 1)] \,\widehat{\beta}_{2} \text{ et donc} \begin{cases} \widehat{\delta}_{1} = 6605 - 35 \times 57.97 \approx 4577 \\ \widehat{\delta}_{2} = 7932 - 36 \times 57.97 \approx 5845 \\ \widehat{\delta}_{3} = 8603 - 37 \times 57.97 \approx 6459 \\ \widehat{\delta}_{4} = 7425 - 38 \times 57.97 \approx 5222 \end{cases}$$

d'où finallement

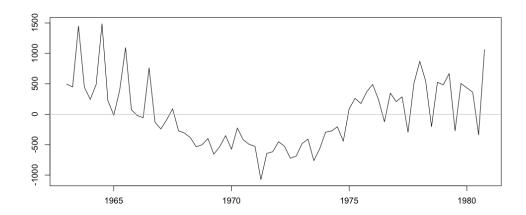
$$\begin{cases} \widehat{\beta}_{1} = \left[\widehat{\delta}_{1} + \widehat{\delta}_{2} + \widehat{\delta}_{3} + \widehat{\delta}_{4} \right] / 4 \approx 5526 \\ \widehat{\gamma}_{j} = \widehat{\delta}_{j} - \widehat{\beta}_{1} \end{cases} \text{ soit } \begin{cases} \widehat{\delta}_{1} = 4577 - 5526 \approx -949 \\ \widehat{\delta}_{2} = 5845 - 5526 \approx +320 \\ \widehat{\delta}_{3} = 6459 - 5526 \approx +933 \\ \widehat{\delta}_{4} = 5222 - 5526 \approx -304 \end{cases}$$

Aussi, le modèle s'écrit

$$\widehat{X}_t = 5526 + 58t - 949S_t^1 + 320S_t^2 + 933S_t^3 - 304S_t^4.$$

La régression se fait sur le modèle non-contraint, en ne prenant pas en compte la constante,

```
> T = seq(from=1963, to=1980.75, by=.25)
> Q = rep(1:4,18)
  reg=lm(SNCFQ~0+T+as.factor(Q))
  summary(reg)
Call:
lm(formula = SNCFQ ~ 0 + T + as.factor(Q))
Residuals:
   Min
          1Q Median
                                Max
-1073.2 -425.5 -106.8 404.4 1485.6
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                as.factor(Q)1 -450526.26 24752.39 -18.20
as.factor(Q)2 -449257.44 24755.53 -18.15 <2e-16 ***
as.factor(Q)3 -448644.19 24758.67 -18.12 <2e-16 ***
as.factor(Q)4 -449880.94 24761.81 -18.17 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 552.7 on 67 degrees of freedom
                              Adjusted R-squared: 0.995
Multiple R-squared: 0.9953,
F-statistic: 2846 on 5 and 67 DF, p-value: < 2.2e-16
> plot(T,residuals(reg),type="l")
```



L'erreur de modélisation (les résidus) est, en moyenne, beaucoup trop importante au début, ainsi qu'au milieu (début des annéees 70), mais l'erreur se faisant ici dans l'autre sens (sur-estimation versus sous-estimation). Le caractère non-i.i.d. des résidus pouvait être devinée à la lecture des sorties de la régression, grâce au test de Durbin Watson, qui valide le caractère AR(1) des résidus.

La série ajustée (ci-dessous à gauche) correspond à la série

$$\widehat{X}_t = X_t - \varepsilon_t = \sum_{i=1}^m Z_t^i \beta_i + \sum_{j=1}^n S_t^j \gamma_j,$$

avec (Z_t) en trait plein, et (\widehat{X}_t) en pointillés. Cette série pourra être prolongée afin de faire de la prévision. La série corrigée des corrections saisonnières (CVS-ci-dessous à droite) correspond à la série

$$\widehat{Y}_t = X_t - \widehat{S}_t = \sum_{i=1}^m Z_t^i \beta_i + \varepsilon_t.$$

Remarque 51. La composante saisonnière S_t correspond à $\sum_{j=1}^n S_t^j \gamma_j$, telle qu'elle apparaît dans le modèle contraint. Elle vérifie alors $\mathbb{E}(S_t) = 0$. Cette propriété n'est pas vérifiée dans le modèle sans constante.

3.4.2 Analyse sur données mensuelles

La méthode décrite ci-dessus donne les résultats suivants

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	\widetilde{x}_n
1963	1750	1560	1820	2090	1910	2410	3140	2850	2090	1850	1630	2420	2127
1964	1710	1600	1800	2120	2100	2460	3200	2960	2190	1870	1770	2270	2171
1965	1670	1640	1770	2190	2020	2610	3190	2860	2140	1870	1760	2360	2173
1966	1810	1640	1860	1990	2110	2500	3030	2900	2160	1940	1750	2330	2168
1967	1850	1590	1880	2210	2110	2480	2880	2670	2100	1920	1670	2520	2157
1968	1834	1792	1860	2138	2115	2485	2581	2639	2038	1936	1784	2391	2133
1969	1798	1850	1981	2085	2120	2491	2834	2725	1932	2085	1856	2553	2192
1970	1854	1823	2005	2418	2219	2722	2912	2771	2153	2136	1910	2537	2288
1971	2008	1835	2120	2304	2264	2175	2928	2738	2178	2137	2009	2546	2270
1972	2084	2034	2152	2522	2318	2684	2971	2759	2267	2152	1978	2723	2387
1973	2081	2112	2279	2661	2281	2929	3089	2803	2296	2210	2135	2862	2478
1974	2223	2248	2421	2710	2505	3021	3327	3044	2607	2525	2160	2876	2639
1975	2481	2428	2596	2923	2795	3287	3598	3118	2875	2754	2588	3266	2892
1976	2667	2668	2804	2806	2976	3430	3705	3053	2764	2802	2707	3307	2974
1977	2706	2586	2796	2978	3053	3463	3649	3095	2839	2966	2863	3375	3031
1978	2820	2857	3306	3333	3141	3512	3744	3179	2984	2950	2896	3611	3194
1979	3313	2644	2872	3267	3391	3682	3937	3284	2849	3085	3043	3541	3242
1980	2848	2913	3248	3250	3375	3640	3771	3259	3206	3269	3181	4008	3331
\overline{x}_j	2195	2101	2309	2555	2489	2888	3249	2928	2426	2359	2205	2861	2547

qui donne les coefficients suivants

\widehat{eta}_2	$\widehat{\delta}_1$	$\widehat{\delta}_2$	$\widehat{\delta}_3$	$\widehat{\delta}_4$	$\widehat{\delta}_5$	$\widehat{\delta}_6$	$\widehat{\delta}_7$	$\widehat{\delta}_8$	$\widehat{\delta}_{9}$	$\widehat{\delta}_{10}$	$\widehat{\delta}_{11}$	$\widehat{\delta}_{12}$
9.82	1038	943	1156	1380	1293	1667	1938	1517	1135	1123	975	1618

Ce qui donne la série ajustée (à gauche) et la série corrigée des variations saisonnières (à droite)

```
> T = seq(from=1963,to=1980+11/12,by=1/12)
> M = as.factor(rep(1:12,18))
> reg=lm(SNCF~0+T+M)
> summary(reg)

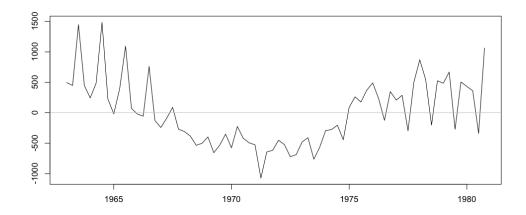
Call:
lm(formula = SNCF ~ 0 + T + M)

Residuals:
    Min    1Q Median    3Q Max
-674.19 -154.53 -12.16 125.74 611.51

Coefficients:
    Estimate Std. Error t value Pr(>|t|)
```

```
T
         77.29
                      2.68
                             28.84
                                     <2e-16 ***
    -150182.38
                  5283.13
                            -28.43
M1
                                     <2e-16 ***
    -150282.54
                  5283.35
                            -28.45
                                     <2e-16 ***
M2
МЗ
   -150080.65
                  5283.58
                            -28.41
                                     <2e-16 ***
M4
    -149841.26
                  5283.80
                            -28.36
                                     <2e-16 ***
M5
    -149913.92
                  5284.02
                            -28.37
                                     <2e-16 ***
                  5284.25
M6
   -149521.58
                            -28.30
                                     <2e-16 ***
    -149166.64
                  5284.47
                            -28.23
M7
                                     <2e-16 ***
                  5284.69
                            -28.29
8M
    -149494.13
                                     <2e-16 ***
M9
   -150002.74
                  5284.92
                            -28.38
                                     <2e-16 ***
M10 -150076.46
                  5285.14
                            -28.40
                                     <2e-16 ***
M11 -150236.62
                  5285.36
                            -28.43
                                     <2e-16 ***
M12 -149587.17
                  5285.59
                            -28.30
                                     <2e-16 ***
Signif. codes:
                0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
```

Residual standard error: 204.3 on 203 degrees of freedom Multiple R-squared: 0.9942, Adjusted R-squared: 0.9939 F-statistic: 2693 on 13 and 203 DF, p-value: < 2.2e-16



3.5 Propriétés statistiques des estimateurs

Sous l'hypothèse $\mathbb{E}\left(\varepsilon_{t}\right)=0$ les estimateurs mco sont sans biais :

$$\mathbb{E}\left(\widehat{\beta}_i\right) = \beta_i \text{ et } \mathbb{E}\left(\widehat{\gamma}_j\right) = \gamma_j.$$

La variance des estimateurs peut être estimée par

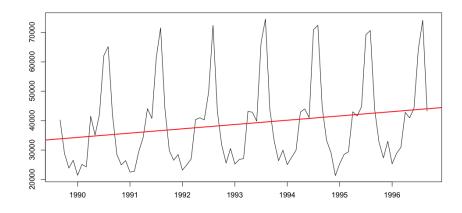
$$\widehat{V}\left(\begin{array}{c} \widehat{\beta} \\ \widehat{\gamma} \end{array}\right) = s^2 \left[\begin{array}{cc} Z'Z & Z'S \\ S'Z & S'S \end{array}\right], \text{ où } s^2 = \frac{1}{T-n-m} \sum_{t=1}^T \widehat{\varepsilon}_t^2,$$

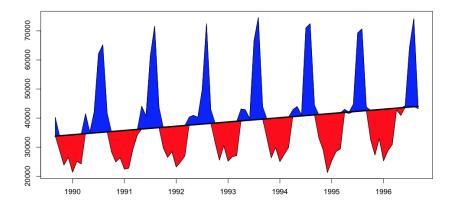
ce qui permet d'obtenir des intervalles de confiance sur les estimateurs.

3.6 Application au traffic sur l'autoroute A7

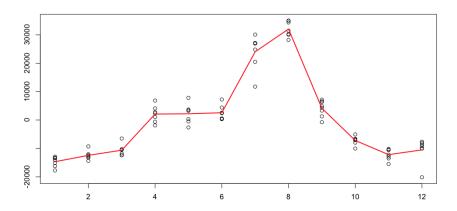
Sur les données de traffic sur l'autoroute A7, on obtient la décomposition suivante

```
> autoroute=read.table(
  "http://freakonometrics.blog.free.fr/public/data/autoroute.csv",
+ header=TRUE,sep=";")
> a7=autoroute$a007
> X=ts(a7,start = c(1989, 9), frequency = 12)
  T=time(X)
> S=cycle(X)
> B=data.frame(x=as.vector(X),T=as.vector(T),S=as.vector(S))
> regT=lm(x~T,data=B)
> plot(X)
> abline(regT,col="red",lwd=2)
> summary(regT)
Call:
lm(formula = x ~ T, data = B)
Residuals:
  Min
       1Q Median 3Q
                           Max
-20161 -10568 -2615 4390 35017
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2872401.7 1545258.4 -1.859 0.0666.
Т
               1460.7
                          775.3 1.884 0.0631 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 14610 on 83 degrees of freedom
Multiple R-squared: 0.04101,
                                 Adjusted R-squared: 0.02946
F-statistic: 3.55 on 1 and 83 DF, p-value: 0.06306
```





- > B\$res1=X-X1
- > regS=lm(res1~0+as.factor(S),data=B)
- > B\$X2=predict(regS)
- > plot(B\$S,B\$res1,xlab="saisonnalitÃ'1")



3.7 Prévision à un horizon h

Soit $h \geq 1$. On suppose que le modèle reste valide en T+h c'est à dire que

$$X_{T+h} = \sum_{i=1}^{m} Z_{T+h}^{i} \beta_{i} + \sum_{j=1}^{n} S_{T+h}^{j} \gamma_{j} + \varepsilon_{T+h},$$

avec $\mathbb{E}(\varepsilon_{T+h}) = 0$, $V(\varepsilon_{T+h}) = \sigma^2$ et $cov(\varepsilon_t, \varepsilon_{T+h}) = 0$ pour t = 1, ..., T. La variable X_{T+h} peut être approchée par

$$\widehat{X}_{T}(h) = \sum_{i=1}^{m} Z_{T+h}^{i} \widehat{\beta}_{i} + \sum_{j=1}^{n} S_{T+h}^{j} \widehat{\gamma}_{j}.$$

Cette prévision est la meilleur (au sens de l'erreur quadratique moyenne) prévision, linéaire en $X_1, ..., X_T$ et sans biais. Un intervalle de confiance de cette prévision est de la forme

$$\left[\widehat{X}_{T}\left(h\right) - \phi_{1-\alpha/2}\sqrt{\widehat{e}_{h}}; \widehat{X}_{T}\left(h\right) + \phi_{1-\alpha/2}\sqrt{\widehat{e}_{h}}\right],$$

où $\phi_{1-\alpha/2}$ est le quantile d'ordre α de la loi de Student à T-m-n degrés de liberté, et où

$$\widehat{e}_{h} = \widehat{\mathbb{E}}\left(\left[\widehat{X}_{T}(h) - X_{T+h}\right]^{2}\right) = \widehat{V}\left(\sum_{i=1}^{m} Z_{T+h}^{i} \widehat{\beta}_{i} + \sum_{j=1}^{n} S_{T+h}^{j} \widehat{\gamma}_{j} - \varepsilon_{T+h}\right)$$

$$= \left[\widehat{\beta}'|\widehat{\gamma}'\right] \left[\widehat{V}\left(\frac{\widehat{\beta}}{\widehat{\gamma}}\right)\right] \left[\frac{\widehat{\beta}}{\widehat{\gamma}}\right] + s^{2}.$$

4 Désaisonnalisation par moyennes mobiles

On considère une série temporelle (X_t) admettant une décomposition

$$X_t = Z_t + S_t + \varepsilon_t$$
 pour $t = 1, ..., T$

Le but est de trouver une transformation du processus X_t qui annule la composante saisonnière S_t : on cherche un "filtre" ϕ tel que $Y_t = \phi(X_t) = Z_t + \varepsilon_t$.

L'utilisation des moyennes mobiles est relativement ancienne puisqu'elle remonte à Poynting (1884) puis Hooker (1901) qui, les premiers, ont tenté d'oter (et de distinguer) la tendance et la composante cyclique pour des séries de prix en considérant des moyennes glissantes. En 1930, Macauley a introduit une méthode pour désaisonnaliser les séries au sein de la Réserve Fédérale américaine, basée sur l'utilisation de moyennes mobiles centrées d'ordre 12, pour obtenir une estimation de la tendance. Dans les années 50, le bureau du Census aux Etats Unis a commencé à developper des modèles basés sur l'utilisation de moyennes mobiles, modèles qui ont abouti à la méthode X11 en 1965.

Cette méthode a pu être développée grâce aux développements informatiques importants qui ont eu lieu à cette époque. Une des implications est que des décisions, faisant habituellement appel au jugement de l'utilisateur, ont pu être en grande partie automatisées. De plus, l'informatique a facilité l'utilisation de régressions visant à corriger les effets de jours ouvrables (nombre de jours travaillés dans le mois).

En 1975, suite au développement des modèles ARIMA (consécutif à la publication des travaux de Box et Jenkins dans les années 70), le modèle X11 a pu évoluer vers le modèle dit X11-ARIMA.

La méthode de Buys-Ballot, basé sur une regression globale du modèle a été présenté dans la partie précédante. Nous allons présenter dans cette partie les méthodes basées sur des régressions locales. Les régressions locales consistent à ajuster des polynômes, en général par les moindres carrés, sur des intervalles glissants (se décallant à chaque fois d'un point). Au "centre" de cette intervalle, la donnée lissée est la valeur, à cette date, du polynôme ajusté. Ces régressions locales reviennent à appliquer des moyennes mobiles.

4.1 Généralités sur les moyennes mobiles

4.1.1 Notion d'opérateur retard L

Définition 52. On appelera opérateur retard L (=lag, ou B =backward) l'opérateur linéaire défini par

$$L: X_t \longmapsto L(X_t) = LX_t = X_{t-1},$$

et opérateur avance F (=forward)

$$F: X_t \longmapsto F(X_t) = FX_t = X_{t+1},$$

Remarque 53. $L \circ F = F \circ L = \mathbb{I}$ (opérateur identité) et on notera par la suite $F = L^{-1}$ et $L = F^{-1}$.

(i) Il est possible de composer les opérateurs : $L^2 = L \circ L$, et plus générallement,

$$L^p = \underbrace{L \circ L \circ \dots \circ L}_{p \text{ fois}} \quad \text{où } p \in \mathbb{N}$$

avec la convention $L^{0} = \mathbb{I}$. On notera que $L^{p}(X_{t}) = X_{t-p}$.

(ii) Soit A le polynôme, $A(z) = a_0 + a_1 z + a_2 z^2 + ... + a_p z^p$. On notera A(L) l'opérateur

$$A(L) = a_0 \mathbb{I} + a_1 L + a_2 L^2 + \dots + a_p L^p = \sum_{k=0}^{p} a_k L^k.$$

Soit (X_t) une série temporelle. La série (Y_t) définie par $Y_t = A(L)X_t$ vérifie

$$Y_t = A(L) X_t = \sum_{k=0}^{p} a_k X_{t-k}.$$

Par passage à la limite, on peut aussi définir des séries formelles

$$A(z) = \sum_{k=0}^{\infty} a_k z^k \text{ et } A(L) = \sum_{k=0}^{\infty} a_k L^k.$$

Proposition 54. Pour toutes moyennes mobiles A et B, alors

$$\begin{cases} A\left(L\right) + B\left(L\right) = \left(A + B\right)\left(L\right) \\ \alpha \in \mathbb{R}, \ \alpha A\left(L\right) = \left(\alpha A\right)\left(L\right) \\ A\left(L\right) \circ B\left(L\right) = \left(AB\right)\left(L\right) = B\left(L\right) \circ A\left(L\right). \end{cases}$$

La moyenne mobile C = AB = BA vérifie alors

$$\left(\sum_{k=0}^{\infty} a_k L^k\right) \circ \left(\sum_{k=0}^{\infty} b_k L^k\right) = \left(\sum_{i=0}^{\infty} c_i L^i\right) \text{ où } c_i = \sum_{k=0}^{i} a_k b_{i-k}.$$

4.1.2 Les moyennes mobiles

Définition 55. Une moyenne mobile est un opérateur linéaire, combinaison linéaire d'opérateurs retard

$$M = \sum_{i=-m_1}^{m_2} \theta_i L^{-i}, \ où \ m_1, m_2 \in \mathbb{N},$$

qui peut s'écrire

$$M = L^{m_1} \sum_{i=0}^{m_1+m_2} \theta_{i-m_1} L^{-i} = L^{m_1} \sum_{i=0}^{m_1+m_2} \theta_{i-m_1} F^i = L^{m_1} \Theta(F), \qquad (10)$$

où $\Theta(.)$ est un polynôme appelé polynôme caractéristique de M, de **degré** $m_1 + m_2$, et $m_1 + m_2 + 1$ sera appelé ordre de M (correspondant au nombre (théorique) de terme de M).

Définition 56. Si $m_1 = m_2 = m$, la moyenne mobile sera dite centrée. De plus, si M est centrée, et que pour tout i, $\theta_i = \theta_{-i}$ alors la moyenne mobile est dite symétrique.

Exemple 57. La moyenne mobile $M_1(X_t) = (X_t + X_{t-1})/2$, soit $M_1 = (L + \mathbb{I})/2 = L[\mathbb{I} + F]/2$ est de degré 1, d'ordre 2 et n'est pas centrée (ni symétrique).

Exemple 58. La moyenne mobile $M_2(X_t) = (X_{t+1} + 2X_t + X_{t-1})/4$, soit $M_2 = (L^{-1} + 2\mathbb{I} + L)/4 = L[\mathbb{I} + 2F + F^2]/4$ est de degré 2, d'ordre 3, est centrée et symétrique.

On peut déjà noter, pour les moyennes centrées symétriques, sont nécessairement d'ordre impair (pour être centrées). Pour m impair, on considèrera les moyennes mobiles d'ordre m = 2p + 1 définie par

$$M_m(X_t) = \frac{1}{m} \left[X_{t-p} + X_{t-p+1} + \dots + X_{t-1} + X_t + X_{t+1} + \dots + X_{t+p-1} + X_{t+p} \right].$$

Exemple 59. La moyenne mobile d'ordre 3 - Cette moyenne mobile a pour coefficients 1/3, 1/3, 1/3,

$$M_3(X_t) = \frac{1}{3} [X_{t-1} + X_t + X_{t+1}].$$

Exemple 60. La moyenne mobile d'ordre 9 - Cette moyenne mobile a pour coefficients 1/9, 1/9, ..., 1/9,

$$M_9(X_t) = \frac{1}{9} [X_{t-4} + X_{t-3} + \dots + X_t + \dots + X_{t+4}].$$

De manière générale, le filtre

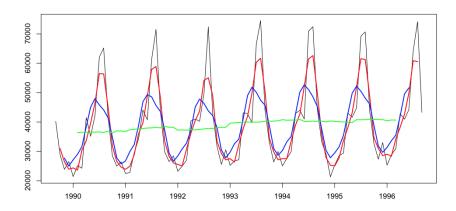
$$M_{2p+1}(X_t) = \frac{1}{2p+1} \left[X_{t-p} + X_{t-p+1} + \dots + X_{t-1} + X_t + X_{t+1} + \dots + X_{t+p-1} + X_{t+p} \right].$$

s'écrit, pour p=3

- > library(ts)
- > Y=filter(X,filter=rep(1/(2*p+1),2*p+1))

Par exemple, sur la série a7

- > autoroute=read.table(
- + "http://freakonometrics.blog.free.fr/public/data/autoroute.csv",
- + header=TRUE,sep=";")
- > a7=autoroute\$a007
- > X=ts(a7,start = c(1989, 9), frequency = 12)
- > plot(X)
- > p=3
- > Y=filter(X,filter=rep(1/p,p))
- > lines(Y,col="red",lwd=2)
- > n=6
- > Y=filter(X,filter=rep(1/p,p))
- > lines(Y,col="blue",lwd=2)
- > p=12
- > Y=filter(X,filter=rep(1/p,p))
- > lines(Y,col="green",lwd=2)



Toutefois, il est possible de construire des moyennes mobiles centrées et symétriques d'ordre pair, de façon artificielle. Pour cela, pour m=2p on considèrera les moyennes mobiles définies par

$$M_m(X_t) = \frac{1}{m} \left[X_{t-p+1/2} + \dots + X_{t-1/2} + X_{t+1/2} + \dots + X_{t+p-1/2} \right],$$

où $X_{t-1/2}$ est obtenue comme valeur intermédiaire entre X_{t-1} et X_t . Cette moyenne mobile peut donc se réécrire

$$M_{m}(X_{t}) = \frac{1}{m} \left[\frac{1}{2} (X_{t-p} + X_{t-p+1}) + \dots + \frac{1}{2} (X_{t-1} + X_{t}) + \frac{1}{2} (X_{t} + X_{t+1}) + \dots + \frac{1}{2} (X_{t+p-1} + X_{t+p}) \right]$$

$$= \frac{1}{m} \left[\frac{1}{2} X_{t-p} + X_{t-p+1} + \dots + X_{t-1} + X_{t} + X_{t+1} + \dots + X_{t+p-1} + \frac{1}{2} X_{t+p} \right].$$

Cette moyenne mobile d'ordre pair est en fait une moyenne mobile d'ordre impair, que l'on notera $M_{2\times p}$, définie par

$$M_{2\times p}(X_t) = \frac{1}{2m} \left[X_{t-p} + 2X_{t-p+1} + \dots + 2X_{t-1} + 2X_t + 2X_{t+1} + \dots + 2X_{t+p-1} + X_{t+p} \right].$$

Exemple 61. La moyenne mobile 2×4 - Cette moyenne mobile permet permet d'estimer des tendances dans le cas de données trimestrielles, elle est d'ordre 5 et de coefficients 1/8, 1/4, 1/4, 1/8

$$M_{2\times 4}(X_t) = \frac{1}{8} \left[X_{t-2} + 2X_{t-1} + 2X_t + 2X_{t+1} + X_{t+2} \right].$$

Comme nous le verrons par la suite, elle élimine les saisonnalités trimestrielles des séries trimestrielles, elle conserve les tendances linéaires, et elle réduit de 75% la variance d'un bruit blanc.

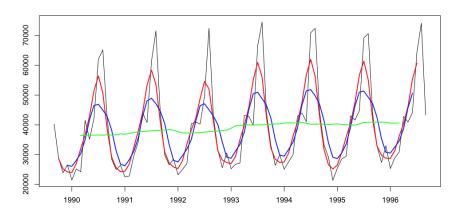
Exemple 62. La moyenne mobile 2×12 - Cette moyenne mobile permet permet d'estimer des tendances dans le cas de données mensuelles, elle est d'ordre 13 et de coefficients 1/24, 1/12, 1/12, ..., 1/12, 1/24

$$M_{2\times 4}(X_t) = \frac{1}{24} \left[X_{t-6} + 2X_{t-5} + 2X_{t-4} + \dots + 2X_{t+5} + X_{t+6} \right].$$

Comme nous le verrons par la suite, elle élimine les saisonnalités annuelles des séries mensuelles, elle conserve les tendances linéaires, et elle réduit de plus de 90% la variance d'un bruit blanc.

Là encore, sur la série a7

```
> autoroute=read.table(
+ "http://freakonometrics.blog.free.fr/public/data/autoroute.csv",
+ header=TRUE,sep=";")
> a7=autoroute$a007
> X=ts(a7,start = c(1989, 9), frequency = 12)
> plot(X)
> p=3
> Y=filter(X,filter=c(1/(2*p),rep(1/p,p-1),1/(2*p)))
> lines(Y,col="red",lwd=2)
> p=6
> Y=filter(X,filter=c(1/(2*p),rep(1/p,p-1),1/(2*p)))
> lines(Y,col="blue",lwd=2)
> p=12
> Y=filter(X,filter=c(1/(2*p),rep(1/p,p-1),1/(2*p)))
> lines(Y,col="green",lwd=2)
```



Exemple 63. La moyenne mobile 3×3 - Cette moyenne mobile est d'ordre 5 et de coefficients 1/9, 2/9, 3/9, 2/9, 1/9

$$M_{3\times3}(X_t) = \frac{1}{9} \left[X_{t-2} + 2X_{t-1} + 3X_t + 2X_{t+1} + X_{t+2} \right].$$

Exemple 64. La moyenne mobile 3×9 - Cette moyenne mobile est d'ordre 11 et de coefficients 1/27, 2/27, 3/27, 3/27, ..., 3/27, 2/27, 1/27

$$M_{3\times9}(X_t) = \frac{1}{27} \left[X_{t-5} + 2X_{t-4} + 3X_{t-3} + 3X_{t-2} + 3X_{t-1} + \dots + 3X_{t+4} + 2X_{t+4} + X_{t+5} \right].$$

Ces deux moyennes mobiles conservent les droites, et réduisent respectivement de 75% et de 90% la variance d'un bruit blanc.

Exemple 65. Les moyennes mobiles d'Henderson - Ces moyennes mobiles sont utilisées dans la méthode X11 pour extraire la tendance d'une estimation de la série corrigée des variations saisonnières (partie (4.4.2)). Ces moyennes reposent sur l'utilisation de l'opérateur $H = \sum \left[\Delta^3 \theta_i\right]^2$ où Δ est l'opérateur "différence première" ($\Delta X_t = X_t - X_{t-1}$). Cette quantité est nulle dans le cas où les θ_i se retrouvent sur une parabole : H mesure la distance entre la forme parabolique et la forme de la fonction définissant les θ_i . Hendersen a cherché les moyennes mobiles centrées, d'ordre impair, conservant les polynômes de degré 2, et minimisant la fonction H:

$$\min_{\theta} \sum \left[\Delta^3 \theta_i\right]^2 \text{ sous constraintes } \sum_{i=-p}^{+p} \theta_i = 1, \ \sum_{i=-p}^{+p} i \theta_i = 0 \text{ et } \sum_{i=-p}^{+p} i^2 \theta_i = 0,$$

ce qui donne les expressions explicites de θ_i , en posant n = p + 2

$$\theta_i = \frac{315 \left[(n-1)^2 - i^2 \right] \left[n^2 - i^2 \right] \left[(n+1)^2 - i^2 \right] \left[3n^2 - 16 - 11i^2 \right]}{8n \left(n^2 - 1 \right) \left(4n^2 - 1 \right) \left(4n^2 - 9 \right) \left(4n^2 - 25 \right)}.$$

Cette relation permet d'obtenir un certain nombre de moyennes mobiles

5 termes:
$$M_5(X_t) = \frac{1}{286} \left[-21X_{t-2} + 84X_{t-1} + 160X_t + 84X_{t+1} - 21X_{t+2} \right],$$

7 termes:
$$M_7(X_t) = \frac{1}{715} \left[-42X_{t-3} + 42X_{t-2} + 210X_{t-1} + 295X_t + 210X_{t+1} + 42X_{t+2} - 42X_{t+3} \right].$$

4.1.3 L'espace des opérateurs moyenne-mobile

Définition 66. Soient M_1 et M_2 deux moyennes mobiles. Le produit de M_1 et M_2 est obtenu par composition des moyennes mobiles

$$M_1M_2\left(X_t\right) = M_1 \circ M_2\left(X_t\right).$$

Proposition 67. Ce produit est commutatif et associatif

$$M_1M_2 = M_2M_1$$
 et $M_1(M_2M_3) = (M_1M_2)M_3$.

De plus, le produit est distributif par rapport à l'addition.

Proposition 68. L'ensemble des moyennes mobiles constitue un espace vectoriel.

Proposition 69. La composée de deux moyennes mobiles symétriques est symétrique.

4.2 Vecteurs propres associés à une moyenne mobile

Définition 70. Soit M une moyenne mobile. S'il existe λ et (X_t) non nul tels que $M(X_t) = \lambda X_t$, (X_t) sera vecteur propre associé à la valeur propre λ .

4.2.1 Les séries absorbées : $\lambda = 0$

Définition 71. Une suite (X_t) est dite absorbée par M si et seulement si $M(X_t) = 0$ pour tout t.

Exemple 72. Soit M la moyenne mobile définie par $M(X_t) = X_t + X_{t-1} + X_{t-2}$. La série chronologique définie récursivement par $Y_t = -[Y_{t-1} + Y_{t-2}]$ est absorbée par M.

Proposition 73. Les vecteurs propres associés à la valeur propre $\lambda = 0$ forment un espace vectoriel de dimension $m_1 + m_2$, dont une base est constituée des $Z_t^k = (\alpha_k r^t)$ pour k = 0, 1, ..., p - 1, où r est racine non nulle du polynôme Θ .

Exemple 74. Dans l'exemple (72), on peut chercher à construire une base de la forme $Z_t = r^t$, qui devra satisfaire

$$r^{t} + r^{t-1} + r^{t-2} = 0$$
 pour tout t

c'est à dire $r^2 + r + 1 = 0$. Aussi, r est une racine du polynôme caractéristique de M si et seulement si

$$r = \frac{-1 \pm i\sqrt{3}}{2}$$
 soient $r_1 = \exp\left(\frac{2i\pi}{3}\right)$ et $r_2 = \exp\left(-\frac{2i\pi}{3}\right)$

Aussi, les suites absorbées sont nécessairement de la forme

$$X_t = \lambda r_1^t + \mu r_2^t$$
, pour tout t.

Or

$$\begin{cases} r_1^t = \cos(2t\pi/3) + i\sin(2t\pi/3) \\ r_2^t = \cos(2t\pi/3) - i\sin(2t\pi/3) \end{cases}.$$

Et donc, l'espace vectoriel des suites absorbées par M admet pour base réelle

$$\mathcal{B} = \left\{ \cos \left(2t \frac{\pi}{3} \right), \sin \left(2t \frac{\pi}{3} \right) \right\},\,$$

ce qui correspond à des séries chronologiques de la forme

$$X_t = \lambda \cos\left(2t\frac{\pi}{3}\right) + \mu \sin\left(2t\frac{\pi}{3}\right) \quad pour \ tout \ t.$$

4.2.2 Absorbtion de la composante saisonnière

Théorème 75. Une moyenne mobile M absorbe la composante saisonnière de période T si et seulement si son polynôme caractéristique est divisible par $1+z+\ldots+z^{T-1}$.

Proof. Par définition de la périodicité des composantes saisonnières, si T est la période, les S_t sont les suites solutions de

$$S_{t+1} + \dots + S_{t+T} = 0$$
 pour tout $t \in \mathbb{Z}$

L'espace vectoriel des solutions est engendré par les suites (r^t) où r satisfait

$$1+r+r^2+...+r^{T-1}=0$$
, c'est à dire $r=\exp\left(2ik\frac{\pi}{T}\right)$ où $k=1,...,T-1$

4.2.3 Les séries invariantes : $\lambda = 1$

Définition 76. Une suite (X_t) est dite invariante par M si et seulement si $M(X_t) = 0$ pour tout t

Une suite (X_t) est dite invariante par M si elle est absorbée par $(M - \mathbb{I})$.

Proposition 77. (i) Les suites constantes sont invariantes par M si et seulement si la somme de ses coefficients vaut 1,

- (ii) Les polynômes de degré k sont invariantes par M si et seulement si 1 est racine d'ordre au moins k+1 de $\Phi = \Theta(z) z^{m_1}$, où $M = L^{m_1}\Theta(F)$,
- (iii) Si M est symétrique et conserve les constantes, alors M conserve les polynômes de degré 1.

Proof. En reprenant (10), on peut écrire

$$M = \sum_{i=-m_1}^{m_2} \theta_i L^{-i} = L^{m_1} \Theta(F).$$

(i) Si $x_t = k \neq 0$ pour tout t, alors $Mx_t = x_t$ (suite invariante) se réécrit

$$\sum_{i=-m_1}^{m_2} \theta_i^{-i} k = k,$$

avec k non nul, donc la somme des coefficients vaut 1.

(iii) Soit X_t la suite telle que $X_t = t$. Alors

$$MX_{t} = \theta_{-m_{1}}(t - m_{1}) + \dots + \theta_{m_{1}}(t + m_{1}) = t(\theta_{-m_{1}} + \dots + \theta_{m_{1}}) + m_{1}(-\theta_{-m_{1}} + \theta_{m_{1}}) + (m_{1} - 1)(-\theta_{-m_{1}+1} + \theta_{m_{1}-1}) + \dots + 1.(-\theta_{-1} + \theta_{1}) + 0.\theta_{0},$$

soit
$$MX_t = t.1 + 0 = t = X_t$$
 par symétrie $(\theta_{-k} = \theta_k)$.

Les propriétés (i) et (iii) montrent dans quel cas la tendance de la série reste invariante : ces séries peuvent servir à enlever la composante saisonnière, pour récupérer la tendance linéaire.

4.2.4 Transformation de suites géométriques (r^t)

Proposition 78. Soit $M = L^{m_1}\Theta(F)$ une moyenne mobile de polynôme caractéristique Θ . Alors toute suite (r^t) est vecteur propre de M associé à la valeur propre $\lambda = r^{-m_1}\Theta(r)$.

Proof. De (10), on peut écrire

$$M(r^{t}) = \sum_{i=-m_{1}}^{m_{2}} \theta_{i} r^{t+i} = r^{t-m_{1}} \sum_{i=-m_{1}}^{m_{2}} \theta_{i} r^{i+m_{1}} = r^{t} \times r^{-m_{1}} \Theta(r),$$

et donc $M\left(r^{t}\right)=r^{-m_{1}}\Theta\left(r\right)\times r^{t}$ pour tout t, ce qui correspond à la définition d'éléments propres.

Suites géometriques réelles Si r est réel alors l'application d'une moyenne mobile à la suite géométrique (r^t) revient à faire une homothétie de rapport $r^{-m_1}\Theta(r)$.

Suites géométriques complexes Si $r = \rho e^{i\omega}$ alors appliquer M revient à multiplier r^t par le nombre complexe $r^{-m_1}\Theta(r) = \Gamma(\omega) e^{i\phi(\omega)}$,

$$\begin{cases} r^{t} = \rho^{t} e^{i\omega t} \\ Mr^{t} = \rho^{t} e^{i\omega t} \Gamma(\omega) e^{i\phi(\omega)} = [\Gamma(\omega) \rho^{t}] e^{i[\omega t + \phi(\omega)]}, \end{cases}$$

ce qui correspond à un **effet d'échelle** (le module faisant intervenir le coefficient $\Gamma(\omega)$) comme dans le cas réel, mais aussi un **effet de phase** puisque l'argument se voit ajouter un élément $\phi(\omega)$.

Exemple 79. Une suite de la forme $\rho^t \sin \omega t$ sera transformée par M en $[\Gamma(\omega) \rho^t] \sin [\omega t + \phi(\omega)]$, xxx

Proposition 80. Si M est symétrique, alors l'effet de phase sur la suite géométrique $(e^{i\omega t})$ est soit $\phi = 0$ soit $\phi = \pi$.

Proof. Ce résultat se montre en explicitant $M(e^{i\omega t})$ et en notant que $\sum_{k=-m}^{m} \theta_{|j|} e^{i\omega k}$ est réel. Si ce réel est positif, alors $\phi = 0$ et s'il est négatif $\phi = \pi$.

Remarque 81. Ce résultat ne marche que pour la suite géométrique $(e^{i\omega t})$ et devient faux pour $\rho \neq 1$, même pour une moyenne mobile symétrique.

4.2.5 Moyenne mobile différence $\Delta_p = (\mathbb{I} - L)^p$

Considérons comme moyenne mobile l'opérateur différence $\Delta_p = (\mathbb{I} - L)^p$ pour p > 0. Cette moyenne mobile transforme un polynôme de degré $k \leq p$ en une constante. En effet, appliquer Δ_1 revient à abaisser le degré du polynôme de 1, car $\Delta_1 (t^k) = t^k - (t-1)^k$, polynôme de degré k-1, et recursivement, appliquer $\Delta_p = \Delta_1^p$ revient à abaisser le degré du polynôme de p.

Une telle moyenne mobile permet d'éliminer une tendance qui serait un pôlynome de bas degré. Nous allons étudier ici son effet sur une suite de la forme $(e^{i\omega t})$.

• Cas p = 1

$$(\mathbb{I} - L) \left(e^{i\omega t} \right) = e^{i\omega t} - e^{i\omega(t-1)} = e^{i\omega t} \left[1 - e^{i\omega} \right] = e^{i\omega} \cdot 2\sin\frac{\omega}{2} \cdot e^{i[\pi - \omega]/2}$$

soit
$$\Gamma(\omega) = \Gamma_1(\omega) = 2\sin(\omega/2)$$
 et $\phi(\omega) = \phi_1(\omega) = [\pi - \omega]/2$.

• Cas $p \ge 1$

$$\Delta_p = (\mathbb{I} - L)^p = \sum_{j=0}^p \binom{j}{p} (-1)^j L^j$$

donc

$$\Delta_p\left(e^{i\omega t}\right) = \sum_{j=0}^p \left(\begin{array}{c}j\\p\end{array}\right) \left(-1\right)^j e^{-i\omega j} = e^{i\omega t} \left[1 - e^{-i\omega}\right]^p = e^{i\omega t} \cdot 2^p \left[\sin\frac{\omega}{2}\right]^p e^{ip[\pi - \omega]/2}$$

soit
$$\Gamma(\omega) = \Gamma_p(\omega) = [2\sin(\omega/2)]^p$$
 et $\phi(\omega) = \phi_p(\omega) = p[\pi - \omega]/2$ où $\omega \in [0, \pi]$

Exemple 82. Considérons la série de cycle $\pi/3$

Comme on peut le noter, suite ne change pas d'amplitude, elle est juste déphasée.

Exemple 83. Considérons la série de cycle $\pi/2$

X_t												
$\Delta_1 X_t$												
$\Delta_2 X_t$	0	-2	0	2	0	-2	0	2	0	-2	0	2
$\Delta_3 X_t$	-2	-2	2	2	-2	-2	2	2	-2	-2	2	2
$\Delta_4 X_t$												
$\Delta_5 X_t$	-4	4	4	-4	-4	4	4	-4	-4	4	4	-4

On retrouve là aussi un déphage, avec un coefficient d'amplitude qui augmente avec p. On peut ainsi noter que $\Delta_4 X_t$ correspond à 4 fois la série initiale X_t , avec un déphasage puisque les valeurs positives deviennent négatives, et inversement.

4.2.6 Moyenne mobile différence saisonnière $\Delta_{p,s} = (\mathbb{I} - L^s)^p$

Cette moyenne mobile permet d'absorber les composantes saisonnières de période s.

$$\Delta_{p,s}\left(e^{i\omega t}\right) = e^{i\omega t}\left[1 - e^{-i\omega sp}\right],$$

alors

$$\begin{cases} \Gamma_{p,s}(\omega) = 2^p \left[\sin \omega s / 2 \right]^p \\ \phi_{p,s}(\omega) = p \left[\pi - \omega s \right] / 2. \end{cases}$$

En considérant des données mensuelles, et une composante saisonnière annuelle ($p\acute{e}riode$ 12) et s=12, alors $\Gamma_{p,12}\left(2\pi/12\right)=0$. On retrouve ainsi le fait que cette moyenne mobile $\Delta_{p,12}$ élimine une composante saisonnière de période 12. Toutefois, les saisonnalités de périodes 8 mois, ou 24 mois sont amplifiées.

4.2.7 Moyenne mobile impaire

Une moyenne mobile d'ordre impair peut s'écrire

$$M = \sum_{j=-q}^{q} \theta_j L^{-j}$$
 où $q \in \mathbb{N} \setminus \{0\}$ et $\theta_j = \frac{1}{2q+1}$.

On peut montrer que

$$M\left(e^{i\omega t}\right) = e^{i\omega t} \frac{\sin\left[\left(q+1/2\right)\omega\right]}{\left(2q+1\right)\sin\left[\omega/2\right]},$$

(démonstration en exercice) d'où

$$\Gamma(\omega) = \left| \frac{\sin[(q+1/2)\omega]}{(2q+1)\sin[\omega/2]} \right|.$$

La moyenne mobile étant symétrique, le déphasage est 0 ou π (selon les valeurs de ω).

4.2.8 Moyenne mobile paire

Une moyenne mobile dite d'ordre impair peut s'écrire

$$M = \sum_{j=-q}^{q} \theta_j L^{-j} \text{ où } q \in \mathbb{N} \setminus \{0\} \text{ et } \theta_j = \begin{cases} 1/2q \text{ pour } |j| \neq q \\ 1/4q \text{ sinon.} \end{cases}$$

On peut montrer que

$$M\left(e^{i\omega t}\right) = e^{i\omega t} \frac{\sin\left[q\omega\right]}{2q} \cot\left(\frac{\omega}{2}\right),$$

(démonstration en exercice) d'où

$$\Gamma(\omega) = \left| \frac{\sin[q\omega]}{2q} \cot \left(\frac{\omega}{2} \right) \right|.$$

Pour des données mensuelles, par example, on prend q = 6, et

$$\Gamma(\omega) = \left| \frac{\sin[6\omega]}{12} \cot \left(\frac{\omega}{2} \right) \right|,$$

qui s'annule en $\pi/6, 2\pi/6, 3\pi/6, 4\pi/6, 5\pi/6...$ correspondant à des périodes 12, 6,

Remarque 84. La moyenne mobile d'ordre pair avec q = 6 absorbe les composantes saisonnières périodiques de périodes 12 (et les harmoniques), tout en conservant les basses fréquences (correspondant à la tendance). Cette moyenne mobile est appelée $M_{2\times 12}$ dans la partie (4.4.2) sur la méthode X11.

4.3 Notions de 'bruit blanc'

De la même façon que pour la notion de stabilité, il existe deux façon de définir le bruit blanc,

Définition 85. On appelera bruit blanc 'faible' toute suite $(\varepsilon_t, t \in \mathbb{Z})$ telle que $\mathbb{E}(\varepsilon_t) = 0$ et $V(\varepsilon_t) = \sigma^2$ pour tout $t \in \mathbb{Z}$ et tel que

$$\gamma(h) = cov(\varepsilon_t, \varepsilon_{t-h}) = 0 \ pour \ h \neq 0.$$

Définition 86. On appelera bruit blanc 'fort' toute suite $(\varepsilon_t, t \in \mathbb{Z})$ telle que (ε_t) soit i.i.d.

Remarque 87. On notera par la suite $(\varepsilon_t) \sim BB(0, \sigma^2)$ pour bruit blanc faible.

4.3.1 Transformation d'un bruit blanc

Proposition 88. Soit M la moyenne mobile définie par (10) et $(\varepsilon_t) \sim BB(0, \sigma^2)$ pour $t \in \mathbb{Z}$. Le processus $X_t = M(\varepsilon_t)$ est stationnaire, centré $(\mathbb{E}(X_t) = 0)$, tel que

$$\sum_{h} \gamma_X(h) z^h = \sigma^2 M(z) M\left(\frac{1}{z}\right) \text{ où } M(z) = \sum_{i=-m_1}^{m_2} \theta_i z^{-i} \text{ pour } z \neq 0.$$

Proof. Le caractère centré découle de l'écriture

$$X_t = \sum_{j=-m_1}^{m_2} \theta_j \varepsilon_{t+j}$$
, où (ε_t) est centré.

Il est possible de prolonger cette somme sur \mathbb{Z} en posant $\theta_j = 0$ pour $j < -m_1$ ou $j > m_2$. Aussi

$$X_t X_{t+h} = \sum_{j=-\infty}^{+\infty} \theta_j \varepsilon_{t+j} \sum_{k=-\infty}^{+\infty} \theta_k \varepsilon_{t+h+k} = \sigma^2 \sum_{j,k=-\infty}^{+\infty} \theta_j \theta_k \varepsilon_{t+j} \varepsilon_{t+h+k},$$

et donc

$$\mathbb{E}(X_t X_{t+h}) = \sigma^2 \sum_{k+h=j}^{+\infty} \theta_j \theta_k = \sigma^2 \sum_{j=-\infty}^{+\infty} \theta_j \theta_j - h.$$

Ainsi $\mathbb{E}(X_t X_{t+h}) = cov(\varepsilon_t, \varepsilon_{t+h})$ qui ne dépend que de h. On peut alors écrire

$$\sum_{h} \gamma_{X}(h) z^{h} = \sigma^{2} \sum_{h=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} \theta_{j} \theta_{j-h} z^{h} = \sigma^{2} \sum_{h=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} \theta_{j} \theta_{j-h} z^{j} z^{h-j}$$

$$= \sigma^{2} \sum_{j=-\infty}^{+\infty} \theta_{j} z^{j} \sum_{h=-\infty}^{+\infty} \theta_{j-h} z^{h-j} = \sigma^{2} \sum_{j=-\infty}^{+\infty} \theta_{j} z^{j} \sum_{i=-\infty}^{+\infty} \theta_{i} \frac{1}{z^{i}},$$

en effectuant le changement d'indice i = j - h.

A retenir 89. Le but des moyennes mobiles est

- (i) d'absorber les composantes saisonnières en laissant invariantes les tendances,
- (ii) de réduire la variance des perturbations.

Définition 90. L'indice de réduction de la moyenne mobile M est donné par

$$\tau = \frac{\mathbb{E}(MX_t^2)}{\mathbb{E}(X_t^2)} = \sum_j \theta_j^2.$$

Exemple 91. Dans le cas d'une moyenne mobile définie par $M(X_t) = [X_t + X_{t-1}]/2$, alors $\tau = 1/2$.

4.4 Les procédures X11 et X12 $\star\star\star$

4.4.1 Un algorithme simple de désaisonnalisation

Considérons une série mensuelle X_t composée d'une tendance Z_t , d'un cycle saisonnier S_t , et d'une perturbation ε_t , de façon additive $X_t = Z_t + S_t + \varepsilon_t$. L'algorithme suivant, en 4 étapes, permet de désaisonnaliser la série X_t

- (1) Estimation de la tendance par moyenne mobile $Z_t^{(1)} = M(X_t)$, où la moyenne mobile M est choisie de façon à reproduire au mieux la tendance, tout en éliminant la composante saisonnière, et en réduisant la perturbation au maximum
- (2) Estimation de la composante saisonnière et de la perturbation $\Sigma_t = S_t + \varepsilon_t$: $\Sigma_t^{(1)} = X_t Z_t^{(1)}$,
- (3) Estimation de la composante saisonnière par moyenne mobile $S_t^{(1)} = M'\left(\Sigma_t^{(1)}\right)$ et $\varepsilon_t^{(1)} = \Sigma_t^{(1)} S_t^{(1)}$. Il s'agit ici de lisser les valeurs de la composante Σ_t de chaque mois pour extraire l'évolution du coefficient saisonnier du mois concerné. La moyenne mobile M' utilisée ici devra reproduire la composante saisonnière de chaque mois en réduisant au maximum la composante irrégulière. Une contrainte de normalisation des coefficients devra être imposée (somme nulle).
- (4) Estimation de la série corrigée des variations saisonnières $\widehat{X}_t = \left(Z_t^{(1)} + \varepsilon_t^{(1)}\right) = X_t S_t^{(1)}$.

La difficulté ici est donc de bien choisir les deux moyennes mobiles à utiliser M et M'.

4.4.2 L'algorithme de base de la méthode X11

Cette méthode propose deux moyennes mobiles dans le cas de données mensuelles. L'algorithme devient

(1) Estimation de la tendance-par moyenne mobile 2×12

$$Z_t^{(1)} = M_{2 \times 12} (X_t) ,$$

Cette moyenne mobile est paire, avec q=6. Aussi, les 13 coefficients sont 1/24, 1/12, 1/12, ..., 1/12, 1/24. Cette moyenne mobile conserve les tendances linéaires, élimine les saisonnalités d'ordre 12 et minimise la variance de la perturbation.

(2) Estimation de la composante saisonnière et de la perturbation $\Sigma_t = S_t + \varepsilon_t$

$$\Sigma_t^{(1)} = X_t - Z_t^{(1)},$$

(3) Estimation de la composante saisonnière par moyenne mobile 3×3 sur chaque mois

$$S_t^{(1)} = M_{3\times 3} \left(\Sigma_t^{(1)}\right) \text{ et } \varepsilon_t^{(1)} = \Sigma_t^{(1)} - S_t^{(1)}.$$

La moyenne mobile utilisée ici est une moyenne mobile sur 5 termes, dite 3×3 , dont les coefficients sont 1/9, 2/9, 3/9, 2/9, 1/9, qui conserve les composantes linéaires. Les coefficients sont alors normalisés de telle sorte que leur somme, sur toute une période de 12 mois, soit nulle.

$$\widehat{S}_t^{(1)} = S_t^{(1)} - M_{2 \times 12} \left(S_t^{(1)} \right),\,$$

(4) Estimation de la série corrigée des variations saisonnières

$$\widehat{X}_{t}^{(1)} = X_{t} - \widehat{S}_{t}^{(1)}.$$

Cette première estimation de la série corrigée des variations saisonnières doit, par construction, contenir moins de saisonnalité.

(5) Estimation de la tendance par moyenne mobile de Henderson sur 13 termes

$$Z_t^{(2)} = M_{13} \left(\widehat{X}_t \right).$$

Si les moyennes mobiles d'Henderson n'ont pas de propriétés spéciales quant à l'élimination de la saisonnalité, mais elles lissent relativement bien, tout en conservant (localement) les polynômes d'ordre 2.

(6) Estimation de la composante saisonnière et de la perturbation Σ_t

$$\Sigma_t^{(2)} = X_t - Z_t^{(2)},$$

(7) Estimation de la composante saisonnière par moyenne mobile 3×5 sur chaque mois

$$S_t^{(2)} = M_{3 \times 5} \left(\Sigma_t^{(2)} \right) \text{ et } \varepsilon_t^{(2)} = \Sigma_t^{(2)} - S_t^{(2)}.$$

La moyenne mobile utilisée ici est une moyenne mobile sur 7 termes, dite 3×5 , dont les coefficients sont 1/15, 2/15, 3/15, 3/15, 3/15, 2/15, 1/15, qui conserve les composantes linéaires. Les coefficients sont alors normalisés de telle sorte que leur somme, sur toute une période de 12 mois, soit nulle.

$$\widehat{S}_t^{(2)} = S_t^{(2)} - M_{2 \times 12} \left(S_t^{(2)} \right),\,$$

(8) Estimation de la série corrigée des variations saisonnières

$$\widehat{X}_{t}^{(2)} = X_{t} - \widehat{S}_{t}^{(2)}.$$

Remarque 92. Cette méthode permet de repérer les points abérants d'une série.

Comme l'ont montré Gouriéroux et Monfort (1990), cet algorithme peut se résumer à l'application d'un unique moyenne mobile qui peut être explicitée matriciellement. Les 8 points de l'algorithme s'écrivent

$$\begin{array}{l} (1) \ Z_{t}^{(1)} = M_{2\times 12}\left(X_{t}\right) \\ (2) \ \Sigma_{t}^{(1)} = X_{t} - Z_{t}^{(1)} = \left(\mathbb{I} - M_{2\times 12}\right)\left(X_{t}\right) \\ (3) \ S_{t}^{(1)} = M_{3\times 3}\left(\Sigma_{t}^{(1)}\right) = M_{(3)}\left(\mathbb{I} - M_{2\times 12}\right)\left(X_{t}\right) \\ \widehat{S}_{t}^{(1)} = S_{t}^{(1)} - M_{2\times 12}\left(S_{t}^{(1)}\right) = M_{(3)}\left(\mathbb{I} - M_{2\times 12}\right)^{2}\left(X_{t}\right) \\ (4) \ \widehat{X}_{t}^{(1)} = X_{t} - \widehat{S}_{t}^{(1)} = \left(\mathbb{I} - M_{(3)}\left(\mathbb{I} - M_{2\times 12}\right)^{2}\right)\left(X_{t}\right) \\ (5) \ Z_{t}^{(2)} = M_{13}\left(\widehat{X}_{t}\right) = M_{13}\left(\mathbb{I} - M_{(3)}\left(\mathbb{I} - M_{2\times 12}\right)^{2}\right)\left(X_{t}\right) \\ (6) \ \Sigma_{t}^{(2)} = X_{t} - Z_{t}^{(2)} = \left(\mathbb{I} - \left(\mathbb{I} - M_{(3)}\left(\mathbb{I} - M_{2\times 12}\right)^{2}\right)\right)\left(X_{t}\right) \\ (7) \ \widehat{S}_{t}^{(2)} = S_{t}^{(2)} - M_{2\times 12}\left(S_{t}^{(2)}\right) = \left(\mathbb{I} - M_{2\times 12}\right)M_{(5)}\left(\mathbb{I} - M_{(3)}\left(\mathbb{I} - M_{2\times 12}\right)^{2}\right)\left(X_{t}\right) \\ (8) \ \widehat{X}_{t}^{(2)} = X_{t} - \widehat{S}_{t}^{(2)} = \left(\mathbb{I} - \left(\mathbb{I} - M_{2\times 12}\right)M_{(5)}\left(\mathbb{I} - M_{(3)}\left(\mathbb{I} - M_{2\times 12}\right)^{2}\right)\right)\left(X_{t}\right) \end{array}$$

où $M_{(3)}$ est la moyenne mobile définie sur 49 mois, dont les coefficients sont

$$\{1/9, 0, 0, ..., 0, 2/9, 0, ..., 0, 3/9\}$$

et $M_{(5)}$ est la moyenne mobile définie sur 73 mois, dont les coefficients sont

$$\{1/27, 0, 0, ..., 0, 2/27, 0, ..., 0, 3/27, 0, 0, ..., 0, 3/27\}$$

La moyenne mobile ainsi définie est d'ordre 169, c'est à dire qu'en toute rigueur, il faudrait 84 observations, soit 7 ans de part et d'autre pour pouvoir estimer ce filtre.

Remarque 93. Un algorithme similaire existe pour des données trimestrielles, qui peut là aussi s'écrire sous la forme d'une seule moyenne mobile, portant sur 28 trimestres de part et d'autre (7 ans là aussi).

5 La prévision par lissage exponentiel

Les méthodes de lissages consistent à extrapoler une série en vue de faire de la prévision. Or comme on le voit sur l'exemple ci-dessous, une extrapolation simple (linéaire en l'occurence) dépend fortement du type de résultats que l'on cherche à avoir : prévision à court, moyen, ou long terme Ces trois méthodes diffèrent suivant le poids que l'on accorde aux observations passées.

5.1 Principe du lissage exponentiel simple

On dispose de N observations $X_1, ..., X_N$. On souhaite prévoir, à la date T = 1, ..., N, la valeur à un horizon 1, ou à un horizon quelconque h.

Définition 94. La prévision $\widehat{X}_T(h)$ fournie par la méthode de lissage exponentiel simple, avec la constante de lissage β , $0 < \beta < 1$ est

$$\widehat{X}_{T}(h) = (1 - \beta) \sum_{j=0}^{T-1} \beta^{j} X_{T-j}$$

On donne un poids d'autant moins important que les observations sont loins ($dans\ le\ pass\'e$), avec une décroissance exponentielle :

- β proche de 1 : prise en compte de tout le passé
- β proche de 0 : prise en compte d'avantage des valeurs récentes (plus sensible aux fluctuations)

Remarque 95. Si β ne dépend pas de h, $\widehat{X}_T(h)$ ne dépend pas de h, dont $\widehat{X}_T(h) = \widehat{X}_T$. Cette valeur \widehat{X}_T est la prévision faite en T de la valeur en T+1. Nous appelerons cette série \widehat{X}_T (série lissée à la date t) ou F_{T+1} (valeur prédite pour la date t).

Remarque 96. Pour certains logiciels permettant de faire du lissage exponentiel, la constante de lissage n'est pas β mais $\alpha = 1 - \beta$.

5.1.1 Méthode adaptative de mise à jour (ordre 1)

Proposition 97. Méthode adaptative de mise à jour (ordre 1)

$$\hat{X}_{T} = \hat{X}_{T-1} + [1 - \beta] \left(X_{T} - \hat{X}_{T-1} \right)
= [1 - \beta] X_{T} + \beta \hat{X}_{T-1} = \alpha X_{T} + [1 - \alpha] \hat{X}_{T-1}$$
(11)

Cette relation s'écrit également

$$F_{T+1} = \alpha X_T + (1 - \alpha) F_T$$

Proposition 98. \widehat{X}_T peut être vu comme une régression sur une constante, avec des pondérations exponentielles

Proof. Le programme de minimisation

$$\min_{c} \left\{ \sum_{j=0}^{T-1} \beta^{j} \left(X_{t-j} - c \right)^{2} \right\}$$
 (12)

admet pour solution

$$\widehat{c} = \frac{1 - \beta}{1 - \beta^T} \sum_{j=0}^{T-1} \beta^j X_{T-j}$$
(13)

et pour T assez grand $\widehat{X}_T = \widehat{c}$.

5.1.2 Choix de la constante de lissage

Au delà des méthodes qualitative de rigidité ou de souplesse du modèle aux fluctuations conjoncturelles, il est possible d'utiliser des méthodes de type 'minimisation de la somme des carrés des erreurs de prévison' :

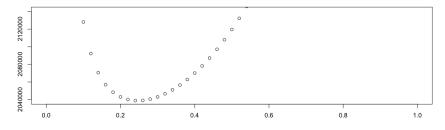
$$\widehat{\beta} = \arg\min \left\{ \sum_{t=1}^{T} \left[X_{t+1} - (1-\beta) \sum_{j=0}^{t-1} \beta^{j} X_{t-j} \right]^{2} \right\}$$

Numriquement, il est possible de calculer cette quantité en utilisant

```
> V=function(a){
+ T=length(X)
+ L=erreur=rep(NA,T)
+ erreur[1]=0
+ L[1]=X[1]
+ for(t in 2:T){
+ L[t]=a*X[t]+(1-a)*L[t-1]
+ erreur[t]=X[t]-L[t-1] }
+ return(sum(erreur^2))
+ }
> optimize(V,c(0,.5))$minimum
```

Par exemple, sur la série Nile on aurait

```
> optimize(V,c(0,.5))$minimum
[1] 0.246581
> A=seq(0,1,by=.02)
> Ax=Vectorize(V)(A)
> plot(A,Ax,ylim=c(min(Ax),min(Ax)*1.05))
```



> hw=HoltWinters(X,beta=FALSE,gamma=FALSE,1.start=X[1])

> hw

Holt-Winters exponential smoothing without trend an seasonal comp.

Call:

HoltWinters(x = X, beta = FALSE, gamma = FALSE, 1.start = X[1])

Smoothing parameters:

alpha: 0.2465579 beta: FALSE gamma: FALSE

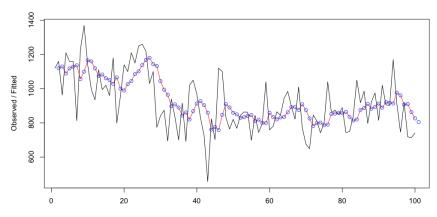
Coefficients:

[,1]

a 805.0389

> plot(hw)

> points(2:(length(X)+1), Vectorize(Lissage)(.2465), col="blue")



5.1.3 Lien entre robustesse de la prévision et choix de β

Il n'existe pas de relation a priori entre l'erreur de prévision et le paramètre β .

Exemple 99. Soit (X_t) un processus AR(1) de corrélation ρ , de variance 1, $X_t = \rho X_{t-1} + \varepsilon_t$. L'erreur de prévision à horizon h est

$$\Delta\left(\rho,\beta,h\right) = \mathbb{E}\left(\left[X_{T+h} - \widehat{X}_{T}\left(h\right)\right]^{2}\right) \ avec \ \widehat{X}_{T}\left(h\right) = (1-\beta)\sum_{j=0}^{T-1}\beta^{j}X_{T-j}$$

On peut montrer que

$$\Delta(\rho, \beta, h) = \frac{2}{1+\beta} + \frac{2(1-\beta)(\beta\rho - \rho^h - \beta\rho^h)}{(1+\beta)(1-\beta\rho)}$$

L'erreur de prévision varie de la façon suivante en fonction de β

pour $\rho < 1/3$, l'erreur de prévision décroit avec β , et pour $\rho > 1/3$, l'erreur croît avec β .

5.1.4 Exemple d'application

Considérons ici une série de ventes d'une entreprise, sur 18 mois

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
C.A. 98	1293	1209	1205	1273	1220	1290	1243	1203	1390	1360	1353	1343
C.A. 99	1364	1330	1377	1332								

En septembre, une modification structurelle (nouvelle unité de production) a provoqué un saut des ventes. Les méthodes de lissage permettent d'efectuer de la prévision en intégrant ce genre de rupture. Une moyenne arithmétique (non-pondérée, notée \overline{y}) conduirait à sous-estimer les valeurs futures : il est alors naturel d'introduire des poids plus importants pour les valeurs récentes. La prévision à horizon 1 est alors

$$\overline{y}_{T}(1) = \frac{1}{T} \sum_{i=0}^{T-1} y_{T-i} \text{ et } \widehat{y}_{T}(1) = \sum_{i=0}^{T-1} \alpha \left[1 - \alpha\right]^{i} y_{T-i} = \sum_{i=0}^{T-1} \left[1 - \beta\right] \beta^{i} y_{T-i} \text{ pour } \alpha, \beta \in \left]0, 1\right[\text{ et } \beta = 1 - \alpha\right]$$

cette dernière valeur étant obtenue par lissage exponentiel (simple). Nous noterons ici $\hat{y}_1, ..., \hat{y}_T$ la série lissée, et $F_1, ..., F_T$ la série des valeurs prédites.

Mise en place de l'algorithme (α fixé) Pour la première valeur (T=0), on considère comme valeur initiale une moyenne des premières valeurs observées. EViews considère une moyenne sur les 8 premiers mois,

$$F_1 = \hat{y}_0 = \frac{1}{8} (1293 + \dots + 1203) = 1242$$

Pour construire la série lissée, à α fixé, on utilise la relation de mise à jour

$$\widehat{y}_j = \alpha y_j + (1 - \alpha) \, \widehat{y}_{j-1}$$
 ou $F_{j+1} = \alpha y_j + (1 - \alpha) \, F_j$

Avec comme constante de lissage $\alpha = 0.3$, on obtient

$$F_2 = \hat{y}_1 = \alpha y_1 + (1 - \alpha) F_1 = 0.3 * 1293 + 0.7 * 1242 = 1257.3$$

puis

$$F_3 = \alpha y_2 + (1 - \alpha) F_2 = 0.3 * 1209 + 0.7 * 1257.3 = 1242.81$$

Comme on peut le voir, nous estimation pour la date 2 était de 1257.3. Or la vraie valeur était plus faible, à savoir 1209. Aussi, pour la date 3, la prévision sera une correction de ce 1257.3 en prenant en compte (avec un poids correspondant à la valeur α) l'erreur qui avait été faite : en l'occurence, F_3 sera plus faible que F_2 (la différence étant α $[F_2 - y_2]$)

	y_{j-1}	F_{j-1}	F_{j}
1	1293		1242.00
2	1209	1242.00	1257.30
3	1205	1257.30	1242.81
4	1273	1242.81	1231.47
5	1220	1231.47	1243.93

(puisque $F_j = \alpha y_{j-1} + (1-\alpha) F_{j-1}$) d'où finallement la série lissée exponentiellement pour 1998

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
y_j	1293	1209	1205	1273	1220	1290	1243	1203	1390	1360	1353	1343
$\widehat{y}_j \left(\alpha = 0.3 \right)$	1242	1257	1243	1231	1244	1237	1253	1250	1236	1282	1305	1320
$\widehat{y}_j (\alpha = 0.7)$	1242	1278	1230	1212	1255	1230	1272	1252	1218	1338	1353	1353

On peut noter que plus α est proche de 1, plus la courbe lissée colle aux données (\widehat{y}_j) est proche de y_j): pour $\alpha = 1$, la prévision F_{j+1} sera la dernière valeur observée (y_j) . Un coefficient de lissage plus faible (par exemple $\alpha = 0.3$) permet en revanche de bien lisser les aléas importants de la série. La série lissée s'adapte également au changement de niveau observé en septembre. Toutefois, cette adaptation se fait d'autant plus lentement que α est faible : les prévisions sont alors biaisées (sous-estimation dans cet exemple) pendant la période d'adaptation, comme on peut le voir sur le graphique ci-dessous : dès octobre 1998, la prévision faite avec un coefficient de 0.7 avait atteint un niveau "correct", alors que la prévision avec une pondération de 0.3 est plus lente (ce qui rend la prévision moins sensible à un choc exogène : si cette variation en septembre n'avait été qu'un choc, une faible pondération aurait permis de ne pas le prendre en compte).

On peut noter que le lissage dépend non seulement de α mais aussi de la valeur initale choisie. Comme le montre le graphique de gauche, on observe une convergence (asymptotique), avec des valeurs très proches pour T proche de 16. En choissant une valeur intiale proche des premières valeurs de la série ($\hat{y}_0 = y_1$ ou \hat{y}_0 moyenne des 2 ou 3 premières observations), on s'aperçoit que la courbe observée et les courbes lissée sont quasiment confondues au bout de 10 mois (cette valeur dépendant de α : la convergence est d'autant plus rapide que α est grand). Le graphique ci-dessous correspond à plusieurs initialisations : $F_1 = y_1(prévision parfaite - (1))$, $F_1 = (y_1 + y_2)/2$ (moyenne des deux premières valeurs - (2)), $F_1 = (y_1 + y_2 + y_3)/2$ (moyenne des trois premières valeurs - (3)) et $F_1 = (y_1 + ... + y_n)/n$ (moyenne de l'échantillon - (4))

Remarque 100. Il convient de faire attention : dans la littérature, les courbes lissées sont soit F_t , soit \widehat{y}_{t-1} . Certains auteurs décallent ainsi (dans les tableaux ou les graphiques) la courbe lissée.

A retenir 101. La formule itérative pour construire la série lissée de X_t pour t = 1, ..., N est la suivante

$$\begin{cases} F_0 = X_1 \ ou \ [X_1 + \dots + X_p] / p \\ F_{t+1} = \alpha X_t + (1 - \alpha) F_t \ pour \ 0 \le t \le N \\ F_t = F_{N+1} \ pour \ t \ge N + 1 \end{cases}$$

Choix de la constante de lissage Ce choix peut relever de considérations empiriques : des fortes pondérations pour les valeurs récentes (α élevé) donne de meilleures prévisions à court terme qu'à long terme. Toutefois, une des méthodes les plus utilisée est la minisation des moindres carrés des erreurs (prévision/réalisation) à un horizon h = 1. L'algorithme (13) donne ici un paramètre $\alpha = 0.418$, qui correspond à une somme des erreurs de prévision de 48178, c'est à dire un écart type de l'erreur valant 54.874.

Remarque 102. L'intervalle de confiance de la prévision est alors de la forme

$$\widehat{X}_{T}(h) \pm 1.96 \sigma_{X} C_{h} \text{ où } C_{h}^{2} = 1 + \frac{1 - \beta}{\left(1 + \beta\right)^{3}} \left[\left(1 + 4\beta + 5\beta^{2}\right) + 2h\left(1 - \beta\right)\left(1 + 3\beta\right) + 2h^{2}\left(1 - \beta\right)^{2} \right]$$

5.2 Principe de lissage exponentiel double

Le lissage exponentiel simple est adapté à des séries pouvant être ajustée par une constante au voisnage de T. Le principe de lissage exponentiel double permet de faire un ajustement par une droite, à savoir approcher X_t par Y_t où

$$Y_t = A + (t - T) B$$

La prévision à horizon h s'écrit

$$F_{T+h} = \widehat{X}_T(h) = \widehat{A}(T) + h\widehat{B}(T)$$

De même que pour (12) le programme d'optimisation pour estimer A et B s'écrit

$$\min_{A,B} \left\{ \sum_{j=0}^{T-1} \beta^{j} \left(X_{T-j} - [A + (T-j)B] \right)^{2} \right\}$$
 (14)

Théorème 103. La solution de (14) est donnée par

$$\widehat{A}(T) = 2S_1(T) - S_2(T)$$
 et $\widehat{B}(T) = \frac{1-\beta}{\beta} [S_1(T) - S_2(T)]$

en posant

$$S_1(t) = (1 - \beta) \sum_{k=0}^{t-1} \beta^k X_{t-k} = (1 - \beta) X_t + \beta S_1(t-1)$$
 (série lissée)

$$S_{2}(t) = (1 - \beta) \sum_{k=0}^{t-1} \beta^{k} S_{1}(t - k) = (1 - \beta) S_{1}(t) + \beta S_{2}(t - 1) \quad (s\acute{e}rie\ liss\acute{e}e\ 2\ fois)$$

$$= (1 - \beta)^{2} \sum_{k=0}^{t-1} \sum_{i=0}^{t-k-1} \beta^{i+k} X_{t-(k+i)}$$

Proof. Gouriéroux et Monfort (1995) pages 110-111

5.2.1 Méthode adaptative de mise à jour (ordre 1)

Pour obtenir la formule de mise à jour (à l'ordre 1) permettant de passer de T à T+1, on peut utiliser le résultat suivant

Proposition 104. Si à la date T, $F_{T+1} = \widehat{X}_{T}(1) = \widehat{A}(T) + \widehat{B}(T)$, alors, en T+1

$$\begin{cases}
\widehat{A}(T+1) = (1-\beta^2) \left[X_{T+1} - \widehat{X}_T(1) \right] + \widehat{A}(T) + \widehat{B}(T) \\
\widehat{B}(T+1) = \widehat{B}(T) + (1-\beta^2) \left[X_{T+1} - \widehat{X}_T(1) \right]
\end{cases} (15)$$

Proof. Gouriéroux et Monfort (1995) pages 112-113

Dans le cas d'une prévision parfaite, i.e. $X_{T+1} = \widehat{X}_T(1)$, on aurait $\widehat{A}(T+1) = \widehat{A}(T) + \widehat{B}(T)$ et $\widehat{B}(T+1) = \widehat{B}(T)$

Dans ce cas, les droites de prévision en T et en T+1 sont les mêmes, et la pente, en particulier, est inchangée $(\widehat{B}(T+1)=\widehat{B}(T))$.

Remarque 105. L'intervalle de confiance de la prévision est alors de la forme

$$\widehat{X}_T(h) \pm 1.96\sigma_X \sqrt{\frac{2\beta}{2\beta - 1}}$$

5.2.2 Application de la méthode de lissage exponentiel double

Considérons la série suivante, correspondant à un indice d'activité

	Trim 1	Trim 2	Trim 3	Trim 4
1982	_	9050	9380	9378
1983	9680	10100	10160	10469
1984	10738	10910	11058	11016
1985	10869	11034	11135	10845
1986	11108	11115	11424	10895
1987	11437	11352	11381	11401
1988	11507	11453	11561	_

Le lissage exponentiel double est très proche du lissage exponentiel simple, sauf que l'on fait un ajustement au voisinage de T non plus par une constante, mais par une droite. En fait, la série (correspondant à un indice) est une série "croissante" : l'ajustement par lissage exponentiel simple sous-estimerait les valeurs réalisées ($graphique\ page\ \ref{eq:graphique}$). Le programme de minimisation s'écrit ici

$$\min_{A,B} \left\{ \sum_{j=0}^{T-1} \alpha^{j} \left(X_{t-j} - \left[A_{T} + B_{T} \left(T - j \right) \right] \right)^{2} \right\}$$

La prévision à horizon h est alors $\hat{y}_T(h) = A_T + B_T h$. Trois formulations sont possibles pour écrire la série lissée

Formulation classique - Les coefficients A_j et B_j sont donnés par

$$A_j = 2\widehat{y}_j^1 - \widehat{y}_j^2$$
 et $B_j = \frac{\alpha}{1 - \alpha} \left[\widehat{y}_j^1 - \widehat{y}_j^2 \right]$

où les \widehat{y}_j^1 et \widehat{y}_j^2 sont obtenus récursivement par deux lissages consécutifs,

$$\left\{ \begin{array}{l} \widehat{y}_{j}^{1} = \alpha y_{j} + \left(1 - \alpha\right) \widehat{y}_{j-1}^{1} : \text{lissage exponential simple de } y_{i} \\ \widehat{y}_{j}^{2} = \alpha \widehat{y}_{j}^{1} + \left(1 - \alpha\right) \widehat{y}_{j-1}^{2} : \text{lissage exponential simple de } \widehat{y}_{i}^{1} \end{array} \right.$$

Formules de lissage direct - l'erreur de lissage e_j est donnée par $e_j=y_j-\widehat{y}_j=y_j-[A_{j-1}+B_{j-1}],$ et donc

$$\begin{cases} A_j = A_{j-1} + B_{j-1} + \left[1 - (1 - \alpha)^2\right] e_j \\ B_j = B_{j-1} + \alpha^2 e_j \end{cases}$$

ce qui donne une relation permettant d'obtenir récursivement les A_i et les B_i .

Formules de mise à jour - cette expression est en fait la même que la précédente, sauf que l'on remplace l'erreur de prévision par la dernière observation y_i ,

$$\begin{cases} A_j = \lambda y_j + (1 - \lambda) \left[A_{j-1} + B_{j-1} \right] \\ B_j = \mu \left[A_j - A_{j-1} \right] + (1 - \mu) B_{j-1} \end{cases} \quad \text{où } \lambda = 1 - (1 - \alpha)^2 \text{ et } \mu = \frac{\alpha}{2 - \alpha}$$
 (16)

Remarque 106. A_j et B_j sont unitilisés pour calculer \hat{y}_j , prévision à horizon 1 faite à la date j, soit F_{j+1} .

Encore une fois, l'initialisation de l'algorithme est important. Une méthode possible est de considérer comme valeur initiale pour A_1 la première valeur y_1 . La pente B_1 peut alors être choisie comme la pente moyenne entre la date 1 et une date t_0 , telle que $B_1 = [y_{t_0} - y_1]/t_0$.

Dans le cas qui nous intéresse on obtient la série lissée suivante, en prenant comme constante de lissage $\alpha = 0.384$, et comme valeurs initiales de $A_0 = y_1$ et B_0 la pente sur une période de 10 observations (soient 9050 et 177) - à l'aide de la relation (16), et $\lambda = 0.6205$ et $\mu = 0.2376$

	y_j	A_j	B_j	F_{j+1}
1982 - 2	9050	9050.00	165.30	9215.30
1982 - 3	9380	9112.73	140.93	9253.66
1982 - 4	9378	9332.05	159.56	9491.61
1983 - 1	9680	9421.11	142.81	9563.92

Série observée

Série lissée

	Trim 1	Trim 2	Trim 3	Trim 4
1982	_	9050	9380	9378
1983	9680	10100	10160	10469
1984	10738	10910	11058	11016
1985	10869	11034	11135	10845
1986	11108	11115	11424	10895
1987	11437	11352	11381	11401
1988	11507	11453	11561	_

	Trim 1	Trim 2	Trim 3	Trim 4
1982	_	9215	9254	9492
1983	9564	9796	10189	10372
1984	10646	10932	11143	11303
1985	11295	11138	11166	11234
1986	11023	11118	11159	11405
1987	11095	11364	11412	11443
1988	11461	11541	11524	_

A titre de comparaison, nous avons ajouté à droite le lissage exponentiel simple optimal qui aurait été obtenu sur les mêmes données. Ce lissage simple est relativement mal adapaté à ce type de données (*croissantes*) puisque nous allons continuellement sous-évaluer la vraie valeur en période de croissance forte.

Supposons que la série ait été observée jusqu'au troisième trimestre de 1987. La série lissée jusqu'à cette date reste la même, et les prévisions pour les trimestres suivant aurait été obtenus en utilisant $A = A_{1987-3} = 11412$, $B = B_{1987-3} = 47.02$, et $\hat{y}_T(h) = A + Bh$

	réalisation	prévision (double)	prévision (simple)
1987-4	11401	11459	11352
1988-1	11507	11506	11352
1988-2	11453	11553	11352
1988-3	11561	11600	11352

5.3 Application au traffic sur l'autoroute A7

```
autoroute=read.table(
  "http://freakonometrics.blog.free.fr/public/data/autoroute.csv",
+ header=TRUE, sep=";")
  a7=autoroute$a007
  X=ts(a7,start = c(1989, 9), frequency = 12)
  T=time(X)
  S=cycle(X)
 B=data.frame(x=as.vector(X),T=as.vector(T),S=as.vector(S))
  regT=lm(x~T,data=B)
  plot(X)
  abline(regT,col="red",lwd=2)
  summary(regT)
lm(formula = x ~ T, data = B)
Residuals:
                       3Q
  Min 1Q Median
                              Max
-20161 -10568 -2615 4390 35017
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
```

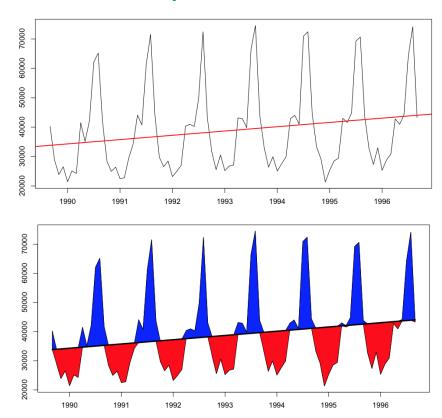
(Intercept) -2872401.7 1545258.4 -1.859 0.0666 . T 1460.7 775.3 1.884 0.0631 .

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

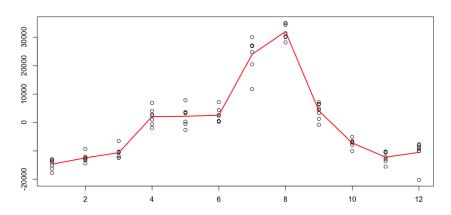
Residual standard error: 14610 on 83 degrees of freedom

Multiple R-squared: 0.04101, Adjusted R-squared: 0.02946

F-statistic: 3.55 on 1 and 83 DF, p-value: 0.06306



- > B\$res1=X-X1
- > regS=lm(res1~0+as.factor(S),data=B)
- > B\$X2=predict(regS)
- > plot(B\$S,B\$res1,xlab="saisonnalitÃ1")



A retenir 107. La formule itérative pour construire la série lissée de X_t pour t = 1, ..., N est la suivante

$$\begin{cases} S_0^1 = X_1 \ ou \ [X_1 + \dots + X_p] / p \\ S_0^2 = 0 \\ S_{t+1}^1 = \alpha X_t + (1 - \alpha) S_t^1 \ pour \ 0 \le t \le N \\ S_{t+1}^2 = \alpha S_t^1 + (1 - \alpha) S_t^2 \ pour \ 0 \le t \le N \\ A_{t+1} = 2S_{t+1}^1 - S_{t+1}^2 \ pour \ 0 \le t \le N \\ B_{t+1} = \alpha \left[S_{t+1}^1 - S_{t+1}^2 \right] / (1 - \alpha) \\ F_{t+1} = A_{t+1} + B_{t+1} \ pour \ 0 \le t \le N \\ F_t = A_{N+1} + (t - N - 1) B_{N+1} \ pour \ t \ge N + 1 \end{cases}$$

5.4 Lissage exponentiel multiple, ou généralisé

Cette généralisation a été proposée par Brown en 1962, permettant d'ajuster au voisinage de T une fonction plus complexe qu'une fonction affine. La résolution de ce problème repose sur la notion de vecteurs de fonctions à matrice de transition fixe.

Définition 108. Le vecteur $f(t) = [f_1(t), ..., f_n(t)]'$, où $t \in \mathbb{Z}$ est dit à matrice de transition fixe s'il existe une matrice A régulière telle que

$$f(t) = Af(t-1)$$
 pour tout $t \in \mathbb{Z}$

La méthode du lissage exponentiel généralisé consiste à ajuster au voisinage de T de la série X_t une fonction $\phi(t-T)$ de la forme

$$\phi(t) = \sum_{i=1}^{n} \alpha_i f_i(t)$$
 où $f(.)$ est à matrice de transition fixe

Cette classe de fonction ϕ (.) comprend la plupart des fonctions usuelles.

- (1) Les fonctions constantes $\phi(t) = c$, obtenues avec f(t) = 1 et A = 1. Dans ce cas, on retrouve le principe de lissage exponentiel simple,
- (2) Les fonctions linéaires $\phi(t) = \alpha + \beta t$, obtenues avec f(t) = [1, t]' de matrice de transition

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \text{ puisque } \begin{bmatrix} 1 \\ t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ t-1 \end{bmatrix}$$

Dans ce cas, on retrouve le principe de lissage exponentiel double,

(3) Les fonctions polynômiales de degré p - Cette famille est obtenue en prenant comme base une base de $\mathbb{R}_p(X)$ (espace des polynômes de degré inférieur ou égal à p). En particulier, on peut choisir la base

$$\mathcal{B}_{p} = \left\{ P_{k}(t) = \frac{1}{k!} t(t-1) \dots (t-k+1), k = 1, \dots, p+1 \right\}$$

obtenue à l'aide du triangle de Pascal, et définie par récurence par

$$P_k(t) = P_{k-1}(t-1) + P_k(t-1)$$
 pour $k > 1$

Le vecteur $f(t) = [P_1(t), ..., P_{p+1}(t)]$ est alors de matrice de transition (fixe)

$$A = \begin{bmatrix} 1 & 0 & 0 & & 0 & 0 \\ 1 & 1 & 0 & & 0 & 0 \\ 0 & 1 & 1 & & 0 & 0 \\ & & \ddots & \ddots & & \\ 0 & 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & 0 & & 1 & 1 \end{bmatrix}$$

(4) Les fonctions sinusoïdales - Les fonctions $\phi(t) = \alpha \sin \omega t + \beta \sin \omega t$ sont obtenues en prenant $f(t) = [\sin \omega t, \cos \omega t]'$, et dans ce cas

$$A = \begin{bmatrix} \cos \omega & \sin \omega \\ -\sin \omega & \cos \omega \end{bmatrix}$$

(6) Les fonctions exponentielles - Les fonctions $\phi(t) = \alpha \exp(\beta t)$ sont obtenues en prenant $f(t) = \exp(\beta t)$ et dans ce cas $A = \exp(\alpha)$.

Cette méthode de lissage se met en place de la façon suivante.

De la même façon que (14), le programme d'optimisation s'écrit

$$\min_{a} \left\{ \sum_{j=0}^{T-1} \beta^{j} \left(X_{t-j} - f'(-j) a \right)^{2} \right\}$$
 (17)

où la notation f' désigne la transposée de f. Posons

$$x = \begin{bmatrix} X_T \\ \vdots \\ X_1 \end{bmatrix}, F = \begin{bmatrix} f_1(0) & f_n(0) \\ \vdots & \vdots \\ f_1(-T+1) & f_n(-T+1) \end{bmatrix} = \begin{bmatrix} f'(0) \\ \vdots \\ f'(-T+1) \end{bmatrix} \text{ et } \Omega = diag(1, 1/\beta, ..., 1/\beta^{T-1})$$

Le programme (17) correspond à la regression (linéaire) de x sur les colonnes de F, associée à la matrice de covariance Ω . On en déduit que la solution à (17) est unique, et est donnée par

$$\widehat{a}(T) = (F'\Omega^{-1}F)^{-1}F'\Omega y = [M(T)]^{-1}Z(T)$$

οù

$$M(T) = F'\Omega^{-1}F = \sum_{j=0}^{T-1} \beta^{j} f(-j) f'(-j) \text{ et } Z(T) = F'\Omega y = \sum_{j=0}^{T-1} \beta^{j} f(-j) X_{T-j}$$

La matrice M(T) converge vers une matrice finie M quand $T \to +\infty$: on peut estimer $\widehat{a}(T)$ en utilisant cette matrice limite,

$$\widehat{a}\left(T\right) = M^{-1}Z\left(T\right) \text{ avec } M\left(T\right) = \sum_{j=0}^{\infty} \beta^{j} f\left(-j\right) f'\left(-j\right)$$

Et la prévision à horizon h faite à la date T est

$$\widehat{X}_{T}(h) = f'(h)\widehat{a}(T)$$

5.4.1 Méthode adaptative de mise à jour (ordre 1)

Pour cela, notons que

$$Z(T+1) = X_{T+1}f(0) + \beta A^{-1}Z(T)$$

et on peut alors écrire

$$\widehat{a}(T+1) = X_{T+1}M^{-1}f(0) + \beta M^{-1}A^{-1}M\widehat{a}(T)$$

que l'on peut encore noter

$$\widehat{a}(T+1) = \lambda X_{T+1} + \mu \widehat{a}(T)$$
 où $\begin{cases} \lambda = M^{-1} f(0) \\ \mu = \beta M^{-1} A^{-1} M \end{cases}$

où les matrices λ et μ sont indépendantes de T. Cette relation peut se mettre sous la forme suivante, proche de (11),

$$\widehat{a}\left(T+1\right) = A'\widehat{a}\left(T\right) + \lambda \left[X_{T+1} - \widehat{X}_{T}\left(1\right)\right]$$

5.5 Les méthodes de Holt-Winters (1960)

5.5.1 Méthode non saisonnière

Cette méthode est une généralisation de la méthode de lissage exponentiel mais avec un point de vue différent de celui introduit dans le lissage exponentiel généralisé. De la même façon que pour le lissage exponentiel double, l'ajustement se fait de façon linéaire au voinage de T, la nuance se faisant au niveau de formules de mise à jour, différentes de (15):

$$\begin{cases}
\widehat{A}(T+1) = (1-\lambda)X_{T+1} + \lambda \left[\widehat{A}(T) + \widehat{B}(T)\right] & \text{où } 0 < \lambda < 1 \\
\widehat{B}(T+1) = (1-\mu)\left[\widehat{A}(T+1) - \widehat{A}(T)\right] + \mu \widehat{B}(T) & \text{où } 0 < \mu < 1
\end{cases}$$
(18)

La première relation est une moyenne pondérée de deux informations sur A(T), correspondant au niveau de la série à la date T: l'observation X_{T+1} et la prévision faite en $T(\widehat{A}(T) + \widehat{B}(T))$. La seconde relation s'interprête comme une moyenne pondérée de deux informations sur B(T), correspondant à la pente de la série à la date T: la différence entre les niveaux estimés en T et T+1, et la pente estimée en T.

Toutefois, ces deux relations ne peuvent être utilisée qu'après initialisation, que l'on fera généralement de la façon suivante : $\widehat{A}(2) = X_2$ et $\widehat{B}(2) = X_2 - X_1$. La prévision à horizon h faite à la date T est donnée par

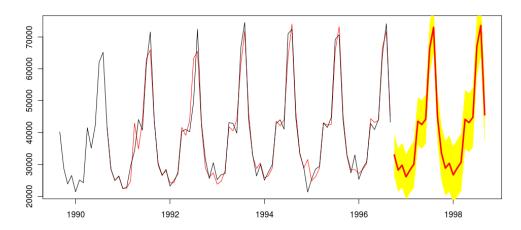
$$\widehat{X}_{T}(h) = \widehat{A}(T) + h\widehat{B}(T)$$

Cette méthode peut être vue comme une généralisation du lissage exponentiel double, qui ne faisait intervenir qu'un coefficient, β (ou α). Cette dernière méthode correspond au cas particulier

$$\lambda = \beta^2 \text{ et } \mu = 1 - \frac{(1-\beta)^2}{1-\beta^2} = \frac{2\beta}{1+\beta}$$

Sur l'exemple précédant, on obtient

- > HW=HoltWinters(X,alpha=.2,beta=0)
- > P=predict(HW,24,prediction.interval=TRUE)
- > plot(HW,xlim=range(c(time(X),time(P))))
- > polygon(c(time(P),rev(time(P))),c(P[,2],rev(P[,3])),
- + col="yellow",border=NA)
- > lines(P[,1],col="red",lwd=3)



5.5.2 La méthode saisonnière additive

On suppose ici que la série (X_t) peut être approchée au voisinage de T par la série

$$Y_t = A + (t - T)B + S_t$$

où S_t est un facteur saisonnier. Les formules de mise à jour s'écrire de la façon suivante, où s est le facteur de saisonnalisation (ou le nombre de saisons : s=4 pour des données trimestrielles ou s=12 pour des données mensuelles)

$$\begin{cases} \widehat{A}\left(T+1\right) = (1-\lambda)\left[X_{T+1} - S_{T+1-s}\right] + \lambda\left[\widehat{A}\left(T\right) + \widehat{B}\left(T\right)\right] \text{ où } 0 < \lambda < 1 & \text{(lissage de la moyenne)} \\ \widehat{B}\left(T+1\right) = (1-\mu)\left[\widehat{A}\left(T+1\right) - \widehat{A}\left(T\right)\right] + \mu\widehat{B}\left(T\right) \text{ où } 0 < \mu < 1 & \text{(lissage de la tedance)} \\ \widehat{S}_{T+1} = (1-\nu)\left[X_{T+1} - \widehat{A}\left(T+1\right)\right] + \nu S_{T+1-s} \text{ où } 0 < \nu < 1 & \text{(lissage de la saisonnalité)} \end{cases}$$

et la prévision à horizon h $(1 \le h \le s)$ s'écrit

$$\widehat{X}_{T}(h) = \widehat{A}(T) + h\widehat{B}(T) + \widehat{S}_{T+k+s}$$

La encore, le problème d'initialisation va se poser, et on peut prendre

$$\begin{cases} \widehat{A}(s) = M_s(X_1, ..., X_s) \text{ où } M_s \text{ est une moyenne pondérée} \\ \widehat{A}(s+1) = M_s(X_2, ..., X_{s+1}) \\ \widehat{B}(s+1) = \widehat{A}(s+1) - \widehat{A}(s) \\ \widehat{S}_i = X_i - \widehat{A}(i) \end{cases}$$

5.6 Exemple de mise en pratique des méthodes de lissage

Comme nous allons le voir ici, les méthodes de lissage, afin de faire de la prévision, peuvent très facilement être mises en oeuvre, en particulier sur des tableurs (*Excel par exemple*). Nous allons voir comment faire de la prévision sur des données comportant de la saisonnalité, à l'aide des méthodes de lissage exponentiel.

5.6.1 Présentation des données

Les données sont mensuelles, et comportent une saisonnalité annuelle,

Pour lisser cette série, nous avons utilisé une moyenne mobile permettant d'annuler une saisonnalité annuelle ($p\acute{e}riode~12$) : $M_{2\times12}$. En particulier

$$MX_{t} = \frac{1}{12} \left[\frac{1}{2} X_{t-6} + X_{t-5} + X_{t-4} + \dots + X_{t} + \dots + X_{t+4} + X_{t+5} + \frac{1}{2} X_{t+6} \right]$$

et ainsi, sur l'exemple ci-dessus, on peut noter que

$$2\ 864\ 431 = \frac{1}{12} \left[\frac{2\ 797\ 469}{2} + 2\ 773\ 701 + 2\ 735\ 895 + \ldots + 2\ 795\ 698 + \ldots + 3\ 032\ 833 + 3\ 075\ 696 + \frac{3}{12} \right] + \frac{1}{12} \left[\frac{1}{12} \left$$

La composante saisonnière est alors obtenue comme différence entre la série brute X_t et la série désaisonnalisée MX_t . Cette série correspond dans le tableau ci-dessus à la variable DIFFERENCE. Par exemple,

$$92\ 401 = 3\ 047\ 187 - 2\ 954\ 786$$

On considère alors la différence moyenne pour chaque mois :

JAN
$$\Delta^1 = \frac{1}{2} [(X_{JAN00} - MX_{JAN00}) + (X_{JAN01} - MX_{JAN01})]$$

FEV $\Delta^2 = \frac{1}{2} [(X_{FEV00} - MX_{FEV00}) + (X_{FEV01} - MX_{FEV01})]$

Par exemple, la différence moyenne pour Septembre est

$$\Delta^9 = \frac{1}{2} (69 692 + 71 120) = 70 406$$

On peut noter que la somme de ces différences moyennes Δ^i ne vaut pas 0: on va alors normaliser les Δ^i de façon à ce que leur somme soit nulle. On considère alors

$$\delta^i = \Delta^i - \frac{1}{12} \sum_{j=1}^{12} \Delta^j$$

Dans l'exemple considérée, la somme des Δ^i valait 20 865 : aussi, on va définir $\delta^i = \Delta^i - 20$ 865/12. Cette série δ^i va alors constituer la composante saisonnière de la série (X_t) . Par exemple, la saisonnalité pour le mois de mars est -62 580. Et à partir de là, on construit la série corrigée des variations saisonnières (CVS) comme différence entre (X_t) et la composante saisonnière du mois correspondant.

C'est à partir de cette série corrigée des variations saisonnières que l'on va faire de la prévision. La méthodologie est alors la suivante. On sépare la série initiale (X_t) de la façon suivante :

$$X_t = Z_t + \Sigma_t = \text{série } CVS + \text{composante saisonnière}$$

et la prévision sera alors faite en considérant

$$\widehat{X}_t = \widehat{Z}_t + \Sigma_t$$

On extrapole la série corrigée des variations saisonnières (par lissage), et on rajoute ensuite la composante saisonnière.

5.6.2 Lissage "linéaire"

La méthode la plus simple pour faire de la prévision sur une série désaisonnalisée est d'utiliser une régression linéaire,

Pour cela, on part des séries de base X_t (série brute) et Z_t (série corrigée des variations saisonnières). Les séries sur la gauche donne l'approximation linéaire. Pour cela, on régresse la série Z_t sur les séries \mathbb{I} (c'est à dire la constante) et t (la série "temps"), et l'on obtient

APPROX. LINEAIRE :
$$Z_t = A + Bt + \varepsilon_t$$
 avec $A = 209.98, B = -4772213$

et où ε_t est la séries des erreurs (ERREUR)⁹. En particulier

$$\left\{ \begin{array}{l} 2~858~914 = -4~772~213 + 209.98 \times 36~342~(t = 36~342\,correspond~au~1er~juillet~1999) \\ 38~382 = 2~929~423 - 2~891~041 \end{array} \right.$$

La composante saisonnière (COMPOSANTE SAISONNIERE) est alors la série obtenue dans la partie précédante, et combinée à la série $\widehat{Z}_t = A + Bt$: on obtient la première prévision de X_t : $\widehat{X}_t = A + Bt + \Sigma_t$. (colonne PREVISION (droite)). Une méthode encore plus simple est de considérer comme ajustement de Z_t non pas une droite quelconque mais une constante, $Z_t = C + \eta_t$, et la prévision de X_t devient $\widehat{X}_t = C + \Sigma_t$. (colonne PREVISION (constante)). On pourra ainsi obtenir

$$\begin{cases} 2 940 601 = 2 871 933 + 68 668 = (-4 772 213 + 209.98 \times 36 404) + 68 668 \\ 2 870 061 = 2 932 641 - 62 580 \end{cases}$$

⁹Le temps t est exprimé, comme sous Excel, en nombre de jours par rapport au 1er janvier 1900.

5.6.3 Lissage exponential simple

Le lissage exponentiel simple est présenté ci dessous, appliqué à la série corrigée des variations saisonnières. Pour cela, on se fixe au préalable une constante de lissage, par exemple $\lambda = 0.7$. La série lissée est alors définie parde la façon suivante

$$\begin{cases} S_t = Z_{t-1} = 2\ 726\ 843\ \text{pour}\ t = Feb99\\ S_t = \lambda Z_{t-1} + (1-\lambda)\,S_{t-1} = 0.7\times 3\ 005\ 108 + (1-0.7)\times 2\ 953\ 724 = 2\ 969\ 139\ \text{pour}\ t > Feb99\\ S_t = S_T\ \text{pour}\ t > T = Dec01 \end{cases}$$

L'erreur saisonnière est alors toujours la série (Σ_t) et la prévision est alors donnée par $\hat{X}_t = S_t + \Sigma_t$, soit dans l'exemple ci-dessous

$$3\ 051\ 423 = 2\ 925\ 143 + 126\ 280$$

5.6.4 Lissage exponential double

Les séries (S) et (S') sont définies récursivement de la façon suivante

$$\begin{cases} S_t = \lambda X_{t-1} + (1 - \lambda) S_{t-1} \text{ pour } t = 2, ..., n + 1 \\ S'_t = \lambda S_{t-1} + (1 - \lambda) S'_{t-1} \text{ pour } t = 2, ..., n + 1 \end{cases}$$

Les coefficients A et B sont définie par

$$A_t = 2S_t - S_t'$$
 et $B_t = \frac{\lambda}{1 - \lambda} [S_t - S_t']$

soit sur l'exemple ci-dessous

$$A_t = 2 \times 2\ 771\ 987 - 2\ 746\ 504 = 2\ 797\ 469\ \text{et}\ B_t = \frac{0.7}{1-0.7}(2\ 882\ 758 - 2\ 842\ 769)$$

La série "lissage brut" est donnée par

$$A_t + B_t = 2877040 + 18480 = 2895520$$

La série de la prévision est alors donnée, lorsqu'il y a n observations, par

$$\begin{cases} X_t^P = A_t + B_t \text{ pour } t = 2, ..., n+1 \\ X_{n+h}^P = A_{n+1} + h.B_{n+1} \text{ pour } h \ge 1 \end{cases}$$

6 Introduction aux modèles linéaires ARIMA

- 6.1 A quoi ressemblent les processus (S)ARIMA?
- 6.2 Rappels sur les espaces \mathcal{L}^2

6.2.1 Propriétés topologiques

On considère le processus (X_t) définit sur l'espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$, à valeurs dans \mathbb{R} .

Définition 109. L'espace $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$ est l'espace des variables de carré intégrable (variances-covariances finies).

De façon plus générale (et plus formelle), on désigne par L^p l'espace de Banach des classes d'équivalence (pour l'égalité \mathbb{P} -presque sûre) des fonctions mesurables telles que $\|f\|_p = \left[\int_{\Omega} |f|^p d\mathbb{P}\right]^{1/p}$ soit finie.

Proposition 110. L^2 est un espace de Hilbert, muni du produit scalaire $\langle \cdot, \cdot \rangle$ et la norme associée $\| \cdot \|$

$$\left\{ \begin{array}{l} \langle X,Y\rangle = \mathbb{E}\left(XY\right) \\ \left\|X\right\|^2 = \langle X,X\rangle = \mathbb{E}\left(X^2\right) = V\left(X\right) + \mathbb{E}\left(X\right)^2. \end{array} \right.$$

Par définition de la covariance, on peut noter que, si X et Y sont centrée, $\langle X,Y\rangle=\mathbb{E}\left(XY\right)=cov\left(X,Y\right).$

Théorème 111. Théorème de projection $Si \mathcal{H}$ est un sous espace fermé de L^2 , pour toute variable $Y \in L^2$, il existe une unique variable aléatoire $\widehat{Y} \in \mathcal{H}$ tel que

$$\left\|Y - \widehat{Y}\right\| = \min_{H \in \mathcal{H}} \left\|Y - H\right\|,$$

caractérisé par $\widehat{Y} \in \mathcal{H}$ et $Y - \widehat{Y} \in \mathcal{H}^{\perp}$. On notera aussi $\Pi_{\mathcal{H}}(Y)$.

Remarque 112. X_n converge vers X au sens de \mathcal{L}^2 si

$$\lim_{n \to \infty} ||X_n - X|| = 0, \ c'est \ \grave{a} \ dire \ \left\{ \begin{array}{l} \lim \mathbb{E} X_n = \mathbb{E} X \\ \lim V(X_n - X) = 0 \end{array} \right.$$

On peut alors définir la variable aléatoire $Y=\sum_{n\in\mathbb{Z}}a_nX_n$ comme limite, dans L^2 de $Y_{p,q}$

$$Y_{p,q} = \sum_{n=-p}^{q} a_n X_n \ et \ Y = \lim_{p,q \to +\infty} Y_{p,q} = \sum_{n \in \mathbb{Z}} a_n X_n.$$

6.2.2 Rappel sur les vecteurs et processus gaussiens

Pour un vecteur aléatoire $Z = (Z_1, ..., Z_d)'$, on définit son espérance par $\mathbb{E}(Z) = (\mathbb{E}(Z_1), ..., \mathbb{E}(Z_d))'$ et sa matrice de variance-covariance (si elles existent) par $V(Z) = \mathbb{E}((Z - \mathbb{E}(Z))(Z - \mathbb{E}(Z))')$. Cette matrice est hermitienne positive. De plus, si A est la matrice d'un application linéaire de \mathbb{R}^d dans \mathbb{R}^p , le vecteur AZ admet pour espérance $A\mathbb{E}(Z)$ et pour matrice de variance-covariance AV(Z)A'.

Définition 113. Le vecteur $X = (X_1, ..., X_d)$ est un vecteur gaussien si toute combinaison des X_i est une variable gaussienne, i.e. pour tout $a \in \mathbb{R}^d$, aX est une variable gaussienne. Sa densité s'écrit alors

$$f(x) = \frac{1}{(2\pi)^{d/2} \sqrt{\det \Sigma}} \exp\left(-\frac{1}{2} (x - \mu)' \Sigma^{-1} (x - \mu)\right),$$

où $\mu \in \mathbb{R}^d$ et Σ est une matrice hermitienne positive $d \times d$.

Si X est un vecteur gaussien, son moment à l'ordre p existe et de plus, $\mathbb{E}(X) = \mu$ et $V(X) = \Sigma$.

Définition 114. Le processus (X_t) est un processus gaussien si tout système fini extrait est un vecteur aléatoire gaussien, i.e. pour tout n, pour tout $t_1, ..., t_n$, $(X_{t_1}, ..., X_{t_n})$ est un vecteur gaussien.

6.2.3 Régression affine dans \mathcal{L}^2

Régression sur un nombre fini de variables

La régression linéaire théorique de Y sur $X_1, ..., X_n$ est la projection orthogonale dans $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$ de X sur $\mathcal{H}^* = Vect(X_1, ..., X_n)$, et la régression affine théorique de Y sur $X_1, ..., X_n$ est la projection orthogonale dans $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$ de Y sur $\mathcal{H} = Vect(\mathbb{I}, X_1, ..., X_n)$. On note alors

$$\widehat{Y} = EL(Y|\mathbb{I}, X_1, ..., X_n) = \Pi_{\mathcal{H}}(Y)$$

où EL(.|.) désigne l'espérance linéaire. Cette variable est la meilleure approximation (au sens de L^2) de Y par une combinaison linéaire de $\mathbb{I}, X_1, ..., X_n$,

Proposition 115. Soit γ le vecteur $[cov(X, X_i)]_{i=0,1,...,n}$ et Σ la matrice $[cov(X_i, X_j)]_{i,j=0,1,...,n}$. Alors

$$\widehat{X} = EL(X|\mathbb{I}, X_1, ..., X_n) = a_0 + a_1 X_1 + ... + a_n X_n,$$

où $a=(a_0,a_1,...,a_n)$ vérifie $a=\Sigma^{-1}\gamma$.

Proof. \widehat{X} peut s'écrire $\alpha_0 + \alpha_1 X_1 + ... + \alpha_n X_n$ car $\widehat{X} \in \mathcal{H}$, et vérifie

$$\left\{ \begin{array}{l} \left\langle X-\widehat{X},\mathbb{I}\right\rangle =0\\ \left\langle X-\widehat{X},X_{i}\right\rangle =0\text{ pour }i=1,...,n, \end{array} \right.$$

 $\operatorname{car} X - \widehat{X} \in \mathcal{H}^{\perp}$, c'est à dire

$$\begin{cases} \mathbb{E}\left(X - \widehat{X}\right) = 0 \text{ soit } \mathbb{E}\left(X\right) = \mathbb{E}\left(\widehat{X}\right) \\ \mathbb{E}\left(\left[X - \widehat{X}\right]X_i\right) = 0 \text{ pour } i = 1, ..., n. \end{cases}$$

D'où

$$\begin{cases}
\mathbb{E}(X) = \mathbb{E}(\widehat{X}) = \alpha_0 + \alpha_1 \mathbb{E}(X_1) + \dots + \alpha_n \mathbb{E}(X_n) \\
\mathbb{E}(XX_i) = \mathbb{E}(\widehat{X}X_i) = \alpha_0 \mathbb{E}(X_i) + \alpha_1 \mathbb{E}(X_1X_i) + \dots + \alpha_n \mathbb{E}(X_nX_i)
\end{cases} (1)$$

(1) donne $\alpha_0 = \mathbb{E}(X) - \alpha_1 \mathbb{E}(X_1) - \dots - \alpha_n \mathbb{E}(X_n)$ et par substitution dans (2),

$$\mathbb{E}(XX_i) = \mathbb{E}(X)\mathbb{E}(X_i) - (\alpha_1\mathbb{E}(X_1) + ... + \alpha_n\mathbb{E}(X_n))\mathbb{E}(X_i) + \alpha_1\mathbb{E}(X_1X_i) + ... + \alpha_n\mathbb{E}(X_nX_i)$$

donc, pour i = 1, ..., n

$$cov(XX_i) = \alpha_1 cov(X_1X_i) + ... + \alpha_n cov(X_nX_i)$$
,

ce qui donne le système

$$\begin{cases}
cov (XX_1) = \alpha_1 cov (X_1X_1) + \dots + \alpha_n cov (X_nX_1) \\
cov (XX_2) = \alpha_1 cov (X_1X_2) + \dots + \alpha_n cov (X_nX_2) \\
\dots \\
cov (XX_n) = \alpha_1 cov (X_1X_n) + \dots + \alpha_n cov (X_nX_n),
\end{cases}$$

qui s'écrit sous forme matricielle

$$\gamma = \Sigma \alpha$$
.

Remarque 116. On peut noter que $EL(X|\mathbb{I}, X_1, ..., X_n) = EL(X|X_1, ..., X_n)$ si et seulement si $\mathbb{E}(X) = 0$ et $\mathbb{E}(X_j) = 0$ pour j = 1, 2, ..., n.

Régression sur un nombre infini de variables ***

On considère cette fois ci $X_1, ..., X_n, ...$ des variables de L^2 , et $X_0 = \mathbb{I} \in L^2$. Soit \mathcal{H} l'adhérance de l'espace engendré par les combinaisons linéaires des X_i : $\mathcal{H} = \overline{\mathcal{L}}(\mathbb{I}, X_1, ..., X_n, ...)$.

On considère alors $\widehat{X}_n = EL(X|\mathbb{I}, X_1, ..., X_n)$. La projection sur \mathcal{H} est alors la limite $(dans\ L^2)$ des variables \widehat{X}_n

$$\widehat{X} = \lim_{n \to \infty} EL(X|\mathbb{I}, X_1, ..., X_n).$$

86

6.2.4 La notion d'innovation

Opérateur de projection linéaire

Etant données une variable aléatoire Y et une famille de variables aléatoires $\{X_1, ..., X_n\}$, on définit l'opérateur de projection linéaire Π de la façon suivante :

$$\Pi(Y | \{X_1, ..., X_n\}) = \alpha_1 X_1 + ... + \alpha_n X_n,$$

où les α_i sont les solutions du programme d'optimisation

$$(\alpha_1, ..., \alpha_n) = \arg\min_{a_1, ..., a_n} \{ Var [Y - (a_1 X_1 + ... + a_n X_n)] \}.$$

En d'autres termes, $\Pi(Y | \{X_1, ..., X_n\})$ est la meilleure prévision linéaire de Y basée sur $\{X_1, ..., X_n\}$, au sens où la variance de l'erreur sera minimale. On peut noter que cet opérateur est linéaire, au sens où

$$\Pi(\lambda . Y + \mu . Z | \{X_1, ..., X_n\}) = \lambda . \Pi(Y | \{X_1, ..., X_n\}) + \mu . \Pi(Z | \{X_1, ..., X_n\}).$$

De plus, l'erreur de prévision $Y - \Pi(Y | \{X_1, ..., X_n\})$ est non corrélée avec toute fonction linéaire des $X_1, ..., X_n$. Enfin, si $cov(X_1, X_2) = 0$, alors $\Pi(Y | \{X_1, X_2\}) = \Pi(Y | \{X_1\}) + \Pi(Y | \{X_2\})$.

Il est possible de projeter sur une suite infinie de variables aléatoires $\{X_1, ..., X_n, ...\}$, en notant

$$\Pi(Y | \{X_1, ..., X_n, ...\}) = \lim_{k \to \infty} \Pi(Y | \{X_1, ..., X_k\}).$$

Cette limite existant pour toute suite de variables aléatoires $|\{X_1,...,X_n,...\}|$. Prévision linéaire

Définition 117. Soit $(X_t)_{t\in\mathbb{Z}}$ un processus de L^2 . On appelle meilleur prévision linéaire de X_t sachant son passé la regression linéaire (théorique) de X_t sur son passé $\mathcal{H} = \overline{Vect}(\mathbb{I}, X_{t-1}, X_{t-2}, ...)$, et sera notée $EL(X_t|\mathbb{I}, X_{t-1}, X_{t-2}, ...)$.

Définition 118. Le processus d'innovation du processus (X_t) est le processus (ε_t) défini par

$$\varepsilon_t = X_t - EL(X_t | \mathbb{I}, X_{t-1}, X_{t-2}, \dots).$$

Proposition 119. Soit (Y_t) un bruit blanc $BB(0, \sigma^2)$, le processus stationnaire (X_t) définit par 10

$$X_t = Y_t - \rho Y_{t-1} \ pour \ |\rho| < 1,$$

alors

$$EL(X_t|\mathbb{I}, X_{t-1}, X_{t-2}, ...) = -\sum_{i=1}^{\infty} \rho^i X_{t-i}$$

et le processus d'innovation est (Y_t) .

 $^{^{10}\}mathrm{Ceci}$ correspond à un processus $MA\left(1\right),$ dont la racine est à l'intérieur du cercle unité.

Proof. Le processus (X_t) est stationnaire en tant que moyenne mobile de bruit blanc. Définissons alors

$$S_{t,n} = -\sum_{i=1}^{n} \rho^{i} X_{t-i} .$$

A t fixé, la suite $(S_{t,n})$ est une suite de Cauchy dans L^2 puisque

$$||S_{t,n} - S_{t,m}|| = \left\| \sum_{i=m+1}^{n} \rho^{i} X_{t-i} \right\| \le ||X_{t}|| \sum_{i=m+1}^{n} |\rho^{i}|,$$

qui tend vers 0 quand m et n tendent vers l'infini. $(S_{t,n})$ converge donc dans L^2 vers $S_t = \sum_{i=1}^{\infty} \rho^i X_{t-i}$, élément de \overline{Vect} ($\mathbb{I}, X_{t-1}, X_{t-2}, ...$).

Or $X_t = Y_t - \rho Y_{t-1}$, donc $X_t + S_{n,t} = Y_t + \rho^{n+1} Y_{t-n-1}$ et donc

$$X_t + \sum_{i=1}^{\infty} \rho^i X_{t-i} = Y_t,$$

puisque $\|\rho^{n+1}Y_{t-n-1}\| \leq \sigma^2 |\rho|^{n+1} \to 0$ quand $n \to \infty$, d'où $X_t = S_t + Y_t$. Or $\langle X_s, Y_t \rangle = 0$ pour tout s < t, $\langle \mathbb{I}, Y_t \rangle = 0$ et $S_t \in \overline{Vect}(\mathbb{I}, X_{t-1}, X_{t-2}, ...)$, donc $S_t = EL(X_t|\mathbb{I}, X_{t-1}, X_{t-2}, ...)$ et (ε_t) est le processus d'innovation.

Remarque 120. Soit (Y_t) un bruit blanc $BB(0, \sigma^2)$, le processus stationnaire (X_t) satis fais ant

$$X_t - \rho X_{t-1} = Y_t$$
, avec $|\rho| > 1$,

Comme nous le verrons par la suite (propriété (??)) le processus Y_t ainsi défini ne correspond pas à l'innovation du processus X_t . Il est possible de montrer (en utilisant la densité spectrale) que le processus ε_t définit par $\varepsilon_t = X_t - \rho^{-1} X_{t-1}$ est effectivement un bruit blanc. En fait, (ε_t) correspond au processus d'innovation associé au processus (X_t) .

Du fait de cette définition, l'innovation possède un certain nombre de propriétés Comme on peut le voir sur le schéma ci-dessus, si ε_t est l'innovation, alors elle est orthogonale au passé de X_t c'est à dire que

$$\begin{cases} \mathbb{E}\left(\varepsilon_{t}X_{t-1}\right) = \mathbb{E}\left(\varepsilon_{t}X_{t-2}\right) = \dots = \mathbb{E}\left(\varepsilon_{t}X_{t-h}\right) = \dots = 0\\ \text{mais } \mathbb{E}\left(\varepsilon_{t}X_{t}\right) \neq 0. \end{cases}$$

De plus, on aura également que ε_{t+k} sera également orthonogonale au passé de X_t , pour $k \geq 0$,

$$\mathbb{E}\left(\varepsilon_{t+k}X_{t-1}\right) = \mathbb{E}\left(\varepsilon_{t+k}X_{t-2}\right) = \dots = \mathbb{E}\left(\varepsilon_{t+k}X_{t-h}\right) = \dots = 0.$$

Remarque 121. De façon rigoureuse, il conviendrait d'introduite la notion de processus réqulier : on dira que le processus stationnaire (X_t) , centré, est réqulier s'il existe un bruit blanc (ε_t) tel que, pour tout $t \in \mathbb{Z}$, l'adhérance des passés (linéaires) $\mathcal{H}_{X}^{t} = \overline{Vect\left(\mathbb{I}, X_{t-1}, X_{t-2}, \ldots\right)} \ et \ \mathcal{H}_{\varepsilon}^{t} = \overline{Vect\left(\mathbb{I}, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots\right)} \ co\"{incident} : \ \mathcal{H}_{X}^{t} = \mathcal{H}_{\varepsilon}^{t}. \ On$ peut alors montrer si (X_t) est un processus stationnaire régulier, et si (ε_t) est un bruit blanc tel que, à chaque date t les passés coïncident, alors on a la décomposition

$$\mathcal{H}_X^t = \mathcal{H}_X^{t-1} \oplus \mathbb{R}\varepsilon_t$$
, pour tout t ,

où \oplus désigne une somme directe orthogonale, et le processus bruit blanc est alors unique : il est appelé innovation du processus (X_t) . Le fait que les deux espaces coïncident implique, en particulier, que si (ε_t) est l'innovation du processus (X_t) alors

$$EL\left(X_{T+k}|X_{T},X_{T-1},\ldots\right)=EL\left(X_{T+h}|\varepsilon_{T},\varepsilon_{T-1},\ldots\right).$$

Compléments à l'aide des espaces \mathcal{H} Etant donné un processus (X_t) , on notera $\mathcal{H}(X)$ le sous-espace de Hilbert de L^2 correspondant à l'adhérance, dans L^2 , de l'espace des combinaisons linéaires finies d'éléments de (X_t) . On notera $\mathcal{H}_T(X)$ le sous-espace de Hilbert de L^2 correspondant à l'adhérance, dans L^2 , de l'espace des combinaisons linéaires finies d'éléments de (X_t) avec $t \leq T$.

Définition 122. On appelle processus d'innovation la suite $\varepsilon_t = X_t - \prod_{\mathcal{H}_{t-1}(X)} (X_t)$.

Ce processus est alors une suite orthogonale (pour le produit scalaire $\langle \cdot, \cdot \rangle$), et on a l'inclusion $\mathcal{H}_{t-1}(\varepsilon) \subset \mathcal{H}_{t-1}(X)$.

6.3 Polynômes d'opérateurs retard L et avance F

6.3.1 Rappels sur les opérateurs retards

Nous avions défini précédemment l'opérateur retard L par $L: X_t \longmapsto L(X_t) = LX_t = X_{t-1}$ et l'opérateur avance F par $F: X_t \longmapsto F(X_t) = FX_t = X_{t+1}$. On notera alors

$$L^p = \underbrace{L \circ L \circ \dots \circ L}_{p \text{ fois}} \text{ où } p \in \mathbb{N},$$

avec la convention $L^0 = \mathbb{I}$ et $L^{-1} = F$. Et de façon analogue, $L^{-p} = F^p$ pour $p \in \mathbb{N}$.

6.3.2 Inversibilité des polynômes $P(L) \star \star \star$

Soit $A\left(\cdot\right)$ un polynôme, on cherche $B\left(\cdot\right)$ tel que $A\left(\cdot\right)\circ B\left(\cdot\right)=B\left(\cdot\right)\circ A\left(\cdot\right)=1.$ inversibilité de $P\left(L\right)=1-\lambda L$

Proposition 123. (i) Si $|\lambda| < 1$ alors $1 - \lambda L$ est inversible, et de plus,

$$(1 - \lambda L)^{-1} = \sum_{k=0}^{\infty} \lambda^k L^k.$$

 $(ii) \ Si \ |\lambda| > 1 \ alors \ 1 - \lambda L \ est \ inversible, \ et \ de \ plus,$

$$(1 - \lambda L)^{-1} = \sum_{k=1}^{\infty} \frac{1}{\lambda^k} F^k.$$

(iii) Si $|\lambda| = 1$, alors $1 - \lambda L$ n'est pas inversible.

Proof. (i) Si $|\lambda| < 1$ alors

$$(1-\lambda)^{-1} = \sum_{k=0}^{+\infty} \lambda^k = \frac{1}{1-\lambda} < +\infty,$$

donc $A(L) = \sum_{k=0}^{+\infty} \lambda^k L^k$ est bien défini. De plus:

$$(1 - \lambda L)A(L) = \lim_{k \to +\infty} (1 - \lambda L) \left(\sum_{j=0}^{k} \lambda^j L^j \right) = \lim_{k \to +\infty} 1 - \lambda^{k+1} L^{k+1} = 1,$$

ce qui signifie que A est le polynôme inverse associé à $(1 - \lambda L)$.

(ii) De façon analogue, si $|\lambda| > 1$ alors $1 - \lambda L = -\lambda \left(L - \frac{1}{\lambda}\right) = -\lambda L \left(1 - \frac{F}{\lambda}\right)$. On a alors :

$$(\lambda L)^{-1} = \frac{1}{\lambda} F \text{ et } \left(1 - \frac{F}{\lambda}\right)^{-1} = \sum_{k=0}^{+\infty} \frac{1}{\lambda^k} F^k \text{ car } \left|\frac{1}{\lambda}\right| < 1$$

En combinant ces deux résultats :

$$(1 - \lambda L)^{-1} = (-\lambda L)^{-1} \left(1 - \frac{F}{\lambda} \right)^{-1} = -\frac{1}{\lambda} F \left(\sum_{k=0}^{+\infty} \frac{1}{\lambda^k} F^k \right)$$
$$= -\sum_{k=1}^{+\infty} \frac{1}{\lambda^k} F^k = -\sum_{k=-\infty}^{-1} \lambda^k L^k,$$

ce qui correspond au résultat souhaité.

(iii) En effet, il n'existe par de polynôme $A(L) = \sum_{k \in \mathbb{Z}} a_k L^k$, $\sum_{k \in \mathbb{Z}} |a_k| < +\infty$ tel que (1-L)A(L) = 1. En effet, s un tel polynôme existait,

$$(1-L)A(L) = 1 \Rightarrow |a_k| = |a_{k-1}| \nrightarrow 0 \text{ quand } k \to \infty,$$

et donc $\sum_{k\in\mathbb{Z}} |a_k| = +\infty$.

Exemple 124. Soit (X_t) et (Y_t) deux processus stationnaires tels que $Y_t = X_t - \lambda X_{t-1} = (1 - \lambda L) X_t$, où $\lambda < 1$. Cette relation s'inverse en

$$X_t = (1 - \lambda L)^{-1} Y_t = Y_t + \lambda Y_{t-1} + \dots + \lambda^k Y_{t-k} + \dots$$

Exemple 125. Dans le cas où $\lambda = 1$ (racine unité) on se retrouve en prsénce d'une marche aléatoire $Y_t = X_t - X_{t-1}$ (non stationnaire).

inversibilité des polynômes en L

Tout polynôme $A(L) = 1 + a_1L + ... + a_nL^n$ (normalisé tel que A(0) = 1), peut s'écrire

$$A(z) = a_n(z - z_1)(z - z_2) \dots (z - z_n),$$

correspondant à la décomposition en éléments simples $(z_i = racines \ du \ polynôme)$. On peut écrire

$$A(L) = \prod_{i=1}^{n} (1 - \lambda_i L) \text{ où } \lambda_i = \frac{1}{z_i}$$

Proposition 126. Si pour tout i, $|\lambda_i| \neq 1$, alors A(L) est inversible. Pour cela, notons

$$A(L) = \prod (1 - \lambda_i L) = \underbrace{\prod_{|\lambda_i| < 1} (1 - \lambda_i L) \prod_{|\lambda_i| > 1} \left(1 - \frac{1}{\lambda_i} F \right) \prod_{|\lambda_i| > 1} (-\lambda_i L)}_{A_3(L)},$$

puisque $(1 - \lambda_i L) = -\lambda_i L (1 - F/\lambda_i)$, et alors, l'inverse de A(L) est donné par $A(L)^{-1}$

$$A(L)^{-1} = \prod (1 - \lambda_i L)^{-1} = A_1(L)^{-1} A_2(L)^{-1} A_3(L)^{-1}$$

i.e.

$$A(L)^{-1} = \underbrace{\prod_{\substack{|\lambda_i|<1\\ \sum \alpha_k L^k}} (1 - \lambda_i L)^{-1} \prod_{\substack{|\lambda_i|>1\\ \sum \beta_k F^k}} \left(1 - \frac{1}{\lambda_i} F\right)^{-1}}_{\sum \beta_k F^k} \left[\prod_{\substack{|\lambda_i|>1\\ \sum \beta_k F^k}} \lambda_i\right] F^n,$$

 $où n = card \{i, |\lambda_i| > 1\}.$

Proof. En effet, $\forall i$, $(1 - \lambda_i L)^{-1}$ est bien défini, de la forme $\sum_{k \in \mathbb{Z}} a_{i,k} L^k$ et $A(L)^{-1} = \prod_{i=1}^p (1 - \lambda_i L)^{-1}$ est donc aussi défini. Toutefois, $A(L)^{-1}$ peut contenir des termes en L^k , k > 0 qui sont des termes concernant le futur

Si $|\lambda_i| < 1$ pour tout i alors $(1 - \lambda_i L)^{-1} = \sum_{k=0}^{+\infty} \lambda_i^k L^k$ et :

$$A(L)^{-1} = \prod_{i=1}^{p} (1 - \lambda_i L)^{-1} = \sum_{k=0}^{+\infty} a_k L^k$$
 où $\sum_{k=0}^{+\infty} |a_k| < +\infty$.

Par ailleurs,

$$A(z) = \prod_{i=1}^{p} (1 - \lambda_i z)$$
 et $A(z)A(z)^{-1} = 1 \Leftrightarrow \prod_{i=1}^{p} (1 - \lambda_i z) \left(\sum_{k=0}^{+\infty} a_k z^k\right) = 1$,

de telle sorte que $A(0)A(0)^{-1} = 1 \times a_0 = 1 \Rightarrow a_0 = 1$. S'il existe i tel que $\lambda_i \in \mathbb{C} \setminus \mathbb{R}$ alors $A(L) = (1 - \lambda_i)(1 - \overline{\lambda_i})P(L)$ et

$$(1 - \lambda_i)^{-1} (1 - \overline{\lambda}_i)^{-1} = \left(\sum_{k=0}^{+\infty} \lambda_i^k L^k\right) \left(\sum_{k=0}^{+\infty} \overline{\lambda}_i^k L^k\right) = \sum_{k=0}^{+\infty} \alpha_k L^k \quad \alpha_k \in \mathbb{R}, \ \alpha_0 = 1, \sum_{k=0}^{+\infty} |a_k| < +\infty.$$

Remarque 127. Si des racines sont inférieures à 1 (en module), cette décomposition fait intervenir le futur de la variable.

Pour déterminer, en pratique, l'inverse d'un polynôme A(L), supposons qu'il s'écrive $A(L) = \prod_{i=1}^{p} (1 - \lambda_i L)$, de telle sorte que

$$A(L)^{-1} = \prod_{j=1}^{p} \left(\sum_{k=0}^{+\infty} \lambda_j^k L^k \right)$$

91

On peut utiliser directement cette méthode de calcul pour p petit (p = 1, 2) mais elle s'avère fastidieuse en général. On note,

$$A(L)\left(\sum_{k=0}^{+\infty} a_k L^k\right) = (1 + \varphi_1 L + \dots + \varphi_p L^p)\left(\sum_{k=0}^{+\infty} a_k L^k\right) = 1$$

Les a_k sont obtenus par récurrence puis identification.

$$\phi(L)^{-1} = \prod_{i=1}^{p} \frac{1}{1 - \lambda_j L}$$

On décompose alors cette fraction rationnelle en éléments simples, $1 = \phi(z)Q_r(z) + z^{r+1}R_r(z)$ avec $\lim_{r\to+\infty}Q_r(z)=A^{-1}(z)$.

6.4 Fonction et matrices autocorrélations

Pour rappels, un processus (X_t) est stationnaire (au second ordre) si pour tout t, $\mathbb{E}(X_t^2) < +\infty$, pour tout t, $\mathbb{E}(X_t) = \mu$, constante indépendante de t et, pour tout t et pour tout t, $\cot t$, $\cot t$ et pour tout t, $\cot t$ et pour tout t, $\cot t$ et pour tout t.

6.4.1 Autocovariance et autocorrélation

Pour une série stationnaire (X_t) , on défini la fonction d'autocovariance $h \mapsto \gamma_X(h) = cov(X_tX_{t-h})$ pour tout t, et on défini la fonction d'autocorrélation $h \mapsto \rho_X(h) = \gamma_X(h)/\gamma_X(0)$ pour tout t, soit

$$\rho_X(h) = corr\left(X_t, X_{t-h}\right) = \frac{cov\left(X_t, X_{t-h}\right)}{\sqrt{V\left(X_t\right)}\sqrt{V\left(X_{t-h}\right)}} = \frac{\gamma_X(h)}{\gamma_X(0)}$$

Définition 128. On appelera matrice d'autocorrélation du vecteur $(X_t, X_{t-1}, ..., X_{t-h+1})$

i.e.

$$\mathcal{R}(h) = \begin{bmatrix} \mathcal{R}(h-1) & \begin{bmatrix} \rho(h-1) \\ \vdots \\ \rho(h-1) & \cdots & \rho(1) \end{bmatrix} \end{bmatrix}$$

On peut noter que $\det \mathcal{R}(h) \geq 0$ pour tout $h \in \mathbb{N} \setminus \{0\}$. Cette propriété implique un certain nombre de contraintes sur les $\rho_X(i)$. Par example, la relation $\det \mathcal{R}(2) \geq 0$ implique la contrainte suivante sur le couple $(\rho(1), \rho(2))$:

$$[1 - \rho(2)] [1 + \rho(2) - 2\rho(1)^{2}] \ge 0,$$

ce qui fait qu'il ne peut y avoir de chute brutale de $\rho(1)$ à $\rho(2)$: il est impossible d'avoir $\rho(2) = 0$ si $\rho(1) \ge 1/\sqrt{2}$.

Ces fonctions sont estimées, pour un échantillon $X_1,...,X_T$, de la façon suivante :

$$\widehat{\gamma}(h) = \frac{1}{T - h} \sum_{t=1}^{T - h} X_t X_{t-h} \text{ et } \widehat{\rho}(h) = \frac{\widehat{\gamma}(h)}{\widehat{\gamma}(0)},$$

(quand le processus est centré, sinon, il faut considérer $(X_t - \mu)(X_{t-h} - \mu)$).

- > X=rnrom(100)
- > as.vector(acf(X))

Autocorrelations of series 'X', by lag

6.4.2 Autocorrélations partielles

Les deux précédentes mesures de dépendence entre X_t et X_{t+h} ne faisaient intervenir que les variables X_t et X_{t+h} . Nous allons introduire ici une notion faisant intervenir les variables intermédiaires. Nous supposerons, sans perte de généralité que le processus (X_t) est centré : $\mathbb{E}(X_t) = 0$ pour tout t.

Définition 129. Pour une série stationnaire (X_t) , on défini la fonction d'autocorrélation partielle $h \mapsto \psi_X(h)$ par

$$\psi_X(h) = corr\left(\widehat{X}_t, \widehat{X}_{t-h}\right),$$

οù

$$\begin{cases} \widehat{X}_{t-h} = X_{t-h} - EL(X_{t-h}|X_{t-1}, ..., X_{t-h+1}) \\ \widehat{X}_{t} = X_{t} - EL(X_{t}|X_{t-1}, ..., X_{t-h+1}). \end{cases}$$

On regarde ici la projection (ou l'espérance linéaire) les deux valeurs extrêmes X_t et X_{t-h} sur l'ensemble des valeurs intermédiaires $\Xi_{h-1}^{t-1} = \{X_{t-1}, ..., X_{t-h+1}\}$. Cette projection peut s'écrire, dans le cas de X_t

$$EL(X_{t}|X_{t-1},...,X_{t-h+1}) = a_{1}(h-1)X_{t-1} + a_{2}(h-1)X_{t-2} + ... + a_{h-1}(h-1)X_{t-h+1}.$$

On peut aussi écrire, en rajoutant X_{t-h} , et en projetant ainsi sur Ξ_h^{t-1} ,

$$EL(X_{t}|X_{t-1},...,X_{t-h}) = a_{1}(h)X_{t-1} + a_{2}(h)X_{t-2} + ... + a_{h-1}(h)X_{t-h+1} + a_{h}(h)X_{t-h}.$$
(19)

Il est alors possible de montrer que

$$EL(X_t|X_{t-1},...,X_{t-h+1}) = a_1(h-1)X_{t-1} + a_2(h-1)X_{t-2} + ... + a_{h-1}(h-1)EL(X_{t-h}|X_{t-1},...,X_{t-h+1}).$$

On a alors

$$\sum_{i=1}^{h-1} a_i (h-1) X_{t-i} = \sum_{i=1}^{h-1} a_i (h) X_{t-i} + a_h (h) \sum_{i=1}^{h-1} a_{h-i} (h-1) X_{t-i}.$$

Aussi, on a le résultat suivant, permettant d'obtenir les coefficients de façon récursive

Proposition 130. *Pour* j = 1, ..., h - 1

$$a_j(h) = a_j(h-1) - a_h(h) + a_{h-j}(h-1)$$
 (20)

Toutefois, cette méthode récursive n'est possible qu'à condition de connaître $a_h(h)$. Pour cela, on peut utiliser le résultat suivant,

Lemme 131. En notant ρ_i le coefficient d'autocorrélation, $\rho_i = corr(X_t, X_{t-i})$, alors

$$a_h(h) = \frac{\rho(h) - \sum_{i=1}^{h-1} \rho(h-i) a_i (h-1)}{1 - \sum_{i=1}^{h-1} \rho(i) a_i (h-1)}.$$
 (21)

Proof. De (19), on peut déduire

$$\rho\left(h\right)=\rho\left(h-1\right)a_{1}\left(h\right)+\ldots+\rho\left(1\right)a_{h-1}\left(h\right)+a_{h}\left(h\right),\text{ puisque }\rho\left(0\right)=0,$$

c'est à dire

$$a_h(h) = \rho(h) - [\rho(h-1)a_1(h) + ... + \rho(1)a_{h-1}(h)] = \rho(h) - \sum_{i=1}^{h-1} \rho(h-i)a_i(h).$$

En utilisant (20), on peut écrire

$$a_h(h) = \rho(h) - \left[\sum_{i=1}^{h-1} \rho(h-i) a_i(h-1) - a_h(h) \cdot \sum_{i=1}^{h-1} \rho(i) a_i(h-1) \right].$$

On peut d'ailleurs noter que l'on a la relation suivante

$$a(h) = \begin{bmatrix} a_1(h) \\ \vdots \\ a_h(h) \end{bmatrix} = \mathcal{R}(h)^{-1} \begin{bmatrix} \rho(1) \\ \vdots \\ \rho(h) \end{bmatrix}.$$

Définition 132. L'algorithme récursif basé sur (20), (21) et la condition initiale $a_1(1) = \rho(1)$ est appelé algorithme de Durbin.

De (20) on peut en déduire en particulier que

$$a_1(h) = a_1(h-1) + a_h(h) a_{h-1}(h-1),$$

et de (21), que pour $h \geq 2$,

$$a_h(h) = \frac{-\rho(1) a_{h-1}(h-1)}{1 - \rho(1) a_1(h-1)}.$$

Ces deux équation permettent d'obtenir récursivement les deux coefficients extrêmes $a_1(h)$ et $a_h(h)$ pour tout h.

Proposition 133. Soit (X_t) un processus stationnaire, alors $\psi_X(0) = 1$, et, pour $h \ge 1$, $\psi_X(h)$ est le coefficient relatif à X_{t-h} dans la projection de X_t sur $X_{t-1}, ..., X_{t-h+1}, X_{t-h}$, soit $a_h(h)$.

Proof. Cette propriété s'obtient en notant que

$$EL\left(X_{t}|X_{t-1},...,X_{t-h}\right)-EL\left(X_{t}|X_{t-1},...,X_{t-h+1}\right)=a_{h}\left(h\right)\left[X_{t-h}-EL\left(X_{t-h}|X_{t-1},...,X_{t-h+1}\right)\right].$$

Théorème 134. Il est équivalent de connaître la fonction d'autocorrélation $(\rho_X(h))$ ou la fonction d'autocorrélation partielle $(\psi_X(h))$.

Proof. (i) L'algorithme de Durbin a montré que la connaissance des $\rho_X(h)$ permet de construire de façon récursive les fonctions $\psi_X(h)$.

(ii) Réciproquement, la relation inverse s'obtient par récurence, en notant que $a_1(1) = \psi_X(1) = \rho_X(1)$, et que

$$\mathcal{R}(h-1)\begin{bmatrix} a_{1}(h) \\ \vdots \\ a_{h-1}(h) \end{bmatrix} + \begin{bmatrix} \rho(h-1) \\ \vdots \\ \rho(1) \end{bmatrix} a_{h}(h) = \begin{bmatrix} \rho(1) \\ \vdots \\ \rho(h-1) \end{bmatrix},$$

et

$$\left[\begin{array}{ccc} \rho\left(h-1\right) & \cdots & \rho\left(1\right)\end{array}\right] \left[\begin{array}{c} a_{1}\left(h\right) \\ \vdots \\ a_{h-1}\left(h\right)\end{array}\right] + a_{h}\left(h\right) = \rho\left(h\right).$$

Exemple 135. En particulier, on peut noter que

$$\psi_X(1) = \rho_X(1) \ et \ \psi_X(2) = \frac{\left[\rho_X(2) - \rho_X(1)^2\right]}{\left[1 - \rho_X(1)^2\right]}$$

Une autre formulation consiste à dire que la fonction d'autocorrélation partielle mesure la corrélation entre X_t et X_{t-h} une fois retirée l'influence des variables antérieures à X_{t-h} . En reprenant les notations de la partie précédante,

$$\mathcal{R}(h) = \begin{bmatrix} 1 & \rho(1) & \rho(2) & & \rho(h-3) & \rho(h-2) & \rho(h-1) \\ \rho(1) & 1 & \rho(1) & & \rho(h-4) & \rho(h-3) & \rho(h-2) \\ \rho(2) & \rho(1) & 1 & \ddots & \rho(h-5) & \rho(h-4) & \rho(h-3) \\ & & \ddots & \ddots & \ddots \\ \rho(h-3) & \rho(h-4) & \rho(h-5) & \ddots & 1 & \rho(1) & \rho(2) \\ \rho(h-2) & \rho(h-3) & \rho(h-4) & & \rho(1) & 1 & \rho(1) \\ \rho(h-1) & \rho(h-2) & \rho(h-3) & & \rho(2) & \rho(1) & 1 \end{bmatrix}$$

et on introduit de façon analogue la matrice $\mathcal{R}^*(h)$ obtenue en remplaçant la dernière colonne de $\mathcal{R}(h)$ par le vecteur $[\rho(1), ..., \rho(h)]'$,

$$\mathcal{R}^*(h) = \begin{bmatrix} 1 & \rho(1) & \rho(2) & & \rho(h-3) & \rho(h-2) & \rho(1) \\ \rho(1) & 1 & \rho(1) & & \rho(h-4) & \rho(h-3) & \rho(2) \\ \rho(2) & \rho(1) & 1 & \ddots & \rho(h-5) & \rho(h-4) & \rho(3) \\ & & \ddots & \ddots & \ddots & \\ \rho(h-3) & \rho(h-4) & \rho(h-5) & \ddots & 1 & \rho(1) & \rho(h-2) \\ \rho(h-2) & \rho(h-3) & \rho(h-4) & \rho(1) & 1 & \rho(h-1) \\ \rho(h-1) & \rho(h-2) & \rho(h-3) & \rho(2) & \rho(1) & \rho(h) \end{bmatrix}$$

Il est alors possible de montrer simplement que

$$\psi_X(h) = \frac{|\mathcal{R}^*(h)|}{|\mathcal{R}(h)|} \text{ pour tout } h.$$

- > X=rnorm(100)
- > as.vector(pacf(X))

Densité spectrale *** 6.4.3

Comme nous l'avon déjà mentionné, il est équivalent de connaître la fonction d'autocorrélation et la densité spectrale du processus.

Proposition 136. Soit (X_t) un processus stationnaire de la forme $X_t = m + \sum_{j=0}^{+\infty} a_j \varepsilon_{t-j} o \grave{u}$ (ε_t) est un bruit blanc et $\sum_{j=0}^{+\infty} |a_j| < +\infty$, alors $\sum_{h \in \mathbb{Z}} |\gamma_X(h)| < +\infty$.

Proof.

$$\sum_{h \in \mathbb{Z}} |\gamma_X(h)| = \sum_{h \in \mathbb{Z}} \left| \sum_{j,k} a_j a_k \gamma_{\varepsilon} (h+j-k) \right|.$$

Or, comme (ε_t) est un bruit blanc,

$$\gamma_{\varepsilon}(h+j-k) = \begin{cases} 0 \text{ si } h+j-k \neq 0\\ \sigma_{\varepsilon}^{2} \text{ si } h+j-k = 0, \end{cases}$$

et donc,

$$\sum_{h \in \mathbb{Z}} |\gamma_X(h)| = \sum_{h \in \mathbb{Z}} \left| \sigma_{\varepsilon}^2 \sum_j a_j a_{h+j} \right| \le \sigma_{\varepsilon}^2 \sum_{h,j} |a_j| \, |a_{h+j}| = \sigma_{\varepsilon}^2 \left(\sum_j a_j \right)^2 < +\infty.$$

Proposition 137. La densité spectrale du processus (X_t) est définie par

$$f_X(\omega) = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \gamma_X(h) \exp(i\omega h) = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \gamma_X(h) \cos(\omega h).$$

Proof. En effet,

$$f_X(\omega) = \frac{1}{2\pi} \left[\gamma_X(0) + \sum_{h>0} \gamma_X(h) e^{i\omega h} + \sum_{h<0} \gamma_X(-h) e^{i\omega h} \right]$$

$$= \frac{1}{2\pi} \left[\gamma_X(0) + \sum_{h>0} \gamma_X(h) e^{i\omega h} + \sum_{h>0} \underbrace{\gamma_X(-h)}_{=\gamma_X(h)} e^{-i\omega h} \right]$$

$$= \frac{1}{2\pi} \left[\gamma_X(0) + \sum_{h>0} \gamma_X(h) \underbrace{(e^{i\omega h} + e^{-i\omega h})}_{=2\cos(\omega h)} \right] = \frac{1}{2\pi} \left[\gamma_X(0) + \sum_{h\neq0} \gamma_X(h) \cos(\omega h) \right]$$

$$= \frac{1}{2\pi} \sum_{h\in\mathbb{Z}} \gamma_X(h) \cos(\omega h).$$

On peut d'ailleurs noter que si (ε_t) est un bruit blanc de variance σ^2 , on a alors

$$(\varepsilon_t) \sim \mathcal{BB}(0, \sigma^2) \Rightarrow f_{\varepsilon}(\omega) = \frac{\sigma_{\varepsilon}}{2\pi}.$$

Proposition 138. Avec les notations précédentes, on a le théorème d'injectivité suivant,

$$\forall h \in \mathbb{Z}, \quad \gamma_X(h) = \int_{[-\pi;\pi]} f_X(\omega) e^{-i\omega h} d\omega = \int_{[-\pi;\pi]} f_X(\omega) \cos(\omega h) d\omega.$$

Proof. En effet,

$$\int_{[-\pi;\pi]} f_X(\omega) e^{-i\omega h} d\omega = \frac{1}{2\pi} \int_{[-\pi;\pi]} \left(\sum_{k \in \mathbb{Z}} \gamma_X(k) e^{i\omega k} \right) e^{-i\omega h} d\omega$$

$$= \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \gamma_X(k) \underbrace{\left(\int_{[-\pi;\pi]} e^{i\omega(k-h)} d\omega \right)}_{=\left\{ \begin{array}{c} 0 \text{ si } k \neq h \\ 2\pi \text{ si } k = h \end{array} \right.$$

$$= \gamma_X(h).$$

Proposition 139. Soient (ε_t) un bruit blanc, et considérons les processus (X_t) et (Y_t) définis par

$$X_{t} = \sum_{j \in \mathbb{Z}} a_{j} \varepsilon_{t-j} \ et \ Y_{t} = \sum_{k \in \mathbb{Z}} b_{k} X_{t-k} \quad \text{ où } \sum_{j} |a_{j}|, \sum_{j} |b_{j}| < +\infty,$$

alors $Y_t = \sum_{k \in \mathbb{Z}} c_k \varepsilon_{t-k}$, et de plus,

$$f_Y(\omega) = f_X(\omega) \left| \sum_{k \in \mathbb{Z}} b_k e^{i\omega k} \right|^2.$$

Proof. Il suffit de noter que

$$Y_{t} = \sum_{k \in \mathbb{Z}} b_{k} X_{t-k} = \sum_{k \in \mathbb{Z}} b_{k} \left(\sum_{j \in \mathbb{Z}} a_{j} \varepsilon_{t-k-j} \right) = \sum_{j,k \in \mathbb{Z}} a_{j} b_{k} \varepsilon_{t-(k+j)}$$
$$= \sum_{j,h \in \mathbb{Z}} a_{j} b_{h-j} \varepsilon_{t-h} = \sum_{h \in \mathbb{Z}} \left(\sum_{j \in \mathbb{Z}} a_{j} b_{h-j} \right) \varepsilon_{t-h}.$$

et de plus, la densité spectrale s'écrit

$$f_{Y}(\omega) = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \gamma_{Y}(h) e^{i\omega h} = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \left(\sum_{j,k \in \mathbb{Z}} b_{j} b_{k} \gamma_{X}(h+j-k) \right) e^{i\omega h}$$

$$= \frac{1}{2\pi} \sum_{h,j,k \in \mathbb{Z}} b_{j} b_{k} \gamma_{X}(h+j-k) e^{i\omega(h+j-k)} e^{-i\omega j} e^{i\omega k}$$

$$= \frac{1}{2\pi} \left(\sum_{l \in \mathbb{Z}} \gamma_{X}(l) e^{i\omega l} \right) \left(\sum_{j \in \mathbb{Z}} b_{j} e^{i\omega j} \right) \left(\sum_{k \in \mathbb{Z}} b_{k} e^{-i\omega k} \right)$$

$$= f_{X}(\omega) \left| \sum_{k \in \mathbb{Z}} b_{k} e^{i\omega k} \right|^{2}.$$

6.4.4 Autocorrélations inverses ***

Cette notion a été introduite en 1972 par Cleveland, et Chatfield en a précisé les principales charactéristiques en 1979. Etant donné un processus (X_t) stationnaire, de fonction d'autocovariance γ_X et de densité spectrale f_X , il se peut que $1/f_X$ soit interprétable comme une densité spectrale (par exemple dès lors que $1/f_X$ est continue).

Définition 140. La fonction d'autocovariance inverse γi_X est la fonction d'autocovariance associée au spectre inverse 1/f,

$$\gamma i_{X}\left(h\right) = \int_{-\pi}^{+\pi} \frac{1}{f_{X}\left(\omega\right)} \exp\left(i\omega h\right) d\omega \ ou \ \frac{1}{f_{X}\left(\omega\right)} = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \gamma i_{X}\left(h\right) \exp\left(-i\omega h\right).$$

De la même façon que précédement, on peut alors définir une autocorrélation inverse,

Définition 141. La fonction d'autocorrélation inverse ρi_X est définie par,

$$\rho i\left(h\right) = \frac{\gamma i_X\left(h\right)}{\gamma i_X\left(0\right)}.$$

Considérons une série (X_t) stationnaire, de processus d'autocovariance $\gamma(h)$ pour $h \in \mathbb{Z}$. On définit alors la "fonction génératrice d'autocovariance" comme le polynôme (d'opérateurs retards) suivant

$$\Gamma(L) = \dots + \gamma(-1) L^{-1} + \gamma(0) \mathbb{I} + \gamma(1) L + \gamma(2) L^{2} + \dots = \sum_{k=-\infty}^{+\infty} \gamma(k) L^{k},$$

et de façon similaire, on peut définir la fonction génératrice d'autocorrélation. La fonction génératrice d'autocovariance inverse, notée $\Gamma i\left(L\right)$ est défini par $\Gamma i\left(L\right)\Gamma\left(L\right)=\mathbb{I}$ et est telle que

$$\Gamma i(L) = \dots + \gamma i(-1) L^{-1} + \gamma i(0) \mathbb{I} + \gamma i(1) L + \gamma i(2) L^{2} + \dots = \sum_{k=-\infty}^{+\infty} \gamma i(k) L^{k} = \Gamma(L)^{-1}$$

Exemple 142. Dans le cas d'un processus dit ARMA(p,q) (voir partie (6.7)), définit par une relation de la forme $\Phi(L)X_t = \Theta(L)\varepsilon_t$ où ε_t est un bruit blanc, et où Φ et Θ sont respectivement des polynômes de degré p et q. La fonction génératrice d'autocovariance inverse est donnée par

$$\Gamma i\left(L\right) = \frac{\Phi\left(L\right)\Phi\left(L^{-1}\right)}{\Theta\left(L\right)\Theta\left(L^{-1}\right)} \cdot \frac{1}{\sigma^{2}} \ où \ \sigma^{2} \ est \ la \ variance \ du \ bruit \ blanc \ \varepsilon_{t}$$

Dans le cas où la composante moyenne mobile n'existe pas $(\Theta = \mathbb{I}, \text{ on parle alors de processus } AR(p))$, on peut alors en déduire simplement que l'autocovariance inverse est donnée par

$$\gamma i\left(h\right) = \frac{\sum_{j=0}^{p-h} \phi_{j} \phi_{j+h}}{\sum_{j=0}^{p} \phi_{j}^{2}} \ pour \ h \leq p \ et \ \gamma_{i}\left(h\right) = 0 \ pour \ h \geq p$$

avec la convention $\phi_0 = 1$. Aussi, pour les processus AR(p), les autocorrélations inverses s'annulent au delà du retard p (de la même façon que les autocorrélations partielles). Bhansali a montré en 1980 que pour un bruit blanc, les autocorrélations inverses empiriques suivent un bruit blanc de loi normale de moyenne nulle et de variance 1/n. Ainsi, la significativité des coefficients d'autocorrélation inverse peut être testée, au seuil de 5%, en la comparant avec $1.96/\sqrt{n}$.

Il est également possible de définir les autocorrélations partielles inverses (en utilisant une construction analogue à celle développée dans la partie précédante, en remplaçant les ρ par les ρ i). Comme l'a montré Bhansali (1980 – 1983) et Cleveland et Parzen, les autocorrélations partielles inverses peuvent être obtenus à l'aide de méthodes récursives (proches de celle de Durbin).

Remarque 143. On peut noter la "correspondance" suivante

$auto corr\'elations$	$autocorr\'elations \\ partielles$
\$	\(\)
$auto corr\'elations$	$auto corr\'elations$
partielles inverses	inverses

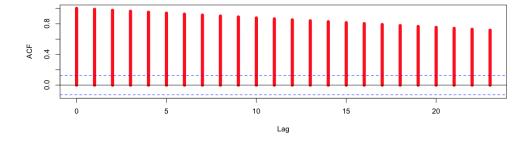
En fait, comme nous le verrons par la suite, sur l'identification des modèles ARMA, les autocorrélations permettent de détecter (entre autres) si une série est intégrée, et s'il faut la différencier, alors que les autocorrélations partielles permettent de vérifier que la série n'a pas été surdifférenciée.

Les autocorrélations ρ et les autocorrélations inverses ρi sont identiques si et seulement si X est un bruit blanc

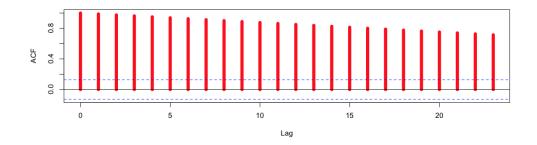
6.4.5 Complément : autocorrélogrammes de fonctions déterministes

Nous allons rappeler ici les formes des autocorrélogrammes, et des autocorrélogrammes partiels de séries non-stationnaires, et déterministes.

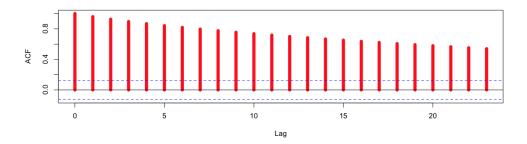
Exemple 144. Fonction linéaire $X_t = a + bt$



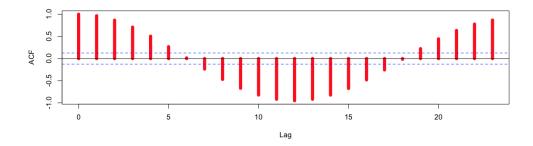
Exemple 145. Fonction puissance $X_t = (1+r)^t$



Exemple 146. Fonction logarithmique $X_t = \log(t)$



Exemple 147. Fonction sinusoidale $X_t = \sin(\pi t/12)$



6.5 Les processus autorégressifs : AR(p)

Définition 148. On appelle processus autoregressif d'ordre p, noté AR(p), un processus stationnaire (X_t) vérifiant une relation du type

$$X_t - \sum_{i=1}^p \phi_i X_{t-i} = \varepsilon_t \text{ pour tout } t \in \mathbb{Z},$$
 (22)

où les ϕ_i sont des réels et (ε_t) est un bruit blanc de variance σ^2 . (22) est équivalent à l'écriture

$$\Phi(L) X_t = \varepsilon_t \text{ où } \Phi(L) = \mathbb{I} - \phi_1 L - \dots - \phi_p L^p$$

Il convient de faire toutefois attention aux signes, certains ouvrages ou logiciels considérant des polynômes de la forme $\mathbb{I} + \phi_1 L + ... + \phi_p L^p$.

Remarque 149. En toute généralité, un processus AR(p) vérifie une relation de la forme $\Phi(L) X_t = \mu + \varepsilon_t$ où μ est un terme constant. De cette forme générale, il est possible de se ramener à (22) par une simple translation : il suffit de consider non pas X_t mais $Y_t = X_t - m$ où $m = \mu/\Phi(1)$. En effet, $\Phi(L)(Y_t + m) = \mu + \varepsilon_t$ peut se réécire $\Phi(L)Y_t + \Phi(1)m = \mu + \varepsilon_t$ c'est à dire $\Phi(L)Y_t = \varepsilon_t$. m correspond ici à l'espérance de (X_t) .

6.5.1 Réécriture de la forme AR(p)

Comme nous l'avons vu dans la partie (6.3.2), si l'on souhaite inverser un polynôme $(en l'occurence, présenter <math>X_t$ comme une fonction des ε_t), il convient de regarder les racines du polynôme Φ , en particulier leur position par rapport à 1 (en module). Comme nous allons le voir dans cette partie, il est possible, lorsque les racines de Φ sont de module différent de 1, qu'il est toujours possible de supposer les racines de module supérieur à 1, quitte à changer la forme du bruit blanc.

Ecriture sous la forme $MA(\infty)$ quand les racines de Φ sont de module strictement supérieur à 1 On suppose $\Phi(L)X_t = \mu + \varepsilon_t$ où $\Phi(L) = 1 - (\varphi_1L + \cdots + \varphi_pL)$ et aussi que $|z| \leq 1 \Rightarrow \phi(z) \neq 0$ (de telle sorte que les racines de Φ sont de module strictement supérieur à 1). D'après les résultats énoncés dans la partie sur les polynômes d'opérateurs retards, (X_t) admet une représentation $MA(\infty)$ i.e.

$$X_t = m + \sum_{k=0}^{+\infty} a_k \varepsilon_{t-k}$$
 où $a_0 = 1$, $a_k \in \mathbb{R}$, $\sum_{k=0}^{+\infty} |a_k| < +\infty$.

On sait que $\Phi(L)(X_t - m) = \varepsilon_t$, donc $X_t - m = \Phi(L)^{-1}(\varepsilon_t)$.

Proposition 150. Sous ces hypothèses, $\overline{\mathcal{L}}(\underline{X_t}) = \overline{\mathcal{L}}(\underline{\varepsilon_t})$, où $\overline{\mathcal{L}}(\underline{X_t}) = \overline{\mathcal{L}}(1, X_t, X_{t-1}, \dots, X_{t-p}, \dots)$ et $\overline{\mathcal{L}}(\underline{\varepsilon_t}) = \overline{\mathcal{L}}(1, \varepsilon_t, \varepsilon_{t-1}, \dots, \varepsilon_{t-p}, \dots)$, et de plus (ε_t) est l'innovation de (X_t) .

Proof. (i) $X_t = \mu + \varphi_1 X_{t-1} + \dots + \varphi_p X_{t-p} + \varepsilon_t$, qui peut se réécrire $X_t = \eta + \sum_{k=0}^{+\infty} a_t \varepsilon_{t-k}$ donc $X_t \in \overline{\mathcal{L}}(\underline{\varepsilon_t}) = \overline{\mathcal{L}}(1, \varepsilon_t, \varepsilon_{t-1}, \dots, \varepsilon_{t-k}, \dots)$. Donc $\forall k \geq 0, \ X_{t-k} \subset \overline{\mathcal{L}}(\underline{\varepsilon_{t-k}}) \subset \overline{\mathcal{L}}(\underline{\varepsilon_t})$ On en déduit que $\mathcal{L}(1, X_t, X_{t-1}, \dots, X_{t-k}, \dots) \subset \overline{\mathcal{L}}(\underline{\varepsilon_t})$ et donc $\mathcal{L}(\underline{X_t}) \subset \overline{\overline{\mathcal{L}}}(\underline{\varepsilon_t})$. Le second espace étant fermé, on en déduit que $\overline{\mathcal{L}}(X_t) \subset \overline{\mathcal{L}}(\varepsilon_t)$.

De la même façon et comme $\varepsilon_t = X_t - (\mu + \varphi_1 X_{t-1} + \dots + \varphi_p X_{t-p})$, in obtient l'inclusion réciproque et finalement $\overline{\mathcal{L}}(X_t) = \overline{\mathcal{L}}(\varepsilon_t)$.

(ii) L'innovation de (X_t) vaut, par définition, $X_t - \widehat{X}_t,$ où

$$\widehat{X}_{t} = EL(X_{t}|\underline{X_{t-1}}) = EL(X_{t}|1, X_{t-1}, \dots, X_{t-k}, \dots)$$

$$= EL(\underbrace{\mu + \varphi_{1}X_{t-1} + \dots + \varphi_{p}X_{t-p}}_{\in \overline{\mathcal{L}}(\underline{X_{t-1}})} + \varepsilon_{t}|\underline{X_{t-1}}) = \mu + \varphi_{1}X_{t-1} + \dots + \varphi_{p}X_{t-p} + EL(\varepsilon_{t}|\underline{X_{t-1}}).$$

Comme $\overline{\mathcal{L}}(\underline{X_{t-1}}) = \overline{\mathcal{L}}(\underline{\varepsilon_{t-1}})$, on a $EL(\varepsilon_t|\underline{X_{t-1}}) = EL(\varepsilon_t|\underline{\varepsilon_{t-1}}) = 0$ car (ε_t) est un bruit blanc. Finalement $\widehat{X}_t = \mu + \varphi_1 X_{t-1} + \dots + \varphi_p X_{t-p}$ et $X_t - \widehat{X}_t = \varepsilon_t : (\varepsilon_t)$ est bien l'innovation de (X_t) .

Si (X_t) est un processus AR(p), $\Phi(L)X_t = \mu + \varepsilon_t$ où les racines de Φ sont à l'extérieur du disque unité, on dit que la représentation $\Phi(L)X_t = \mu + \varepsilon_t$ est la représentation canonique de (X_t) .

Ecriture sous la forme $MA(\infty)$ quand certaines racines de Φ sont de module strictement inférieur à 1 On suppose que le processus (X_t) s'écrit $\Phi(L)X_t = \mu + \varepsilon_t$ avec

$$\Phi(L) = \prod_{j=1}^{p} (1 - \lambda_j L) = \left[\prod_{j/|\lambda_j| < 1} (1 - \lambda_j L) \right] \left[\prod_{j/|\lambda_j| > 1} (1 - \lambda_j L) \right]$$

On peut alors montrer que l'on n'aura pas $\overline{\mathcal{L}}(\underline{X_t}) = \overline{\mathcal{L}}(\underline{\varepsilon_t})$, et donc (ε_t) n'est pas l'innovation.

Pour obtenir la représentation canonique il faut changer le polynôme Φ et le bruit blanc. On pose

$$\Phi^*(z) = \left[\prod_{j/|\lambda_j| < 1} (1 - \lambda_j z) \right] \left[\prod_{j/|\lambda_j| > 1} (1 - \frac{z}{\lambda_j}) \right]$$

de telle sorte que Φ^* a toutes ses racines de module strictement supérieur à 1.

Proposition 151. Soit (η_t) le processus tel que $\eta_t = \Phi^*(L)X_t$. Alors (η_t) est un bruit blanc.

Proof. En effet, la densité spectrale de (η_t) est $f_{\eta}(\omega) = f_X(\omega) |\Phi^*(e^{i\omega})|^2$. Et comme $\Phi(L)X_t = \varepsilon_t$, on a aussi :

$$f_X(\omega) \left| \Phi(e^{i\omega}) \right|^2 = f_{\varepsilon}(\omega) = \frac{\sigma_{\varepsilon}^2}{2\pi}$$

On peut alors écrire

$$f_{\eta}(\omega) = \frac{\sigma_{\varepsilon}^{2}}{2\pi} \frac{1}{|\phi(e^{i\omega})|^{2}} \left| \phi^{*}(e^{i\omega}) \right|^{2} = \frac{\sigma_{\varepsilon}^{2}}{2\pi} \frac{\left[\prod_{j/|\lambda_{j}|<1} |1 - \lambda_{j}e^{i\omega}|^{2} \right] \left[\prod_{j/|\lambda_{j}|>1} \left| 1 - \frac{e^{i\omega}}{\lambda_{j}} \right|^{2} \right]}{\left[\prod_{j/|\lambda_{j}|<1} |1 - \lambda_{j}e^{i\omega}|^{2} \right] \left[\prod_{j/|\lambda_{j}|>1} |1 - \lambda_{j}e^{i\omega}|^{2} \right]}$$

$$= \frac{\sigma_{\varepsilon}^{2}}{2\pi} \prod_{j,|\lambda_{j}|>1} \frac{1}{|\lambda_{j}|^{2}} \underbrace{\frac{|\lambda_{j} - e^{i\omega}|^{2}}{|1 - \lambda_{j}e^{i\omega}|^{2}}}_{=1} = \frac{\sigma_{\varepsilon}^{2}}{2\pi} \prod_{j,|\lambda_{j}|>1} \frac{1}{|\lambda_{j}|^{2}}$$

On a donc

$$f_{\eta}(\omega) = \frac{\sigma_{\varepsilon}^2 \alpha}{2\pi} = \frac{\sigma_{\eta}^2}{2\pi} \text{ avec } \alpha = \prod_{j, |\lambda_j| > 1} \frac{1}{|\lambda_j|^2} < 1$$

et finalement (η_t) est un bruit blanc.

La représentation $\Phi^*(L)X_t = \eta_t$ est alors la représentation canonique de (X_t) et (η_t) est l'innovation de (X_t) .

6.5.2 Propriétés des autocorrélations - les équations de Yule-Walker

Le processus (X_t) s'écrit

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + \varepsilon_t. \tag{23}$$

En multipliant par X_t , on obtient

$$X_{t}^{2} = \phi_{1}X_{t-1}X_{t} + \phi_{2}X_{t-2}X_{t} + \dots + \phi_{p}X_{t-p}X_{t} + \varepsilon_{t}X_{t}$$

$$= \phi_{1}X_{t-1}X_{t} + \phi_{2}X_{t-2}X_{t} + \dots + \phi_{p}X_{t-p}X_{t} + \varepsilon_{t} \left(\phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + \varepsilon_{t}\right)$$

$$= \phi_{1}X_{t-1}X_{t} + \phi_{2}X_{t-2}X_{t} + \dots + \phi_{p}X_{t-p}X_{t} + \varepsilon_{t}^{2} + \left[\phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p}\right] \varepsilon_{t},$$

d'où, en prenant l'espérance

$$\gamma(0) = \phi_1 \gamma(1) + \phi_2 \gamma(2) + \dots + \phi_p \gamma(p) + \sigma^2 + 0,$$

le dernière terme étant nul car ε_t est supposé indépendant du passé de X_t , $\{X_{t-1}, X_{t-2}, ..., X_{t-p}, ...\}$. De plus, en multipliant (23) par X_{t-h} , en prenant l'espérance et en divisant par $\gamma(0)$, on obtient

$$\rho(h) - \sum_{i=1}^{p} \phi_i \rho(h-i) = 0 \text{ pour tout } h > 0.$$

Cette suite d'équations définit le système d'équation dit de Yule-Walker :

Proposition 152. Soit (X_t) un processus AR(p) d'autocorrélation $\rho(h)$. Alors

$$\begin{bmatrix} \rho(1) \\ \rho(2) \\ \rho(3) \\ \vdots \\ \rho(p-1) \\ \rho(p) \end{bmatrix} = \begin{bmatrix} 1 & \rho(1) & \rho(2) & \ddots & \rho(p-1) \\ \rho(1) & 1 & \rho(1) & \ddots & \rho(p-2) \\ \rho(2) & \rho(1) & 1 & \ddots & \rho(p-3) \\ \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots \\ \rho(p-1) & \rho(p-2) & \rho(p-3) & \rho(1) & 1 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \vdots \\ \phi_{p-1} \\ \phi_p \end{bmatrix}$$

De plus les $\rho(h)$ décroissent exponentiellement vers 0.

Proof. En effet, $\forall h > 0$, $\rho(h) - \varphi_1 \rho(h-1) - \cdots - \varphi_p \rho(h-p) = 0$. Le polynôme caractéristique de cette relation de récurrence est :

$$z^p - \varphi_1 z^{p-1} - \dots - \varphi_{p-1} z - \varphi_p = z^p \left(1 - \frac{\varphi_1}{z} - \dots - \frac{\varphi_{p-1}}{z^{p-1}} - \frac{\varphi_p}{z^p} \right) = z^p \Phi(\frac{1}{z}),$$

avec $\Phi(L)X_t = \varepsilon_t \operatorname{et}\Phi(L) = 1 - \varphi_1L - \cdots \varphi_pL^p$. Les racines du polynôme caractéristique sont les $\lambda_i = \frac{1}{z_i}$ (les z_i étant les racines de Φ) avec $|\lambda_i| < 1$. La forme générale de la solution est, si z_1, \ldots, z_n sont des racines distinctes de Φ de multiplicités respectives m_1, \ldots, m_n

$$\rho(h) = \sum_{i=1}^{n} \sum_{k=0}^{m_i - 1} \alpha_{ik} \lambda_i^k h^k$$

c'est à dire que $\rho(h)$ décroit vers 0 exponentiellement avec h.

Par inversion, il est possible d'exprimer les ϕ_i en fonction des $\rho(h)$. La méthodologie développée dans la partie (6.4.2) permet d'obtenir les autocorrélations partielles $\psi(h)$. Il est possible de montrer le résultat suivant

Proposition 153. (i) Pour un processus AR(p) les autocorrélations partielles sont nulles au delà de rang p, $\psi(h) = 0$ pour h > p.

(ii) Pour un processus AR(p) les autocorrélations inverses sont nulles au delà de rang p, $\rho i(h) = 0$ pour h > p.

Proof. (i) Si (X_t) est un processusAR(p) et si $\Phi(L)X_t = \mu + \varepsilon_t$ est sa représentation canonique, en notant $\psi(h)$ le coefficient de X_{t-h} dans $EL(X_t|X_{t-1},\ldots,X_{t-h})$ alors,

$$X_{t} = \mu + \underbrace{\varphi_{1}X_{t-1} + \dots + \varphi_{p}X_{t-p}}_{\in \mathcal{L}(1, X_{t}, \dots, X_{t-p}) \subset \mathcal{L}(1, X_{t}, \dots, X_{t-h})} + \varepsilon_{t}$$

de telle sorte que

$$EL(X_{t}|X_{t-1},...,X_{t-h}) = \mu + \varphi_{1}X_{t-1} + \cdots + \varphi_{p}X_{t-p} + EL(\varepsilon_{t}|X_{t-1},...,X_{t-h})$$

= $\mu + \varphi_{1}X_{t-1} + \cdots + \varphi_{p}X_{t-p} + 0$

Aussi, si h > p, le coefficient de X_{t-h} est 0. et si h = p, le coefficient de X_{t-p} est $\varphi_p \neq 0$. (ii) Les autocorrélation inverses sont définies par $\rho_i(h) = \gamma_i(h)/\gamma_i(0)$ où

$$\gamma_i(h) = \int_{-\pi}^{\pi} \frac{1}{f_X(\omega)} e^{i\omega h} d\omega.$$

Si $\Phi(L)X_t = \varepsilon_t$ la densité spectrale de (X_t) vérifie

$$f_X(\omega) \left| \Phi(e^{i\omega}) \right|^2 = f_{\varepsilon}(\omega) = \frac{\sigma_{\varepsilon}^2}{2\pi} \text{ donc } f_X(\omega) = \frac{\sigma_{\varepsilon}^2}{2\pi} \frac{1}{\left| \Phi(e^{i\omega}) \right|^2}.$$

Par conséquent,

$$\frac{1}{f_X(\omega)} = \frac{2\pi}{\sigma_{\varepsilon}^2} \left| \Phi(e^{i\omega}) \right|^2$$

Aussi, si $\Phi(z) = 1 + \psi z + ... + \psi_p z^p$ (i.e. $\psi_0 = 1$ et $\psi_k = -\phi_k$),

$$\frac{1}{f_X(\omega)} = \frac{2\pi}{\sigma_{\varepsilon}^2} \left(\sum_{k=0}^p \psi_k e^{i\omega k} \right) \left(\sum_{k=0}^p e^{-i\omega k} \right) = \frac{2\pi}{\sigma_{\varepsilon}^2} \sum_{0 \le k, l \le p} \psi_k \psi_l e^{i\omega(k-l)},$$

et donc, les autocovariances inverses sont définies par

$$\gamma_i(h) = \frac{2\pi}{\sigma_{\varepsilon}^2} \sum_{0 \le k, l \le p} \psi_k \psi_l \underbrace{\int_{-\pi}^{\pi} e^{i\omega(k-l+h)} d\omega}_{=0 \text{ sauf si } k-l+h=0}.$$

Or $k - l \in [-p; p]$ donc si h > p, $\gamma_i(h) = 0$. En revanche si h = p,

$$\gamma_i(p) = \frac{4\pi^2}{\sigma_{\varepsilon}^2} \psi_0 \psi_p = -\frac{4\pi^2}{\sigma_{\varepsilon}^2} \varphi_p \neq 0.$$

Cette méthode pourra être utilisée pour identifier les processus $AR\left(p\right)$.

6.5.3 Le processus AR(1)

La forme général des processus de type AR(1) est

$$X_t - \phi X_{t-1} = \varepsilon_t$$
 pour tout $t \in \mathbb{Z}$,

où (ε_t) est un bruit blanc de variance σ^2 .

(i) si $\phi=\pm 1,$ le processus (X_t) n'est pas stationnaire. Par exemple, pour $\phi=1,$ $X_t=X_{t-1}+\varepsilon_t$ peut s'écrire

$$X_t - X_{t-h} = \varepsilon_t + \varepsilon_{t-1} + \dots + \varepsilon_{t-h+1},$$

et donc $\mathbb{E}(X_t - X_{t-h})^2 = h\sigma^2$. Or pour un processus stationnaire, il est possible de montrer que $\mathbb{E}(X_t - X_{t-h})^2 \leq 4V(X_t)$. Puisqu'il est impossible que pour tout $h, h\sigma^2 \leq 4V(X_t)$, le processus n'est pas stationnaire.

Si $|\phi| \neq 1$, il existe un unique processus stationnaire tel que $X_t - \phi X_{t-1} = \varepsilon_t$ pour tout $t \in \mathbb{Z}$, ou

$$(1 - \phi L) X_t = \varepsilon_t.$$

(ii) si $|\phi| < 1$ alors on peut inverser le polynôme, et

$$X_t = (1 - \phi L)^{-1} \varepsilon_t = \sum_{i=0}^{\infty} \phi^i \varepsilon_{t-i} \text{ (en fonction du passé de } (\varepsilon_t) \text{)}.$$
 (24)

(iii) si $|\phi| > 1$ alors on peut inverser le polynôme, et

$$X_t = -\frac{1}{\phi} F \left(1 - \frac{1}{\phi} F \right)^{-1} \varepsilon_t = -\sum_{i=1}^{\infty} \phi^{-i} \varepsilon_{t+i} \text{ (en fonction du futur de } (\varepsilon_t) \text{)}.$$

La représentation canonique est alors

$$X_t - \frac{1}{\phi} X_{t-1} = \eta_t,$$

οù

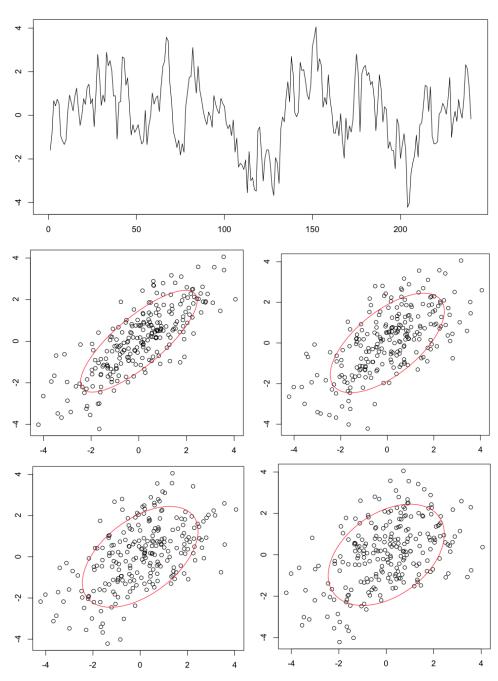
$$\eta_t = (1 - \phi F) (1 - \phi L)^{-1} \varepsilon_t = -\phi \varepsilon_{t+1} + (1 - \phi^2) \sum_{i=0}^{\infty} \phi^i \varepsilon_{t-i}.$$

Proposition 154. La fonction d'autocorrélation est donnée par $\rho(h) = \phi^h$.

Proof. Cette expression s'obtient à partir des relations du type (24), ou en notant que $\rho(h) = \phi \rho(h-1)$.

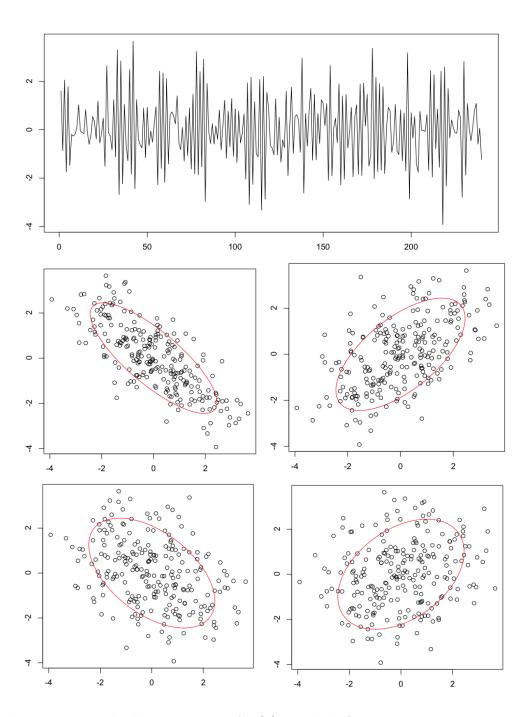
On peut visualiser cette autocorrélation sur les nuages de points (X_{t-1}, X_t) , (X_{t-2}, X_t) , etc, pour un processus AR(1) avec $\phi > 0$

```
> X=arima.sim(n = 240, list(ar = 0.8),sd = 1)
> plot(X)
> n=240; h=1
> plot(X[1:(n-h)],X[(1+h):n])
> library(ellipse)
> lines(ellipse(0.8^h), type = '1',col="red")
```



ou un processus AR(1) avec $\phi < 0$

```
> X=arima.sim(n = 240, list(ar = -0.8),sd = 1)
```



La densité spectrale d'un processus AR(1) est de la forme

$$f(\omega) = \frac{\sigma^2}{2\pi} \frac{1}{1 + \phi^2 - 2\phi \cos \omega},$$

qui correspond au graphique ci-dessous, avec $\phi > 0$ (les courbes sont ici présentées dans la même base 1: f(0) = 1),

Les valeurs les plus importantes sont obtenues aux basses fréquences, les fonctions

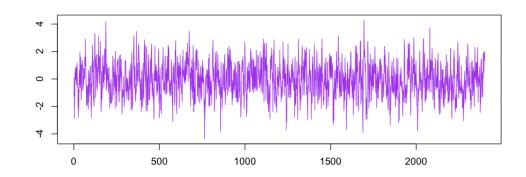
 ϕ étant décroissantes sur $[0, \pi]$. Dans les trois exemples ci-dessous, les ε_t seront pris gaussiens, $\varepsilon_t \sim \mathcal{N}(0, 1)$

A retenir 155. Un processus $AR(1): X_t = \phi X_{t-1} + \varepsilon_t$ sera auto-corrélé positivement $si \ 0 < \phi < 1$, et autocorrélé négativement $si \ -1 < \phi < 0$. Cette série va osciller autour de 0, en s'en écartant suivant la valeur ε_t du processus d'innovation ($si \ -1 < \phi < +1$). $Si \ \phi = +1$, on obtient une marche aléatoire, et $si \ \phi > +1$ ou $\phi < -1$ le processus n'est par stationnaire, et on obtient un modèle qui explosera (à moyen terme). La valeur ϕ , dans le cas où le processus est stationnaire, est la corrélation entre deux dates consécutives $\phi = corr(X_t, X_{t-1})$.

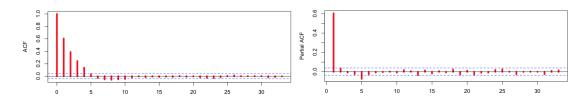
$$AR\left(1\right) : \begin{cases} Fonction \ d'autocorr\'elation \\ Fonction \ d'autocorr\'elation \ partielle \end{cases} \begin{cases} \phi > 0 \ d\'ecroissance \ exponentielle \\ \phi < 0 \ sinuso\"ide \ amortie \\ premi\`ere \ non \ nulle \ (signe = signe \ de \ \rho) \\ toutes \ nulles \ apr\`es \end{cases}$$

Considérons un processus AR(1) stationnaire avec $\phi_1 = 0.6$.

```
> X=arima.sim(n = 2400, list(ar = 0.6),sd = 1)
> plot(X)
```

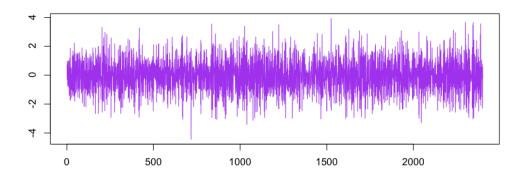


```
> plot(acf(X),lwd=5,col="red")
> plot(pacf(X),lwd=5,col="red")
```

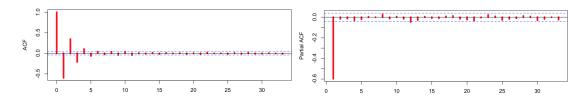


Considérons un processus AR(1) stationnaire avec $\phi_1 = -0.6$.

```
> X=arima.sim(n = 2400, list(ar = -0.6),sd = 1)
> plot(X)
```



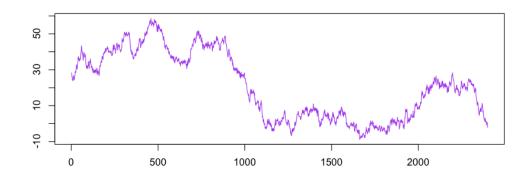
- > plot(acf(X),lwd=5,col="red")
- > plot(pacf(X),lwd=5,col="red")



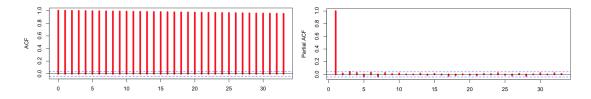
Considérons un processus AR(1) presque plus stationnaire avec $\phi_1 = 0.999$.

```
> X=arima.sim(n = 2400, list(ar = 0.999),sd = 1)
```

> plot(X)



- > plot(acf(X),lwd=5,col="red")
- > plot(pacf(X),lwd=5,col="red")



6.5.4 Le processus AR(2)

Ces processus sont également appelés modèles de Yule, dont la forme générale est

$$(1 - \phi_1 L - \phi_2 L^2) X_t = \varepsilon_t,$$

où les racines du polynôme caractéristique $\Phi(z) = 1 - \phi_1 z - \phi_2 z^2$ sont supposées à l'extérieur du disque unité (de telle sorte que le processus ε_t corresponde à l'innovation). Cette condition s'écrit

$$\begin{cases} 1 - \phi_1 + \phi_2 > 0 \\ 1 + \phi_1 - \phi_2 > 0 \\ \phi_1^2 + 4\phi_2 > 0, \end{cases}$$

c'est à dire que le couple (ϕ_1, ϕ_2) doit se trouver dans une des 4 parties ci-dessous, La fonction d'autocorrélation satisfait l'équation de récurence

$$\rho(h) = \phi_1 \rho(h-1) + \phi_2 \rho(h-2)$$
 pour $h \ge 2$,

et la fonction d'autocorrélation partielle vérifie

$$a(h) = \begin{cases} \rho(1) \text{ pour } h = 1\\ \left[\rho(2) - \rho(1)^{2}\right] / \left[1 - \rho(1)^{2}\right] \text{ pour } h = 2\\ 0 \text{ pour } h \ge 3. \end{cases}$$

Exemple 156. *Processus* AR(0.5, 0.3) - cas 1 -

Exemple 157. Processus AR(-0.5, 0.3) - cas 2 -

Exemple 158. Processus AR(-0.5, -0.7) - cas 3 -

Exemple 159. Processus AR(0.5, -0.7) - cas 4 -

Dans le cas d'un modèle AR(2) avec constante, de la forme $(1 - \phi_1 L - \phi_2 L^2) X_t = \phi_0 + \varepsilon_t$ on peut alors noter que l'espérance de X_t est

$$\mathbb{E}(X_t) = \frac{\phi_0}{1 - \phi_1 - \phi_2} \text{ dès lors que } \phi_1 + \phi_2 \neq 1.$$

En utilisant les équations de Yule Walker, nous avions noté que la fonction d'autocorrélation vérifiait la relation de récurence suivante,

$$\begin{cases} \rho(0) = 1 \text{ et } \rho(1) = \phi_1 / (1 - \phi_2), \\ \rho(h) = \phi_1 \rho(h - 1) + \phi_2 \rho(h - 2) \text{ pour } h \ge 2, \end{cases}$$

c'est à dire que le comportement de cette suite peut être décrit en étudiant le polynôme caractéristique associé, $x^2 - \phi_1 x - \phi_2 = 0$. Dans le cas où le polynôme admet deux racines réelles, ω_1 et ω_2 où $\omega = \left(\phi_1 \pm \sqrt{\phi_1^2 + 4\phi_2}\right)/2$, alors le polynôme autorégressif peut s'écrire $(1 - \phi_1 L - \phi_2 L^2) = (1 - \omega_1 L)(1 - \omega_2 L)$: le modèle AR(1) peut être vu alors comme un modèle AR(1) appliqué à un processus AR(1). L'autocorrélogramme présente une décroissante suivant un mélange d'exponentielles. Quand les racines sont complexes (conjuguées), alors les $\rho(h)$ présentent une évolution sinusoïdale amortie. On obtient alors des cycles stochastiques, de longueur moyenne $2\pi/\cos^{-1}(\phi_1/2\sqrt{-\phi_2})$.

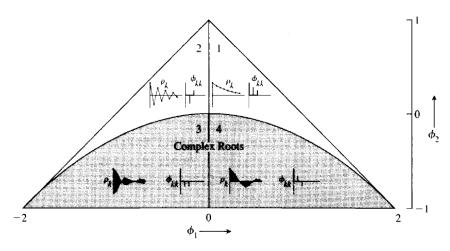


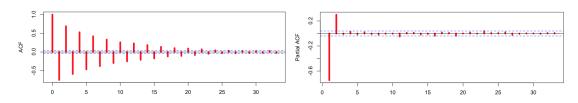
Figure 3.2 Typical autocorrelation and partial autocorrelation functions ρ_k and ϕ_{kk} for various stationary AR(2) models. (From [183].)

(tiré de Box, Jenkins & Reinsel (1994))

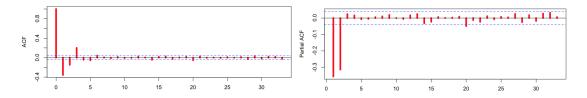
A retenir 160. Le comportement d'un processus $AR(2): X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t$ dépendra fortement des racines de son équation charactéristique $1 - \phi_1 . z - \phi_2 . z^2 = 0$. Le cas le plus intéressant est celui où l'équation charactéristique a deux racines complexes conjuguées $r \exp(\pm i\theta)$ pour r < 1: le processus est alors stationnaire (et oscille alors autour de 0, sans exploser, de la même façon que les processus AR(1) dans le cas où $|\phi| < 1$). Le processus est alors quasi-cyclique, de fréquence θ , avec un bruit aléatoire.

```
AR(2): \begin{cases} Fonction \ d'autocorrélation \\ Fonction \ d'autocorrélation \\ Fonction \ d'autocorrélation partielle \end{cases} \begin{cases} deux \ premières \ non \ nulles \\ toutes \ nulles \ après \end{cases}
> X=arima.sim(n = 2400, \ list(ar = c(0.6,0.4)), sd = 1)
> plot(acf(X), lwd=5, col="red")
> plot(pacf(X), lwd=5, col="red")
> X=arima.sim(n = 2400, \ list(ar = c(0.6,-0.4)), sd = 1)
> plot(acf(X), lwd=5, col="red")
> plot(acf(X), lwd=5, col="red")
> plot(pacf(X), lwd=5, col="red")
> plot(pacf(X), lwd=5, col="red")
```

```
> X=arima.sim(n = 2400, list(ar = c(-0.6,0.4)),sd = 1)
> plot(acf(X),lwd=5,col="red")
> plot(pacf(X),lwd=5,col="red")
```



- > X=arima.sim(n = 2400, list(ar = c(-0.6,-0.4)),sd = 1)
- > plot(acf(X),lwd=5,col="red")
- > plot(pacf(X),lwd=5,col="red")



6.6 Les processus moyenne-mobile : MA(q)

Définition 161. On appelle processus moyenne mobile ('moving average') d'ordre q, noté MA(q), un processus stationnaire (X_t) vérifiant une relation du type

$$X_{t} = \varepsilon_{t} + \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i} \text{ pour tout } t \in \mathbb{Z},$$
 (25)

où les θ_i sont des réels et (ε_t) est un bruit blanc de variance σ^2 . (25) est équivalent à l'écriture

$$X_t = \Theta(L) \varepsilon_t \text{ où } \Theta(L) = \mathbb{I} + \theta_1 L + \dots + \theta_q L^q.$$

Remarque 162. Encore une fois, nous allons utiliser dans cette partie des modèles de la forme (25), toutefois, dans certains ouvrages, la convention est d'écrire ces modèles sous la forme $\Theta(L) = \mathbb{I} - \theta_1 L - \dots - \theta_q L^q$. En particulier pour les logiciels d'économétrie, il convient de vérifier le signe attribué aux coefficients de la forme MA (cf exercice 15 de l'examen de 2002/2003).

Contrairement aux processus AR(p), les processus MA(q) sont toujours des processus stationnaires. Les processus $MA(\infty)$ sont stationnaires si et seulement si $\sum_{i=1}^{\infty} \theta_i^2$ est finie. Pour rappel, un processus AR(p) est stationnaire si les racines du polynôme retard sont à l'extérieur du cercle unité.

De la même façon que pour les AR(p), il est possible d'inverser le polynôme Θ dans le cas où ses racines sont de module différent de 1 (quitte à changer des bruit blanc, comme pour les processus AR). Supposons que Θ n'ait pas de racines de module égal à 1, et

considérons le polynôme Θ^* obtenu en remplaçant les racines de Θ de module inférieur à 1 par leur inverse. Le processus (η_t) défini par la relation $X_t = \Theta^*(L) \eta_t$ est là aussi un bruit blanc, dont la variance Σ^2 est définie par

$$\Sigma^2 = \sigma^2 \left[\prod_{i=r+1}^p |\alpha_i|^2 \right]^{-1},$$

où α_i sont les racines de module inférieur à 1. Aussi, la variance de (η_t) est ici supérieure à celle de (ε_t) . Par le suite, on supposera que le processus MA est sous forme canonique, c'est à dire que toutes les racines de Θ sont de module supérieur à 1.

6.6.1 Propriétés des autocorrélations

La fonction d'autocovarariance est donnée par

$$\begin{split} \gamma\left(h\right) &= & \mathbb{E}\left(X_{t}X_{t-h}\right) \\ &= & \mathbb{E}\left(\left[\varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \ldots + \theta_{q}\varepsilon_{t-q}\right]\left[\varepsilon_{t-h} + \theta_{1}\varepsilon_{t-h-1} + \ldots + \theta_{q}\varepsilon_{t-h-q}\right]\right) \\ &= & \begin{cases} & \left[\theta_{h} + \theta_{h+1}\theta_{1} + \ldots + \theta_{q}\theta_{q-h}\right]\sigma^{2} & \text{si } 1 \leq h \leq q \\ & \text{si } h > q, \end{cases} \end{split}$$

avec, pour h = 0, la relation

$$\gamma(0) = \left[1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2\right] \sigma^2.$$

Cette dernière relation peut se réécrire

$$\gamma(k) = \sigma^2 \sum_{j=0}^{q} \theta_j \theta_{j+k}$$
 avec la convention $\theta_0 = 1$.

D'où la fonction d'autocovariance,

$$\rho(h) = \frac{\theta_h + \theta_{h+1}\theta_1 + \dots + \theta_q\theta_{q-h}}{1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2} \text{ si } 1 \le h \le q,$$

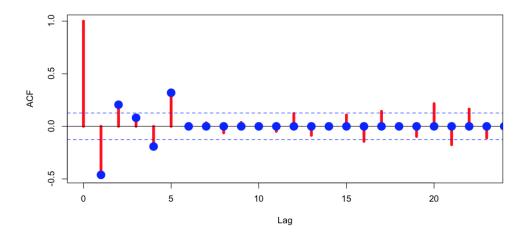
et $\rho(h) = 0$ pour h > q.

On peut noter en particulier que $\gamma(q) = \sigma^2 \theta_q \neq 0$, alors que $\gamma(q+1) = 0$. Cette propriété sera relativement pratique pour faire l'estimation de l'ordre de processus MA.

On peut calculer les autocorrélations à la main

```
> rho=function(h,theta){
+ theta=c(1,theta)
+ q=length(theta)
+ if(h>=q) ACF=0 else{sn=0;sd=0}
+ for(i in 1:(q-h)) sn=sn+theta[i]*theta[i+h]
+ for(i in 1:(q)) sd=sd+theta[i]^2
+ ACF=sn/sd}
```

```
+ return(ACF)}
>
> THETA=c(-.6,.7,-.4,0,.9)
> X=arima.sim(list(ma = THETA),n=240)
> acf(X,col="red",lwd=5)
>
> R=function(h) rho(h,THETA)
> points(1:24,Vectorize(R)(1:24),pch=19,cex=2,col="blue")
```



Exemple 163. Le graphique ci-dessous montre l'évolution d'un processus MA(5), avec un bruit blanc gaussien, de variance 1, avec à droite, l'autocorrélogramme associé, pour

$$X_t = \varepsilon_t - 0.7\varepsilon_{t-1} + 0.8\varepsilon_{t-2} + 0.3\varepsilon_{t-3} - 0.1\varepsilon_{t-4} + 0.7\varepsilon_{t-5}$$

On retrouve bien sur cette simulation de processus MA(5) le fait que les autocorrélations s'annulent pour h > 5.

A retenir 164. Les processus MA sont toujours stationnaire, mais ils ne sont inversibles que si les racines du polynôme charactéristiques sont à l'extérieur du disque unité.

On peut noter que s'il n'y a pas de résultat particulier pour les autocorrélations partielles, on a malgré tout le résultat suivant

Proposition 165. Si (X_t) suit un processus MA(q), $X_t = \Theta(L)\varepsilon_t = \varepsilon_t + \theta_1\varepsilon_{t-1} + ... + \theta_q\varepsilon_{t-q}$, alors les autocorrélations inverves ρi (h) satisfont les équations de Yule-Walker inverse,

$$\rho i(h) + \theta_1 \rho i(h-1) + ... + \theta_q \rho i(h-q) = 0 \text{ pour } h = 1, 2, ..., q.$$

En particulier, $\rho i(h)$ décroit exponentiellement avec h.

Proof. Par définition $\rho i(h) = \gamma_i(h)/\gamma_i(0)$ avec $\gamma_i(h) = \int_{-\pi}^{\pi} \frac{1}{f_X(\omega)} e^{i\omega h} d\omega$. On peut alors écrire, si $X_t = \Theta(L)\varepsilon_t$

$$f_X(\omega) = \frac{\sigma_{\varepsilon}^2}{2\pi} \left| \Theta(e^{i\omega}) \right|^2 \text{ et donc } \frac{1}{f_X(\omega)} = \frac{2\pi}{\sigma_{\varepsilon}^2 \left| \Theta(e^{i\omega}) \right|^2}.$$

Soit $(Y_t)_{t\in\mathbb{Z}}$ un processus tel que $\Theta(L)Y_t=\eta_t$ i.e. (Y_t) suit un processus AR(q), et

$$\frac{\sigma_{\eta}^{2}}{2\pi} = f_{Y}(\omega) \left| \Theta(e^{i\omega}) \right|^{2}.$$

Donc:

$$f_Y(\omega) = \frac{\sigma_\eta^2}{2\pi} \frac{1}{|\Theta(e^{i\omega})|^2},$$

de telle sorte que

$$f_Y(\omega) = \frac{1}{f_X(\omega)} \iff \frac{2\pi}{\sigma_{\varepsilon}^2} = \frac{\sigma_{\eta}^2}{2\pi} \iff \sigma_{\eta}^2 = \frac{4\pi^2}{\sigma_{\varepsilon}^2}.$$

6.6.2 Le processus MA(1)

La forme générale des processus de type MA(1) est

$$X_t = \varepsilon_t + \theta \varepsilon_{t-1}$$
, pour tout $t \in \mathbb{Z}$,

où (ε_t) est un bruit blanc de variance σ^2 . Les autocorrélations sont données par

$$\rho(1) = \frac{\theta}{1 + \theta^2}$$
, et $\rho(h) = 0$, pour $h \ge 2$.

On peut noter que $-1/2 \le \rho(1) \le 1/2$: les modèles MA(1) ne peuvent avoir de fortes autocorrélations à l'ordre 1.

L'autocorrélation partielle à l'ordre h est donnée par

$$\psi(h) = \frac{(-1)^h \theta^h (\theta^2 - 1)}{1 - \theta^{2(h+1)}},$$

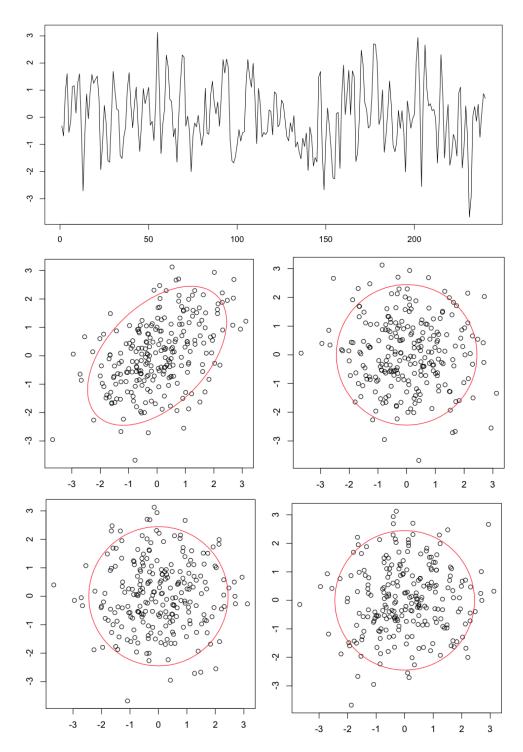
et plus générallement, les coefficients de régression sont donnés par

$$a_i(h) = -\frac{(-1)^i \theta^i}{1 - \theta^{2h+2}} + \frac{(-1)^i \theta^{2h+2-i}}{1 - \theta^{2h+2}},$$

dans le cas où $\theta \neq 1$.

On peut visualiser cette autocorrélation sur les nuages de points (X_{t-1}, X_t) , (X_{t-2}, X_t) , etc, pour un processus MA(1) avec $\theta > 0$

```
> X=arima.sim(n = 240, list(ma = 0.8),sd = 1)
> plot(X)
> n=240;h=1
> plot(X[1:(n-h)],X[(1+h):n])
> library(ellipse)
> lines(ellipse(.8/(1+.8^2)), type = '1',col="red")
```



La densité spectrale d'un processus $MA\left(1\right)$ est de la forme

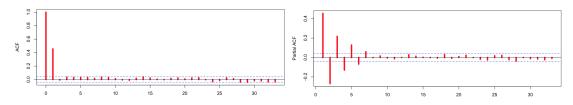
$$f_X(\omega) = \frac{\sigma^2}{2\pi} \left[\left(1 + \theta^2 \right) + 2\theta \cos \omega \right],$$

correspondant à un trend déterministe, auquel vient s'ajouter une constante. De cette dernière expression, on peut en déduire aisément que les autocorrélations inverses, dans

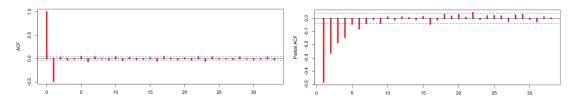
le cas d'un processus MA(1) vérifient

$$\rho i(h) = \left[\frac{\theta}{1+\theta^2}\right]^h \text{ pour tout } h \ge 1.$$

- > X=arima.sim(n = 2400, list(ma = .7), sd = 1)
- > plot(acf(X),lwd=5,col="red")
- > plot(pacf(X),lwd=5,col="red")



- > X=arima.sim(n = 2400, list(ma = -0.7), sd = 1)
- > plot(acf(X),lwd=5,col="red")
- > plot(pacf(X),lwd=5,col="red")



Remarque 166. Les graphiques ci-dessous représentent des simulations de processus MA(1), avec différents coefficients θ , repectivement, de gauche à droite 0, 1, 2, 5, -1 et -2

Comme on peut le voir, ces processus sont toujours stationnaires, quel que soit θ .

A retenir 167.

$$MA\left(1\right) : \begin{cases} Fonction \ d'autocorr\'elation \\ Fonction \ d'autocorr\'elation \ partielle \end{cases} \begin{cases} premi\`ere \ non \ nulle \ (signe = signe \ de \ \theta) \\ toutes \ nulles \ apr\`es \\ \theta > 0 \quad d\'ecroissance \ exponentielle \\ \theta < 0 \quad sinuso\'ide \ amortie \end{cases}$$

6.6.3 Le processus MA(2)

La forme générale de (X_t) suivant un processus MA(2) est

$$X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}.$$

La fonction d'autocorrélation est donnée par l'expression suivante

$$\rho(h) = \begin{cases} \theta_1 [1 + \theta_2] / [1 + \theta_1^2 + \theta_2^2] & \text{pour } h = 1 \\ \theta_2 / [1 + \theta_1^2 + \theta_2^2] & \text{pour } h = 2 \\ 0 & \text{pour } h \ge 3, \end{cases}$$

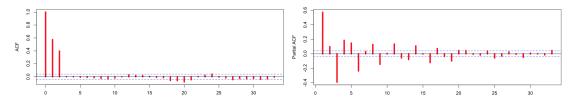
et la densité spectrale est donnée par

$$f_X(\omega) = \left| 1 + \theta_1 e^{i\omega} + \theta_2 e^{2i\omega} \right|^2.$$

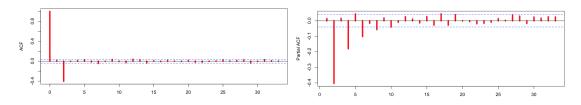
Les configurations possibles sont données dans les 2 exemples ci-dessous

```
> X=arima.sim(n = 2400, list(ma = c(0.7,0.9)),sd = 1)
> plot(acf(X),lwd=5,col="red")
```

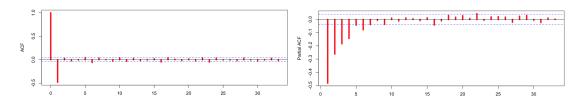
- > plot(pacf(X),lwd=5,col="red")



- > X=arima.sim(n = 2400, list(ma = c(0.7,-0.9)),sd = 1)
- > plot(acf(X),lwd=5,col="red")
- > plot(pacf(X),lwd=5,col="red")



- > X=arima.sim(n = 2400, list(ma = c(0.7,-0.9)),sd = 1)
- > plot(acf(X),lwd=5,col="red")
- > plot(pacf(X),lwd=5,col="red")



Les processus ARMA(p,q)6.7

Cette classe de processus généralise les processus AR(p) et MA(q).

Définition 168. On appelle processus ARMA(p,q), un processus stationnaire (X_t) vérifiant une relation du type

$$X_{t} - \sum_{i=1}^{p} \phi_{i} X_{t-i} = \varepsilon_{t} + \sum_{j=1}^{q} \theta_{i} \varepsilon_{t-i} \ pour \ tout \ t \in \mathbb{Z},$$
 (26)

où les θ_i sont des réels et (ε_t) est un bruit blanc de variance σ^2 . (22) est équivalent à l'écriture

$$\Phi(L) X_{t} = \Theta(L) \varepsilon_{t} \text{ où } \begin{cases} \Theta(L) = \mathbb{I} + \theta_{1}L + \dots + \theta_{q}L^{q} \\ \Phi(L) = \mathbb{I} - \phi_{1}L - \dots - \phi_{p}L^{p} \end{cases}$$

On supposera de plus de les polyômes Φ et Θ n'ont pas de racines en module strictement supérieures à 1 (écriture sous forme canonique), et n'ont pas de racine commune. On supposera de plus que les degrés de Θ et Φ sont respectivement q et p, au sens où $\theta_q \neq 0$ et $\phi_p \neq 0$. On dira dans ce cas que cette écriture est la forme minimale.

Les processus ARMA(p,q) peuvent donc se mettre

- (i) sous la forme $MA(\infty)$ en écrivant $X_t = \Phi(L)^{-1}\Theta(L)\varepsilon_t$, si toutes les racines de Φ sont à l'extérieur du disque unité.
- (ii) ou sous forme $AR(\infty)$ en écrivant $\Phi(L)\Theta(L)^{-1}X_t = \varepsilon_t$, si toutes les racines de Θ sont à l'extérieur du disque unité.

Remarque 169. Un processus AR(p) est un processus ARMA(p,0) et un processus MA(q) est un processus ARMA(0,q).

6.7.1 Propriétés des autocorrélations

Proposition 170. Soit (X_t) un processus ARMA(p,q), alors les autocovariances $\gamma(h)$ satisfont

$$\gamma(h) - \sum_{i=1}^{p} \phi_i \gamma(h-i) = 0 \text{ pour } h \ge q+1.$$

$$(27)$$

Proof. La forme ARMA(p,q) de (X_t) est

$$X_t - \sum_{j=1}^p \phi_j X_{t-j} = \varepsilon_t + \sum_{j=1}^q \theta_j \varepsilon_{t-j}$$

En multipliant par X_{t-h} , où $h \geq q+1$, et en prenant l'espérance, on obtient (27).

De plus, on a la relation suivante

Proposition 171. Soit (X_t) un processus ARMA(p,q), alors les autocorrélations $\gamma(h)$ satisfont

$$\gamma(h) - \sum_{i=1}^{p} \phi_{i} \gamma(h-i) = \sigma^{2} \left[\theta_{h} + h_{1} \theta_{h+1} + \dots + h_{q-h} \theta_{q} \right] \ pour \ 0 \le h \le q,$$
 (28)

où les h_i correspondent aux coefficients de la forme $MA(\infty)$ de (X_t) ,

$$X_t = \sum_{j=0}^{+\infty} h_j \varepsilon_{t-j}.$$

Exemple 172. Les sorties ci-dessous correspondent aux autocorrélogrammes de processus ARMA(2,1), ARMA(1,2) et ARMA(2,2) respectivement de gauche à droite

Pour établir une règle quant au comportement de la fonction d'autocorrélation, deux cas sont à envisager,

- Si p > q, la fonction d'autocorrélation se comporte comme un mélange de fonctions exponentielles/sinusoïdales amorties
- Si $q \ge p$, le q-p+1 premières valeurs de l'autocorrélogramme ont un comportement propre, et pour $k \ge q-p+1$, l'autocorrélogramme tend vers 0.

Des propriétés symétriques existent pour l'autocorrélogramme partiel.

Remarque 173. Avec les notations (26), la variance de X_t est donnée par

$$V(X_t) = \gamma(0) = \frac{1 + \theta_1^2 + \dots + \theta_q^2 + 2\phi_1\theta_1 + \dots + \phi_h\theta_h}{1 - \phi_1^2 - \dots - \phi_p^2} \sigma^2 \text{ où } h = \min(p, q).$$

6.7.2 Densité spectrale des processus ARMA(p,q)

Proposition 174. La densité spectrale du processus $ARMA(X_t)$ stationnaire est une fraction rationnelle en $\exp(i\omega)$, et est donnée par

$$f_X(\omega) = \frac{\sigma^2}{2\pi} \frac{\left|\Theta\left(\exp\left[i\omega\right]\right)\right|^2}{\left|\Phi\left(\exp\left[i\omega\right]\right)\right|^2}.$$

6.7.3 Les processus ARMA(1,1)

Soit (X_t) un processus ARMA(1,1) défini par

$$X_t - \phi X_{t-1} = \varepsilon_t + \theta \varepsilon_{t-1}$$
, pour tout t,

où $\phi \neq 0$, $\theta \neq 0$, $|\phi| < 1$ et $|\theta| < 1$. Ce processus peut de mettre sous forme $AR(\infty)$, puisque

$$(1 - \phi L) (1 + \theta L)^{-1} X_t = \Pi(L) X_t = \varepsilon_t,$$

οù

$$\Pi(L) = (1 - \phi L) \left[1 - \theta L + \theta^2 L^2 + \dots + (-1)^h \theta^h L^h + \dots \right],$$

aussi

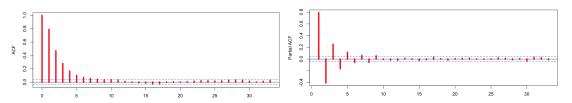
$$\Pi(L) = \sum_{i=0}^{+\infty} \pi_i L^i \text{ où } \left\{ \begin{array}{l} \pi_0 = 1 \\ \pi_i = (-1)^i [\phi + \theta] \theta^{i-1} \text{ pour } i \ge 1. \end{array} \right.$$

La fonction d'autocorrélation s'écrit

$$\begin{cases} \rho\left(1\right) = \left(1 + \phi\theta\right)\left(\phi + \theta\right) / \left[1 + \theta^2 + 2\phi\theta\right] \\ \rho\left(h\right) = \phi^h \rho\left(1\right) \text{ pour } h \ge 2, \end{cases}$$

et la fonction d'autocorrélations partielles a le même comportement qu'une moyenne mobile, avec comme valeur initiale $a(1) \rho(1)$. La sortie ci-dessous montre l'évolution de l'autocorrélogramme dans le cas d'un ARMA(1,1)

- > X=arima.sim(n = 2400, list(ar=0.6, ma = 0.7), sd = 1)
- > plot(acf(X),lwd=5,col="red")
- > plot(pacf(X),lwd=5,col="red")



A retenir 175.

6.8 Introduction aux modèles linéaires non-stationnaires

Tous les processus décrits dans les parties précédantes sont des processus stationnaires (X_t) . En fait, la plupart des résultats obtenus dans les parties précédantes reposent sur l'hypothèse $(très\ forte)$ de stationnarité. C'est le cas par exemple de la loi des grands nombres telle qu'elle est formulée dans le théorème ergodique. On peut toutefois noter qu'un certain nombre de processus, très simples, sont non-stationnaires.

Exemple 176. Marche aléatoire - La marche aléatoire est définie de la façon suivante : soit $\varepsilon_1, ..., \varepsilon_t, ...$ une suite de variables i.i.d. et on supposera que ε_t ademet une variance finie, notée σ^2 . On supposera également les ε_t centrés. Une marche aléatoire Y_t vérifie

$$Y_t = Y_{t-1} + \varepsilon_t$$
, pour tout t ,

avec la convention $Y_0 = 0$. On peut noter que $Y_t = Y_0 + Y_1 + ... + Y_{t-1}$. On a alors

$$\left\{ \begin{array}{l} \mathbb{E}\left(Y_{t}\right) = 0 \\ V\left(Y_{t}\right) = \sigma^{2}t \end{array} \right. , \ cov\left(Y_{s}; Y_{t}\right) = \sigma^{2}\left(s \wedge t\right) \ \ et \ corr\left(Y_{s}, Y_{t}\right) = \frac{s \wedge t}{\sqrt{st}} \ \ pour \ s, t \geq 0. \end{array}$$

En notant \mathcal{F}_t la filtration générée par les $Y_0, ..., Y_t$, c'est à dire $\mathcal{F}_t = \sigma \{Y_0, ..., Y_t\}$, on peut montrer que

$$\mathbb{E}\left(Y_s|\mathcal{F}_t\right) = Y_t \ pour \ tout \ s \ge t \ge 0.$$

Aussi, le processus (Y_t) , muni de sa filtration naturelle, est une martingale. La marche aléatoire est "stationnaire en moyenne", mais pas en variance. La non stationnarité de cette série pose de gros problème statistique : considérons par exemple la moyenne définie sur les n premières observations, soit

$$\overline{Y}_n = \frac{1}{n} \sum_{t=1}^n Y_t,$$

alors, de façon triviale, $\mathbb{E}\left(\overline{Y}_n\right) = 0$ mais $V\left(\overline{Y}_n\right) = \mathcal{O}\left(n\right)$. Plus précisément, la variance de cette moyenne est

$$V\left(\overline{Y}_n\right) = \sigma^2 \frac{n(n+1)(2n+1)}{6n^2}.$$

Exemple 177. Tendance linéaire -Un processus "tendance linéaire" est défini de la façon suivante : soit $\varepsilon_1, ..., \varepsilon_t, ...$ une suite de variables i.i.d. et on supposera que ε_t ademet une variance finie, notée σ^2 . On supposera également les ε_t centrés. Une tendance linéaire Y_t vérifie

$$Y_t = \alpha t + \varepsilon_t \text{ pour tout } t, \text{ où } \alpha \in \mathbb{R}.$$

Ce processus vérifie

$$\begin{cases} \mathbb{E}(Y_t) = \alpha t \\ V(Y_t) = \sigma^2 \end{cases} \quad cov(Y_s; Y_t) = corr(Y_s, Y_t) = 0 \ pour \ s, t \ge 0,$$

et $\mathbb{E}(Y_s|\mathcal{F}_t) = \alpha s$ pour tout $s \geq t \geq 0$. C'est à dire que ce processus n'est pas une martingale, et les variables du processus sont indépendantes (au sens non-corrélées). En notant comme précédemment \overline{Y}_n .la moyenne des n premières observations, on a

$$\mathbb{E}\left(\overline{Y}_n\right) = \alpha \frac{n+1}{2} \text{ et } V\left(\overline{Y}_n\right) = \frac{\sigma^2}{n} \to 0 \text{ quand } n \to \infty.$$

Exemple 178. Marché aléatoire avec drift - Ce processus est défini comme mélange des deux précédants : soit X_t une marche aléatoire, soit $X_t = X_{t-1} + \varepsilon_t$, alors Y_t , marche aléatoire avec drift, est défini par

$$Y_t = \alpha t + X_t \text{ pour tout } t, \text{ où } \alpha \in \mathbb{R}$$
$$= [\alpha + \varepsilon_1] + [\alpha + \varepsilon_2] + \dots + [\alpha + \varepsilon_t].$$

On a alors les propriétés suivantes

$$\left\{ \begin{array}{l} \mathbb{E}\left(Y_{t}\right) = \alpha t \\ V\left(Y_{t}\right) = \sigma^{2} t \end{array} \right. \quad cov\left(Y_{s}; Y_{t}\right) = \sigma^{2}\left(s \wedge t\right) \ \ et \ corr\left(Y_{s}, Y_{t}\right) = \frac{s \wedge t}{\sqrt{st}} \ \ pour \ s, t \geq 0,$$

et
$$\mathbb{E}(Y_s|\mathcal{F}_t) = \alpha s + X_t = \alpha[s-t] + Y_t$$
 pour tout $s \ge t \ge 0$.

Les processus stationnaires ayant beaucoup de propriétés, il peut apparaitre intéressant de trouver une transformation "simple" du processus non-stationnaire que le rendrait stationnaire. La méthode la plus courament utilisée est de prendre des différences :

Exemple 179. Marche aléatoire - Soit (Y_t) une marche aléatoire,

$$Y_t = Y_{t-1} + \varepsilon_t$$
, pour tout t ,

alors $Z_t = Y_t - Y_{t-1}$ est stationnaire (et $Z_t = \varepsilon_t$).

Exemple 180. Tendance linéaire - Une tendance linéaire Y_t vérifie

$$Y_t = \alpha t + \varepsilon_t$$
, pour tout t , où $\alpha \in \mathbb{R}$,

alors $Z_t = Y_t - Y_{t-1} = \alpha + \varepsilon_t - \varepsilon_{t-1}$: il s'agit d'un processus MA(1) (non inversible, mais stationnaire comme tout processus MA).

Exemple 181. Marché aléatoire avec drift - Soit Y_t , marche aléatoire avec drift,

$$Y_t = \alpha t + X_t = [\alpha + \varepsilon_1] + [\alpha + \varepsilon_2] + \dots + [\alpha + \varepsilon_t],$$

alors $Z_t = Y_t - Y_{t-1} = \alpha + X_t - X_{t-1} = \alpha + \varepsilon_t$ est stationnaire.

C'est cette importance de la différenciation ($dont\ l'intégration\ est\ l'opération\ duale$) qui a permis de passer des modèles ARMA aux modèles ARIMA.

6.9 Les processus ARIMA(p, d, q)

L'hypothèse de stationnarité, présente - sous certaines conditions - dans les modèles ARMA, n'est que rarement vériée pour des séries économiques. En revanche, on peut considérer les différences premières $\Delta X_t = X_t - X_{t-1}$, ou des différences à des ordres plus élevés

$$\begin{cases} \Delta X_t = X_t - X_{t-1} = (1 - L) X_t \\ \Delta^d X_t = (1 - L)^d X_t \end{cases}$$

Définition 182. Un processus (X_t) est un processus ARIMA(p,d,q) - autorégressif moyenne mobile intégré - s'il vérifie une équation du type

$$\Phi(L) (1-L)^d X_t = \Theta(L) \varepsilon_t \text{ pour tout } t \ge 0$$

où

$$\begin{cases} \Phi\left(L\right) = \mathbb{I} - \phi_1 L - \phi_2 L^2 + \dots - \phi_p L^p \text{ où } \phi_p \neq 0 \\ \Theta\left(L\right) = \mathbb{I} + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q \text{ où } \theta_q \neq 0 \end{cases}$$

sont des polynômes dont les racines sont de module supérieur à 1, et où les conditions initiales

$$Z_{-1} = \{X_{-1}, ..., X_{-p}, \varepsilon_{-1}, ..., \varepsilon_{-q}\}$$

sont non-corrélées avec $\varepsilon_0, ..., \varepsilon_t, ...$ et où le processus (ε_t) est un bruit blanc de variance σ^2 .

Remarque 183. Si les processus ARMA peuvent être définis sur \mathbb{Z} , il n'en est pas de même pour les processus ARIMA qui doivent commencer à une certaine date (t=0 par convention), avec des valeurs initiales $(q \text{ valeurs pour les } \varepsilon_t, \text{ et } p+d \text{ pour } X_t)$. En effet, si l'on considère un processus X_t , ARIMA(0,1,0) (= marche aléatoire), soit $(1-L) X_t = \varepsilon_t$. On peut écrire

$$X_t = X_0 + \sum_{k=1}^t \varepsilon_k \text{ mais pas } X_t = \sum_{k=-\infty}^t \varepsilon_k$$

car cette somme ne converge pas dans L^2 . Cette importance de l'initialisation peut se comprendre sur les graphique ci-dessous : considérer un processus AR(1) simulé (ou un processus ARMA de façon plus générale), à partir de la date t=0 : on peut noter qu'à relativement court terme les processus (X_t) et (Y_t) simulés respectivement à partir de x et y sont indentiques : $\mathcal{L}(X_t) = \mathcal{L}(Y_t)$, les deux processus ont la même loi, quelle que soit la valeur initiale (i.e. une loi normale dans le cas d'un bruit blanc gaussien).

En revanche, pour un processus ARIMA(1,1,0) - c'est à dire un processus AR(1) intégré, la valeur initiale est très importante : pour deux valeurs initiales différentes, les deux processus n'ont pas la même loi $\mathcal{L}(X_t) \neq \mathcal{L}(Y_t)$,

Les deux processus intégrés, à droite, ont sensiblement des lois différentes à la date t.

Remarque 184. Soit Y_t un processus intégré d'ordre d, au sens où il existe (X_t) stationnaire tel que $Y_t = (1 - L)^d X_t$ satisfaisant $\Phi(L) Y_t = \mu + \Theta(L) \varepsilon_t$ Alors, (Y_t) n'est pas un processus ARMA car il ne commence pas en $-\infty$. En fait, (Y_t) est asymptotiquement équivalent à un processus stationnaire ARMA.

Proposition 185. Soit (X_t) un processus ARIMA(p, d, q) alors le processus $(\Delta^d X_t)$ converge vers un processus ARMA(p, q) stationnaire.

6.9.1 Processus ARIMA et formes AR ou MA

Proposition 186. Soit (X_t) un processus ARIMA(p, d, q) de valeurs initiales Z_{-1} , alors (i) (X_t) peut s'écrire sous la forme suivante, fonction du passé du bruit,

$$X_{t} = \sum_{j=1}^{t} h_{j} \varepsilon_{t-j} + h^{*}(t) Z_{-1},$$

où les h_j sont les coefficients de la division selon les puissances croissantes de Θ par Φ , et $h^*(t)$ est un vecteur (ligne) de fonctions de t

(ii) (X_t) peut s'écrire sous la forme suivante, fonction du passé de X_t

$$X_{t} = \sum_{j=1}^{t} \pi_{j} X_{t-j} + \overline{h}^{*}(t) Z_{-1} + \varepsilon_{t},$$

où les π_j sont les coefficients (pour $j \geq 1$) de la division selon les puissances croissantes de Φ par Θ , et \overline{h}^* (t) est un vecteur (ligne) de fonctions de t quand tend vers 0 quand $t \to \infty$.

Proof. (ii) La division selon les puissances croissantes de \mathbb{I} par Θ s'écrit, à l'ordre t,

$$\mathbb{I} = Q_t(Z)\Theta(Z) + Z^{t+1}R_t(Z) \text{ où } \deg(Q_t) = t \text{ et } \deg(R_t) \le q - 1.$$

Posons $\Psi(L) = (1 - L)^d \circ \Phi(L)$. Alors l'équation $\Psi(L) X_t = \Theta(L) \varepsilon_t$ peut s'écrire, en multipliant par $Q_t(Z)$,

$$Q_{t}\left(Z\right)\Psi\left(L\right)X_{t}=Q_{t}\left(Z\right)\Theta\left(L\right)\varepsilon_{t}=\left[\mathbb{I}-L^{t+1}R_{t}\left(L\right)\right]\varepsilon_{t}=\varepsilon_{t}-R_{t}\left(L\right)\varepsilon_{-1}.$$

En posant $\Pi_t(L) = Q_t(Z) \Psi(L)$ (de degré p + d + t fini) on peut écrire $\Pi_t(L) X_t = \varepsilon_t - R_t(L) \varepsilon_{-1}$, soit

$$\sum_{j=0}^{p+d+t} \pi_j X_{t-j} = \varepsilon_t - \sum_{j=0}^{q-1} r_j \varepsilon_{-1-j},$$

c'est à dire, en coupant la première somme,

$$\sum_{j=0}^{t} \pi_{j} X_{t-j} = \varepsilon_{t} - \underbrace{\sum_{j=t+1}^{t+p+d} \pi_{j} X_{t-j} - \sum_{j=0}^{q-1} r_{j} \varepsilon_{-1-j}}_{h'(t)Z_{-1}}.$$

6.10 Les modèles SARIMA

Les modèles SARIMA peuvent vus comme une généralisation des modèles ARIMA, contenant une partie saisonnière.

Définition 187. De façon générale, soient $s_1, ..., s_n$ n entiers, alors un processus (X_t) est un processus SARIMA(p, d, q) - autorégressif moyenne mobile intégré saisonnier - s'il vérifie une équation du type

$$\Phi(L)(1-L^{s_1})...(1-L^{s_n})X_t = \Theta(L)\varepsilon_t \text{ pour tout } t \geq 0$$

où $\Phi(L) = \mathbb{I} - \phi_1 L - \phi_2 L^2 + \dots - \phi_p L^p$ où $\phi_p \neq 0$ et $\Theta(L) = \mathbb{I} + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$ où $\theta_q \neq 0$.sont des polynômes dont les racines sont de module supérieur à 1, et où les conditions initiales

$$Z_{-1} = \{X_{-1}, ..., X_{-p}, \varepsilon_{-1}, ..., \varepsilon_{-q}\}$$

sont non-corrélées avec $\varepsilon_0, ..., \varepsilon_t, ...$ et où le processus (ε_t) est un bruit blanc de variance σ^2 .

Cette forme inclue les modèles ARIMA puisqu'il suffit de prendre n=d et $s_1=...=s_n=1$. Toutefois, les deux formes les plus utilisées sont les suivantes,

$$\Phi(L) (1 - L^s) X_t = \Theta(L) \varepsilon_t \text{ pour tout } t \ge 0$$

$$\Phi(L) (1 - L^s) (1 - L)^d X_t = \Theta(L) \varepsilon_t \text{ pour tout } t \ge 0$$

où un seul facteur saisonnier s intervient, soit appliqué à un processus ARMA dans le premier cas, soit appliqué à un processus ARIMA dans le second cas.

Exemple 188. Soit $S \in \mathbb{N} \setminus \{0\}$ correspondant à la saisonnalité, et considérons le processus défini par

$$X_{t} = (1 - \alpha L) (1 - \beta L^{S}) \varepsilon_{t} = \varepsilon_{t} - \alpha \varepsilon_{t-1} - \beta \varepsilon_{t-S} + \alpha \beta \varepsilon_{t-S-1}.$$

Les autocorrélations sont données par

$$\rho(1) = \frac{-\alpha (1 + \beta^2)}{(1 + \alpha^2) (1 + \beta^2)} = \frac{-\alpha}{1 + \alpha^2},$$

$$\rho(S - 1) = \frac{\alpha \beta}{(1 + \alpha^2) (1 + \beta^2)},$$

$$\rho(S) = \frac{-\beta (1 + \alpha^2)}{(1 + \alpha^2) (1 + \beta^2)} = \frac{-\beta}{1 + \beta^2},$$

$$\rho(S + 1) = \frac{\alpha \beta}{(1 + \alpha^2) (1 + \beta^2)},$$

et $\rho(h) = 0$ ailleurs. On peut noter que $\rho(S-1) = \rho(S+1) = \rho(1) \times \rho(S)$. Le graphique suivant montre l'autocorrélogramme (empirique) d'un tel processus simulé

Pour les autocorrélations partielles, jusqu'en S-2 (inclus), la fonction d'autocorrélation partielle est celle d'un MA(1) de paramètre α , puis la fonction est significative en S-1, S et S+1.

Exemple 189. Soit $S \in \mathbb{N} \setminus \{0\}$ correspondant à la saisonnalité, et considérons le processus défini par

$$(1 - \phi L^S) X_t = (1 - \alpha L) (1 - \beta L^S) \varepsilon_t \text{ ou } X_t - \phi X_{t-1} = \varepsilon_t - \alpha \varepsilon_{t-1} - \beta \varepsilon_{t-S} + \alpha \beta \varepsilon_{t-S-1}.$$

Les autocorrélations sont données par

$$\rho(1) = \frac{-\alpha (1 + \beta^2)}{(1 + \alpha^2) (1 + \beta^2)} = \frac{-\alpha}{1 + \alpha^2},$$

$$\rho(S - 1) = \frac{\alpha \left[\beta - \phi - \phi (\beta - \phi)^2 / (1 - \phi^2)\right]}{(1 + \alpha^2) \left[1 + (\beta - \phi)^2 / (1 - \phi^2)\right]},$$

$$\rho(S) = \frac{-(1 + \alpha^2)}{\alpha} \rho_{S-1},$$

avec $\rho(h)=0$ pour $2\leq h\leq S-2$, puis $\rho(S+1)=\rho(S-1)$ et $\rho(h)=\phi\rho(h-S)$ pour $h\geq S+2$. En particulier $\rho(kS)=\phi^{k-1}\rho(S)$. Le graphique suivant montre l'autocorrélogramme (empirique) d'un tel processus simulé

Exemple 190. Soit $S \in \mathbb{N} \setminus \{0\}$ correspondant à la saisonnalité, et considérons le processus défini par

$$(1 - \alpha L) (1 - \beta L^S) X_t = \varepsilon_t \text{ ou } X_t - \alpha X_{t-1} - \beta X_{t-S} + \alpha \beta X_{t-S-1} = \varepsilon_t.$$

Les autocorrélations partielles sont non nulles en 1, S et S+1. De plus la fonction d'autocorrélation vérifie l'équation de récurence

$$\rho(h) - \alpha \rho(h-1) - \beta \rho(h-S) + \alpha \beta \rho(h-S-1) = 0,$$

qui a pour polynôme caractéristique $(z - \alpha)(z^S - \beta)$, qui a pour racines α et les racines S-ièmes de β . Le graphique suivant montre l'autocorrélogramme (empirique) d'un tel processus simulé

Exemple 191. Soit $S \in \mathbb{N} \setminus \{0\}$ correspondant à la saisonnalité, et considérons le processus défini par

$$X_t = \left[1 - \alpha L - \beta L^S\right] \varepsilon_t = \varepsilon_t - \alpha \varepsilon_{t-1} - \beta \varepsilon_{t-S}.$$

On se retrouve dans un cadre assez proche de celui développé dans l'exemple (188), et l'on obtient la fonction d'autocorrélation suivante

$$\rho(1) = \frac{-\alpha}{1 + \alpha^2 + \beta^2}, \ \rho(S - 1) = \frac{\alpha\beta}{1 + \alpha^2 + \beta^2} \ et \ \rho(S) = \frac{-\beta}{1 + \alpha^2 + \beta^2}.$$

Le graphique suivant montre l'autocorrélogramme (empirique) d'un tel processus simulé

Exemple 192. Soit $S \in \mathbb{N} \setminus \{0\}$ correspondant à la saisonnalité, et considérons le processus défini par

$$X_t = \left[1 - \alpha L - \beta L^S - \gamma L^{S+1}\right] \varepsilon_t = \varepsilon_t - \alpha \varepsilon_{t-1} - \beta \varepsilon_{t-S}.$$

On se retrouve dans un cadre assez proche de celui développé dans l'exemple précédant, et l'on obtient la fonction d'autocorrélation suivante

$$\rho(1) = \frac{-\alpha + \beta \gamma}{1 + \alpha^2 + \beta^2 + \gamma^2}, \ \rho(S - 1) = \frac{\alpha \beta}{1 + \alpha^2 + \beta^2 + \gamma^2},$$

$$\rho\left(S\right) = \frac{\alpha\gamma - \beta}{1 + \alpha^2 + \beta^2 + \gamma^2} \ et \ \rho\left(S + 1\right) = \frac{-\gamma}{1 + \alpha^2 + \beta^2 + \gamma^2}.$$

Le graphique suivant montre l'autocorrélogramme (empirique) d'un tel processus simulé

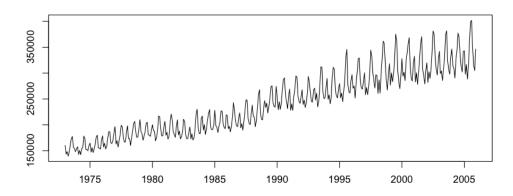
Hétérsoscédasticité et transformation de la variable X_t

Pour l'instant, la non-stationnarité de la série était vu en supposant que la série était intégré, ou saisonnière. Mais il est possible d'avoir une variance qui augemente sans pour autant avoir à supposer la série comme étant intégrée.

Comme pour les modèles de régression sur données individuelles, il peut être intéressant de modéliser non pas X, mais une transformation de cette variable, e.g. $\log X$. Et là encore, il est légitime d'essayer des transformations puissances, de type Box-Cox.

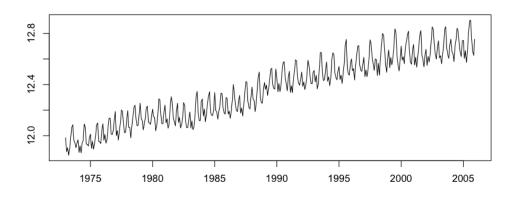
Considérons la série de production d'électicité, par mois, aux Etats-Unis,

- > library(Ecdat)
- > data(electricity)
- > plot(electricity)



Compte tenu de l'hétéroscédasticité de la série

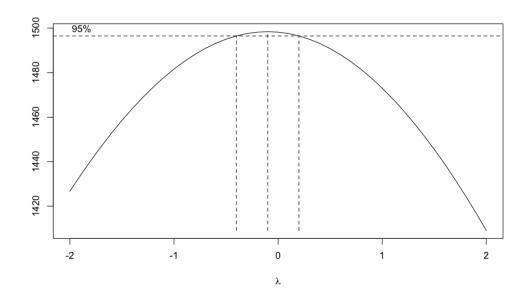
> plot(log(electricity))



Considérons de manière plus générale une transformation de type Box-Cox

$$g_{\lambda}(x) = \frac{x^{\lambda} - 1}{\lambda}$$
 avec le cas limite $g_0(x) = \log(x)$.

> BoxCox.ar(electricity)



6.11 Théorème de Wold

Théorème 193. Tout processus (X_t) , centré, et stationnaire au second ordre, peut être représenté sous une forme proche de la forme MA

$$X_t = \sum_{j=0}^{\infty} \theta_j \varepsilon_{t-j} + \eta_t,$$

où $(1) \ (\varepsilon_t) \ est \ l'innovation, \ au \ sens \ où \ \varepsilon_t = X_t - EL\left(X_t | X_{t-1}, X_{t-2}, \ldots\right),$

- $(2) \ EL\left(\varepsilon_{t} | X_{t-1}, X_{t-2}, \ldots\right) = 0, \ \mathbb{E}\left(\varepsilon_{t} X_{t-j}\right) = 0, \ \mathbb{E}\left(\varepsilon_{t}\right) = 0, \ \mathbb{E}\left(\varepsilon_{t}^{2}\right) = \sigma^{2} \ (ind\acute{e}pendant)$ de t) et $\mathbb{E}(\varepsilon_t \varepsilon_s) = 0$ pour $t \neq s$,
- (3) toutes les racines de $\Theta(L)$ sont à l'extérieur du cercle unité : le polynome Θ est inversible,

 - (4) $\sum_{j=0}^{\infty} \theta_j^2 < \infty$ et $\theta_0 = 1$, (5) les coefficients θ_j et le processus (ε_t) sont uniques,
 - (6) (η_t) vérifie $\eta_t = EL(\eta_t | X_{t-1}, X_{t-2}, ...)$.

La propriété (1) signifie que (ε_t) est l'estimation de X_t comme combinaison linéaire des valeurs passées, et (2) est simplement l'écriture des conditions d'orthogonalité de la projection. La propriété (4) est une conséquence de la stationnarité du processus. Ce théorème se démontre avec les différentes propriétés des espaces de Hilbert. Ce théorème dit juste que (X_t) peut être écrit comme une somme des erreurs de prévision.

Remarque 194. Ce théorème ne dit pas que les ε_t suivent une loi normale, ou que les ε_t sont i.i.d. (ils ont la même variance et sont non-corrélés).

Remarque 195. La propriété (2) dit que $EL(\varepsilon_t|X_{t-1},X_{t-2},...)=0$, ce qui ne signifie pas que $\mathbb{E}\left(\varepsilon_{t}|X_{t-1},X_{t-2},\ldots\right)=0$. L'écriture $EL\left(Y|X_{t-1},X_{t-2},\ldots\right)$ signifie que l'on recherche la meilleure approximation de Y comme combinaison linéaire du $passé\ de\ X_t,\ \alpha_1 X_{t-1} + \alpha_2 X_{t-2} + ... + \alpha_h X_{t-h} +$ L'espérance conditionnelle $\mathbb{E}(Y|X_{t-1},X_{t-2},...)$ est elle la meilleure approximation de Y comme fonction du passé de X_t , $g(X_{t-1}, X_{t-2}, ..., X_{t-h}, ...)$, où g n'est pas nécessairement linéaire.

Remarque 196. Cette représentation n'est unique que parce que l'on a les différentes conditions, en particulier (1) et (3). Par exemple, un processus de la forme $X_t = \eta_t + 2\eta_{t-1}$ où (η_t) est i.i.d. et de variance 1, est stationnaire. Mais sous cette forme, le polynôme MA n'est pas inversible. Pour trouver la représentation de Wold de ce processus, on va chercher θ et ε_t tels que $X_t = \varepsilon_t + \theta \varepsilon_{t-1}$. On peut alors montrer que $V(\varepsilon_t) = 2/\theta$ et que θ est nécessairement soit égal à 2, soit égal à 1/2. Le cas $\theta = 2$ et $V(\varepsilon_t) = 1$ correspond à l'écriture initiale. Mais $\theta = 1/2$ et $V(\varepsilon_t) = 4$ marche également, et le polynôme MA est alors inversible (comme nous l'avons vu précédement, il est toujours possible de réécrire un processus MA ou AR de façon inversible, à condition de changer la variance du bruit). Cette représentation est alors la répresentation de Wold.

Remarque 197. Ce théorème peut s'écrire de façon plus simple si l'on n'est pas intéressé par l'unicité de l'écriture : tout processus (X_t) stationnaire peut se mettre sous forme $MA(\infty)$,

$$X_t = \mu + \sum_{j=0}^{\infty} \theta_j \varepsilon_{t-j}.$$

6.12Théorie spectrale et processus $ARIMA \star \star \star$

Comme le rappelle Bourbonnais (1998), l'analyse des séries temporelles dans le dommaine des fréquences (ou analyse spectrale) "est souvent plus riche en terme d'interprétation,

mais nécessite un recours à des techniques mathématiques plus complexes". Le principe de base de l'analyse de Fourier est que toute fonction analytique définie sur un intervalle (fini) de \mathbb{R} peut s'écrire comme somme pondérée de fonctions sinus et cosinus.

6.12.1 Théorie spectrale et notion de filtre

Théorie spectrale L'analyse spectrale, ou analyse harmonique, est une généralisation au cas aléatoire de l'analyse de Fourier. Cette analyse s'appuie sur deux résultats de base : le théorème de Loeve et le théorème de Khintchine. Le premier présente la décomposition harmonique de (X_t) sous la forme

$$X_{t} = \int_{-\infty}^{+\infty} \exp(i2\pi\lambda t) dU_{Z}(\lambda),$$

dans laquelle les $dU_Z(\lambda)$ sont des variables aléatoires (complexes), alors que le second est équivalent au précédant, mais porte sur la fonction d'autocovariance de (X_t) ,

$$\gamma(h) = \int_{-\infty}^{+\infty} \exp(i2\pi\lambda h) \mathbb{E}\left(\left|dU_Z(\lambda)\right|^2\right).$$

Théorème 198. (de Khintchine) La densité spectrale de puissance d'un processus aléatoire stationnaire est égale à la transformée de Fourier de sa fonction d'autocorrélation

On a alors l'écriture suivante

$$f_X(\omega) = \frac{1}{2\pi} \sum_{h=-\infty}^{+\infty} \gamma(h) e^{-i\omega h} \text{ ou } \gamma(h) = \int_0^{\pi} e^{-i\omega h} f_X(\omega) d\omega, \text{ où } \gamma(h) = cov(X_t, X_{t-h}),$$

avec $f_X(\omega)$ densité spectrale du processus (X_t) .

Filtre et processus strochastiques Etant donné un processus (X_t) , un filtre est une transformation qui associe au processus (X_t) un autre processus $Y_t = F(X_t)$. Par exemple, on dira qu'un filtre est linéaire si $F(\lambda X_t^1 + \mu X_t^2) = \lambda F(X_t^1) + \mu F(X_t^2)$.

De façon générale, on pourra considérer les filtres linéaires de la forme suivante

$$F\left(X_{t}\right) = \sum_{i \in \mathbb{Z}} \phi\left(i\right) X_{t+i},$$

où les ϕ (i) sont les coefficients de pondération, c'est à dire des filtres moyennes mobiles. Considérons ainsi ϕ une fonction définie sur \mathbb{Z} et à valeurs dans \mathbb{R} (ou \mathbb{C}), appartenant à l'espace des fonctions de carré intégrable sur \mathbb{R} , alors ϕ admet une transformée de Fourier, notée $A(\omega)$ appelée fonction de réponse en fréquence du filtre :

$$A(\omega) = \int_{-\infty}^{+\infty} \phi(t) e^{-i\omega t} dt \text{ ou } \phi(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} A(\omega) e^{i\omega t} d\omega.$$

On appelera gain du filtre le carré de la norme de la fonction de réponse, $T(\omega) = |A(\omega)|^2$.

6.12.2 Le spectre d'un processus ARMA

D'après le théorème de Wold, un processus stationnaire est une combinaison linéaire infinie des valeurs passées d'un bruit blanc, c'est à dire qu'il peut s'écrire comme un processus $MA(\infty)$:

$$X_t = \Theta(L) \, \varepsilon_t = \sum_{k=0}^{+\infty} \theta_k \varepsilon_{t-k} \, \text{ où } \theta_0 = 1.$$

C'est à dire que (X_t) est la réponse à un filtre d'un processus (ε_t) , bruit blanc (la stabilité étant assurée par la convergence de la somme des carrés de θ_i). Les θ_i sont alors la fonction de réponse impulsionnelle du filtre. La fonction de gain du filtre s'écrit

$$T(\omega) = |A(\omega)|^2 = \left| \sum_{k=0}^{+\infty} \theta_i e^{-i\omega k} \right|^2,$$

avec $A(\omega)$ correspondant à la fonction de réponse en fréquence au filtre. On a alors la relation suivante entre les spectres des deux processus,

$$f_X(\omega) = T(\omega) f_{\varepsilon}(\omega)$$
.

Or, le spectre du bruit blanc vérifie $f_{\varepsilon}\left(\omega\right)=\sigma_{\varepsilon}^{2}/2\pi,$ et donc

$$f_X(\omega) = \sigma_{\varepsilon}^2 \left| \sum_{k=0}^{+\infty} \theta_k e^{-i\omega k} \right|^2 = \frac{\sigma_{\varepsilon}^2}{2\pi} \left| \Theta\left(e^{-i\omega k}\right) \right|^2.$$

De façon générale et analogue, on a le résultat suivant pour les processus ARMA,

Proposition 199. Soit (X_t) un processus ARMA(p,q), vérifiant $\Phi(L) X_t = \Theta(L) \varepsilon_t$, sous forme canonique minimal, avec les racines de Θ et de Φ à l'extérieur du disque unité alors

$$X_{t} = \frac{\Theta(L)}{\Phi(L)} \varepsilon_{t} \ et \ f_{X}(\omega) = \frac{\sigma_{\varepsilon}^{2}}{2\pi} \frac{\left|\Theta\left(e^{-i\omega k}\right)\right|^{2}}{\left|\Phi\left(e^{-i\omega k}\right)\right|^{2}}.$$

Cette écriture peut s'écrire sous la forme expensée suivante

$$f_X(\omega) = \frac{\sigma_{\varepsilon}^2}{2\pi} \frac{|1 + \theta_1 e^{-i\omega} + \theta_2 e^{-2i\omega} + \dots + \theta_q e^{-qi\omega}|^2}{|1 - \phi_1 e^{-i\omega} - \phi_2 e^{-2i\omega} - \dots - \phi_p e^{-qi\omega}|^2}.$$

Compte tenu du lien entre la densité spectrale et la fonction d'autocorrélation, il est possible d'obtenir la densité spectrale dans plusieurs cas simples.

Exemple 200. Considérons le processus MA(1) suivant : $X_t = \varepsilon_t + \theta \varepsilon_{t-1}$ où (ε_t) suit un bruit blanc de variance σ^2 . Pour mémoire, les autocovariances sont données par $\gamma(0) = (1 + \theta^2) \sigma^2$, $\gamma(1) = \theta \sigma^2$ et $\gamma(h) = 0$ pour $h \ge 2$. Ainsi,

$$f(\omega) = \frac{1}{\pi} \left[\gamma(0) + 2 \sum_{k=1}^{+\infty} \gamma(k) \cos(k\omega) \right] = \frac{\sigma^2 (1 + 2\theta \cos(\omega) + \theta^2)}{\pi}.$$

Exemple 201. Considérons le processus AR(1) suivant : $X_t = \phi X_{t-1} + \varepsilon_t$ où (ε_t) suit un bruit blanc de variance σ^2 . Pour mémoire, les autocovariances sont données par $\gamma(0) = \sigma^2/[1-\phi^2]$, et $\gamma(h) = \phi\gamma(h-1)$ pour $h \ge 1$. Ainsi, $\gamma(h) = \phi^h\gamma(0)$ pour $h \ge 1$. Cette écriture permet d'obtenir la relation suivante

$$f(\omega) = \frac{1}{\pi} \left[\gamma(0) + 2 \sum_{k=1}^{+\infty} \gamma(k) \cos(k\omega) \right] = \frac{\gamma(0)}{\pi} \left[1 + \sum_{k=1}^{+\infty} \phi^k \left[e^{i\omega k} + e^{-i\omega k} \right] \right]$$
$$= \frac{\gamma(0)}{\pi} \left[1 + \frac{\phi e^{i\omega k}}{1 - \phi e^{i\omega k}} + \frac{\phi e^{-i\omega k}}{1 - \phi e^{-i\omega k}} \right] = \frac{\sigma^2}{\pi \left[1 - 2\phi \cos(\omega) + \phi^2 \right]}.$$

ce qui donne une fonction décroissante pour $\phi > 0$ et croissante pour $\phi < 0$.

Exemple 202. Considérons le processus AR(2) suivant : $X_t = \lambda X_{t-1} + \mu X_{t-2} + \varepsilon_t$ où (ε_t) suit un bruit blanc de variance σ^2 . Le polynôme AR s'écrit $\Phi(L) = 1 - \lambda L - \mu L^2$ dont il faut s'assurer que les racines sont à l'extérieur du disque unité. Le spectre du processus (X_t) s'écrit alors

$$f_X(\omega) = \frac{\sigma^2}{2\pi} \frac{1}{1 + \lambda^2 + \mu^2 - 2\lambda (1 - \mu) \cos \omega - 2\mu \cos 2\omega}.$$

Considérons le cas particulier où $X_t = 0.9X_{t-1} - 0.4X_{t-2} + \varepsilon_t$ avec $\sigma^2 = 1$,

$$f_X(\omega) = \frac{1}{2\pi} \frac{1}{1.97 - 2.52 \cos \omega + 0.8 \cos 2\omega},$$

dont le tableau de variation est

$\omega/2\pi$	0		0.212		1
f'	0	+	0	_	
f	8	\nearrow	11.25	\searrow	0.38

Les graphiques suivants donnent les évolutions de densités spéctrales pour différents processus ARMA. Les graphiques ci-dessous correspondent à des processus AR(1), avec $\phi = 0.8$ à gauche, puis $\phi = \pm 0.2$ et ± 0.5 à droite, avec des courbes décroissantes quand $\phi > 0$ et croissantes quand $\phi < 0$,

6.12.3 Estimation de la densité spectrale d'un processus

Supposons que nous ayons T observations d'une série temporelle, avec T impair, soit T=2m+1. On défini les fréquences (dites parfois "de Fourier") $\omega_j=2\pi j/T$ pour j=1,...,m. Considérons alors le modèle de régression

$$Y_t = \alpha_0 + \sum_{j=1}^m \alpha_j \cos(\omega_j t) + \sum_{j=1}^m \beta_j \sin(\omega_j t),$$

qui peut être écrit sous forme de modèle linéaire $Y = X\theta + \varepsilon$, avec

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_T \end{pmatrix}, X = \begin{pmatrix} 1 & \cos(\omega_1) & \sin(\omega_1) & \cdots & \cos(\omega_m) & \sin(\omega_m) \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ 1 & \cos(\omega_1 T) & \sin(\omega_1 T) & \cdots & \cos(\omega_m T) & \sin(\omega_m T) \end{pmatrix}, \theta = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \beta_1 \\ \vdots \\ \alpha_m \\ \beta_m \end{pmatrix} \text{ et } \varepsilon = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \beta_1 \\ \vdots \\ \alpha_m \\ \beta_m \end{pmatrix}$$

L'estimation de θ par la méthode des moindres carrés donne $\widehat{\theta} = (X'X)^{-1}X'Y$. Compte tenu des propriétés suivantes

$$\sum_{t=1}^{T} \cos(\omega_{j}t) = \sum_{t=1}^{T} \sin(\omega_{j}t) = 0, \ \sum_{t=1}^{T} \cos^{2}(\omega_{j}t) = \sum_{t=1}^{T} \sin^{2}(\omega_{j}t) = \frac{T}{2} \text{ pour tout } j, \quad (29)$$

et

$$\sum_{t=1}^{T} \cos(\omega_j t) \sin(\omega_k t) = \sum_{t=1}^{T} \cos(\omega_j t) \cos(\omega_k t) = \sum_{t=1}^{T} \sin(\omega_j t) \sin(\omega_k t) = 0 \text{ pour } j \neq k,$$
(30)

on peut montrer aisément que

$$\widehat{\theta} = \begin{pmatrix} \widehat{\alpha}_0 \\ \widehat{\alpha}_1 \\ \widehat{\beta}_1 \\ \vdots \\ \widehat{\alpha}_m \\ \widehat{\beta}_m \end{pmatrix} = \begin{pmatrix} T & 0 & \cdots & 0 \\ 0 & T/2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & T/2 \end{pmatrix}^{-1} \begin{pmatrix} \sum Y_t \\ \sum \cos(\omega_1 t) Y_t \\ \vdots \\ \sum \sin(\omega_m t) Y_t \end{pmatrix} = \begin{pmatrix} \overline{Y} = 1/T \cdot \sum Y_t \\ 2/T \cdot \sum \cos(\omega_1 t) Y_t \\ \vdots \\ 2/T \cdot \sum \sin(\omega_m t) Y_t \end{pmatrix},$$

et la variance empirique des observations (Y_t) est donnée $(\grave{a}\ un\ facteur\ 1/T\ pr\grave{e}s)$ par

$$\sum_{t=1}^{T} (Y_t - \overline{Y})^2 = \sum_{j=1}^{m} \frac{2}{T} \left[\left(\sum_{t=1}^{T} \cos(\omega_j t) Y_t \right)^2 + \left(\sum_{t=1}^{T} \sin(\omega_j t) Y_t \right)^2 \right].$$

Tout ceci permet de définir le périodogramme $I(\omega)$ de la façon suivante

$$I(\omega) = \frac{1}{\pi T} \left[\left(\sum_{t=1}^{T} \cos(\omega t) Y_{t} \right)^{2} + \left(\sum_{t=1}^{T} \sin(\omega t) Y_{t} \right)^{2} \right].$$

Dans cette expression, un facteur " $1/2\pi$ " a été introduit de telle sorte que la variance empirique, donnée par

$$\widehat{\gamma}(0) = \frac{1}{T} \sum_{t=1}^{T} (Y_t - \overline{Y}),$$

soit égale à la somme des aires des m rectangles, de hauteur $I(\omega_1), ..., I(\omega_m)$, et de base $2\pi/T$. La somme des aires de ces rectangles approxime l'aire sous la courbe $I(\omega)$ pour $0 \le \omega \le \pi$,

En utilisant (29) et (30) on peut écrire

$$I(\omega_j) = \frac{1}{\pi} \widehat{\gamma}(0) + \frac{2}{\pi} \sum_{k=1}^{T-1} \widehat{\gamma}(k) \cos(\omega_j k).$$

Cette fonction $I(\omega)$ est alors la version discrète et empirique de la densité spectrale $f(\omega)$.

Proposition 203. Si le processus est stationnaire, et si la densité spectrale existe, alors $I(\omega)$ est un estimateur sans biais de $f(\omega)$.

Supposons que (Y_t) soit un bruit blanc gaussien, c'est à dire $Y_1, ..., Y_T$ sont i.i.d. et distribués suivant une loi $N(0, \sigma^2)$. Pour toute fréquence de Fourier, $\omega = 2\pi j/T$,

$$I(\omega) = \frac{1}{\pi T} \left[\widehat{A}(\omega)^2 + \widehat{B}(\omega)^2 \right] \text{ où } \widehat{A}(\omega) = \sum_{t=1}^T Y_t \cos(\omega t) \text{ et } \widehat{B}(\omega) = \sum_{t=1}^T Y_t \sin(\omega t).$$

Il est facile de montrer que $\widehat{A}(\omega)$ et $\widehat{B}(\omega)$ sont centrés, et dont les variance sont données par

$$V\left(\widehat{A}\left(\omega\right)\right) = \sigma^{2} \sum_{t=1}^{T} \cos^{2}\left(\omega t\right) = T \frac{\sigma^{2}}{2} \text{ et } V\left(\widehat{B}\left(\omega\right)\right) = \sigma^{2} \sum_{t=1}^{T} \sin^{2}\left(\omega t\right) = T \frac{\sigma^{2}}{2},$$

et dont la covariance est nulle

$$cov\left(\widehat{A}\left(\omega\right),\widehat{B}\left(\omega\right)\right) = \mathbb{E}\left(\sum_{s,t=1}^{T} Y_{s} Y_{t} \cos\left(\omega s\right) \sin\left(\omega t\right)\right) = \sigma^{2}\left(\sum_{t=1}^{T} \cos\left(\omega t\right) \sin\left(\omega t\right)\right) = 0.$$

De plus, $\widehat{A}(\omega)/\sqrt{2T\sigma^2}$ et $\widehat{B}(\omega)/\sqrt{2T\sigma^2}$ sont indépendant, et asymptotiquement distribués suivant une la même loi, normale, centrée et réduite. Et donc, $2\left[\widehat{A}(\omega)^2+\widehat{B}(\omega)^2\right]/T\sigma^2$ est asyptotiquement distribué suivant une loi du chi-deux, à 2 degrés de liberté. Aussi, $I(\omega)\sim (\sigma^2/\pi)\,\chi^2(2)/2$, ce qui montre bien que $I(\omega)$ est un estimateur sans biais de $f(\omega)=\sigma^2/\pi$, mais il n'est pas consistant puisque $V(I(\omega))=\sigma^4/\pi^2 \nrightarrow 0$ quand $T\to\infty$.

Proposition 204. Soit (Y_t) un processus gaussien, de spectre $f(\omega)$ Soit I(.) le périodogramme obtenu à partir de l'échantillon $Y_1,...,Y_T$, posons ω_j les fréquences de Fourier, au sens où $\omega_j = 2\pi j/T$ pour j < T/2. Dans ce cas, quand $T \to \infty$, on a les résultats suivants;

- $(i) I(\omega_j) \sim f(\omega_j) . \chi^2(2) / 2$
- (ii) $I(\omega_j)$ et $I(\omega_k)$ sont indépendant pour $j \neq k$.

Remarque 205. La méthode de calcul des $I(\omega_1), ..., I(\omega_m)$ présenté dans cette partie nécessite de l'ordre de T^2 opérations. La Fast Fourier Transform permet d'augmenter les temps de calcul puisque "seulement" $T \log_2 T$ opérations sont nécessaires (le gain en temps est alors en $T/\log_2 T$: pour 100 observations, les calculs sont alors 15 fois plus rapides).

Remarque 206. Considérons la série (X_t) définie par $X_t = 5\cos(t/36) + 7\sin(t/12) + \varepsilon_t$ où $\varepsilon_t \sim N(0,1)$, représentée ci-dessous à gauche. Sa densité spectrale est représentée ci-dessous On note deux maximums locaux, aux périodes 110 et 35 (correspondants aux paramètres 1/36 et 1/12).

7 Estimation des modèles ARIMA: Box-Jenkins

L'ouvrage de Box et Jenkins ' $Time\ series\ analysis$, $forecasting\ and\ control$ ', publié en 1970 a proposé une démarche de prévision pour les séries univariées, fondée sur l'utilisation de processus ARIMA.

Les étapes pour l'estimation des coefficients d'un processus ARIMA sont les suivantes

- (1) identification
- (i) choix de d: combien de fois faut-il différencier pour obtenir une série stationnaire (autocorrélogrammes, tests statistiques...)
 - (ii) choix de p et q: ordres respectifs des composantes AR et MA
 - (2) estimation des paramètres

estimation des ϕ_i et des θ_i : paramètres respectifs des composantes AR et MA

- (3) vérification a posteriori
 - (i) significativité des paramètres
 - (ii) validation de l'hypothèse de bruit blanc des résidus

Remarque 207. Il convient de retenir, comme en économétrie, le modèle le plus parcimonieux, utilisant le moins de paramètres, et ayant le meilleur comportement en prévision.

7.1 Estimation du paramètre d'intégration d

7.1.1 Approche empirique par l'autocorrélogramme

Comme nous l'avons vu dans la partie (2.4.3), les moments empiriques convergent, avec en plus normalité asymptotique (sous certaines conditions).

En pratique, si $\widehat{\rho}(h)$ est proche de 1 (pour un grand nombre de retards), on a une racine unité, et le processus n'est pas stationnaire. On peut égallement penser à différencier si les premiers $\rho(h)$ sont proches les uns des autres, même si $\rho(1)$ semble assez différent de 1. Il est à noter que pour des séries économiques, il est assez rare d'avoir $d \geq 3$.

Exemple 208. Les graphiques ci-dessous représentent les séries (en haut) et les autocorrélogrammes (en bas) de X_t , de ΔX_t et de $\Delta^2 X_t On$ peut d'ailleurs noter que si l'on continue à différencier, on a toujours des séries stationnaires

7.1.2 Tests de racine unité

La présentation sera ici inspirée de celle de Hamilton 'Time Series Analysis' (1994).

Le test de Dickey & Fuller simple Ce test permet de tester l'hypothèse H_0 : le processus suit une marche aléatoire contre l'hypothèse alternative H_a : le processus suit un modèle AR(1). Ces tests peuvent être regroupés en 4 cas :

- (1) $Y_t = \rho Y_{t-1} + \varepsilon_t$: on teste H_0 : $\rho = 1$ (marche aléatoire sans dérive)
- (2) $Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t$: on teste H_0 : $\alpha = 0$ et $\rho = 1$ (marche aléatoire sans dérive)
- (3) $Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t$: on teste H_0 : $\alpha \neq 0$ et $\rho = 1$ (marche aléatoire avec dérive)

(4) $Y_t = \alpha + \beta t + \rho Y_{t-1} + \varepsilon_t$: on teste H_0 : $\alpha = 0, \beta = 0$ et $\rho = 1$ (marche aléatoire sans dérive)

Le test de Dickey & Fuller, dans le cas (1), se construit comme un test de Sutdent de l'hypothèse $\rho=1$, ou plutôt $\rho-1=0$. Etant donné l'estimateur naturel de ρ , on peut noter que

$$\widehat{\rho} - 1 = \frac{\sum \varepsilon_t Y_{t-1}}{\sum Y_{t-1}}$$

Le test de Dickey & Fuller augmenté Ce test permet de tester l'hypothèse H_0 : est intégré d'ordre au moins 1 H_a : le processus suit un modèle AR(p). Ces tests peuvent être regroupés en 4 cas :

- (1) $\Phi(L) Y_t = \varepsilon_t$: on teste H_0 : $\Phi(1) = 0$
- (2) $\Phi(L) Y_t = \alpha + \varepsilon_t$: on teste H_0 : $\alpha = 0$ et $\Phi(1) = 0$
- (3) $\Phi(L) Y_t = \alpha + \varepsilon_t$: on teste H_0 : $\alpha \neq 0$ et $\Phi(1) = 0$
- (4) $\Phi(L) Y_t = \alpha + \beta t + \varepsilon_t$: on teste H_0 : $\alpha = 0, \beta = 0$ et $\Phi(1) = 0$

Ces 4 cas peuvent être réécrits en introduisant les notations suivantes,

$$\Phi\left(L\right) = \Phi\left(1\right) + (1-L)\,\Phi^*\left(L\right) = \Phi\left(1\right) - \left[\sum_{i=0}^{p-1}\alpha_iL^i\right]\left(1-L\right) \text{ où } \left\{\begin{array}{l} \alpha_0 = \Phi\left(1\right) - 1 \\ \alpha_i = \alpha_{i-1} - \phi_i = \phi_{i+1} + \ldots + \phi_p \end{array}\right.$$

pour i=1,...,p. En posant $\rho=1-\Phi(1)$, on peut réécrire les 4 cas en

- (1) $Y_t = \rho Y_{t-1} + \sum \alpha_i \Delta y_{t-i} + \varepsilon_t$: on teste H_0 : $\rho = 1$
- (2) $Y_t = \alpha + \rho Y_{t-1} + \sum_{i=1}^{n} \alpha_i \Delta y_{t-i} + \varepsilon_t$: on teste H_0 : $\alpha = 0$ et $\rho = 1$
- (3) $Y_t = \alpha + \rho Y_{t-1} + \sum_{i=1}^{n} \alpha_i \Delta y_{t-i} + \varepsilon_t$: on teste H_0 : $\alpha \neq 0$ et $\rho = 1$
- (4) $Y_t = \alpha + \beta t + \rho Y_{t-1} + \sum_{i=1}^{n} \alpha_i \Delta y_{t-i} + \varepsilon_t$: on teste H_0 : $\alpha = 0, \beta = 0$ et $\rho = 1$

Les statistiques de tests et leurs lois Pour simplifier, on écrira

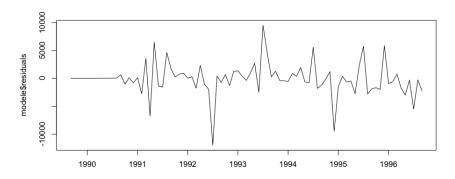
- (1) $\Delta Y_t = \phi Y_{t-1} + \sum \alpha_i \Delta y_{t-i} + \varepsilon_t$, avec $\phi = \rho 1$ appelé 'Modèle [1]'
- $(2-3)~\Delta Y_t = \alpha + \phi Y_{t-1} + \sum \alpha_i \Delta y_{t-i} + \varepsilon_t$ appelé 'Modèle [2]'
- (4) $\Delta Y_t = \alpha + \beta t + \phi Y_{t-1} + \sum_{i=1}^{n} \alpha_i \Delta y_{t-i} + \varepsilon_t$ appelé 'Modèle [3]'

Les tables ci-après, ont été tabulées par Dickey & Fuller (1979), et sont analogues aux tables du t de Student. Dans le cas 'simple', le paramètre ρ (ou ϕ) est estimé par la méthode des moindres carrés ordinaires. L'estimation des coefficients et des écart-types du modèle fournit un t_{ϕ} , analogue à la statistique de Student dans les modèles linéaires (rapport du coefficient sur son écart-type). Si $t_{\hat{\phi}}$ est supérieur au t tabulé, on accepte H_0 , hypothèse d'existence d'une racine unité, et le processus n'est alors pas stationnaire.

Il est aussi possible d'effectuer ce test en utilisant $n\phi_n$, où ϕ_n est l'estimateur de ϕ obtenu à partir de n observations. Si cette valeur (*empirique*) est supérieure à celle tabulée (*et donnée dans la deuxième table*), on accepte l'hypothèse H_0 .

Mise en place pratique des tests

- > library(urca)
- > summary(ur.df(y=,lag=1,type="trend"))



Il est aussi possible de laisser le logiciel choisir le nombre optimal de retard à considérer (à l'aide du BIC, e.g.)

- > library(urca)
- > summary(ur.df(y=,lag=6,selectlags="BIC",type="trend"))

On choisit tout d'abord un p suffisement grand pour que $\Phi(L)X_t$ suive à peu près un bruit blanc. On choisit alors parmi les cas proposés suivant que le graphique de la série présente, ou pas, une tendance linéaire.

Exemple 209. Considérons la série décrit précédement,

Le test (simple) de Dickey & Fuller revient à estimer les 3 modèles suivants,

$$\begin{cases} X_t - X_{t-1} = \phi X_{t-1} \\ X_t - X_{t-1} = \alpha + \phi X_{t-1} \\ X_t - X_{t-1} = \alpha + \beta t + \phi X_{t-1} \end{cases}$$

et dans le cas du test aumgenté, avec p=2

$$\begin{cases} X_t - X_{t-1} = \rho X_{t-1} - [\phi_2 \Delta X_{t-1} + \phi_3 \Delta X_{t-2}] \\ X_t - X_{t-1} = \alpha + \rho X_{t-1} - [\phi_2 \Delta X_{t-1} + \phi_3 \Delta X_{t-2}] \\ X_t - X_{t-1} = \alpha + \beta t + \rho X_{t-1} - [\phi_2 \Delta X_{t-1} + \phi_3 \Delta X_{t-2}] \end{cases}$$

Le troisème modèle s'écrit, compte tenu des sorties obtenues ci-dessous,

$$\Delta X_t = -0.048502 + 0.00919t - 0.000083X_{t-1} - \begin{bmatrix} 1.01516\Delta X_{t-1} - 0.022332\Delta X_{t-2} \\ (0.092874) & (0.000466) \end{bmatrix}$$

avec n = 794. Les valeurs du test de Dickey & Fuller sont données par

En répettant ce test en changeant la forme du modèle (ici sans trend $\alpha + \beta t$, et en changeant l'ordre p), on confirme ce rejet de H_0 : la série X_t possède une racine unitaire et n'est pas stationnaire : la statistique de test ADF Test Statistic est toujours supérieure aux valeurs critiques :

En faisant le test sur la série différenciée une fois (ΔX_t) , on observe là aussi que l'ADF Test Statistic est toujours supérieure aux valeurs critiques : H_0 est encore acceptée, et donc la série ΔX_t possède elle aussi une racine unitaire et n'est donc pas stationnaire

Le test de Dickey & Fuller appliqué cette fois-ci à $\Delta^2 X_t$ donne les résultats suivants,

Cette fois-ci, le test de Dickey & Fuller permet de rejeter $H_0: \Delta^2 X_t$ n'a pas de racine unitaire, et la série $\Delta^2 X_t$ est donc stationnaire. Ce test valide les résultats graphiques de l'exemple (208) : la série X_t est intégrée d'ordre 2 : d=2.

Remarque 210. Dans le cas de séries financières (par exemple), il convient de faire attention lors de la lecture des résultats des tests de Dickey & Fuller : les processus à mémoire longue, bien que stationnaires, <u>semblent</u> avoir une racine unité. Avant de différencier afin d'obtenir une série stationnaire, il peut être intéressant de tester l'hypothèse de mémoire longue du processus.

A retenir 211. Dans les tests de Dickey Fuller augmenté, trois (ou quatre) alternatives sont proposées : avec ou sans tendance et constante. Il vaut mieux choisir l'alternative permettant de mieux décrire la série : si la série (X_t) n'est pas centrée, et que l'on tente un test de Dickey Fuller sans constante, il est possible il est possible H_0 soit rejetée, non pas parce qu'il n'y a pas de racine unité, mais parce que le modèle testé est mal spécifié (cf exercice 16 de l'examen 2002/2003).

Compléments sur les tests de racine unité Considérons une écriture de la forme

$$\Phi(L) X_t = \Theta(L) \varepsilon_t$$
, où (ε_t) est un bruit blanc.

L'hypothèse à tester est (H_0) : il existe θ tel que $\Phi\left(e^{i\theta}\right)=0$, c'est à dire qu'une racine est sur le disque unité $(racine\ unité)$ le reste des racines étant à l'extérieur du risque unité : $\Phi\left(L\right)=(1-L)\Phi^*\left(L\right)$ où $\Phi^*\left(1\right)\neq 0$, avec les racines de Φ^* à l'extérieur du disque unité. Alors

$$\Delta X_t = \Phi^*(L)^{-1} \Theta(L) \varepsilon_t = \Psi^*(L) \varepsilon_t = \eta_t \text{ ou } X_t = X_{t-1} + \eta_t.$$

L'hypothèse alternative (H_1) s'écrit alors $\Phi\left(e^{i\theta}\right) \neq 0$ pour tout $\theta: \Phi$ n'a pas de racine unité, et on suppose de plus que toutes les racines sont à l'extérieur du disque unité :

$$X_{t} = \Phi(L)^{-1} \Theta(L) \varepsilon_{t} = \Psi(L) \varepsilon_{t} = \eta_{t}.$$

Les tests de Dickey-Fuller permet de tester cette hypothèse : le test de régression s'écrit alors

$$X_t = \phi X_{t-1} + \eta_t$$
 dont l'estimation est $X_t = \widehat{\phi} X_{t-1} + \widehat{\eta}_t$.

Il est alors possible de montrer que sous l'hypothèse $(H_0):\phi=1$, la statistique de test s'écrit

$$\widehat{t}_{\phi=1} = \frac{\widehat{\phi} - 1}{\widehat{\sigma}\left(\widehat{\phi}\right)} \text{ où } \widehat{\phi} - 1 = \frac{\sum X_{t-1}\eta_t}{\sum X_{t-1}^2}, \ s^2 = \frac{1}{T-1} \sum \left[X_t - \widehat{\phi}X_{t-1}\right] \text{ et } \widehat{\sigma}\left(\widehat{\phi}\right)^2 = \frac{s^2}{\sum X_{t-1}^2},$$

avec $\widehat{\sigma}\left(\widehat{\phi}\right)$ écart type (par moindre carrés) de l'estimateur de ϕ , et sa distribution est donnée par

$$\widehat{t}_{\phi=1} = \frac{\widehat{\phi} - 1}{\widehat{\sigma}\left(\widehat{\phi}\right)} \xrightarrow{\mathcal{L}} \frac{\int_0^1 W_t dW_t}{\left[\int_0^1 W_t^2 dt\right]^{1/2}} \neq \mathcal{N}\left(0, 1\right) \text{ où } (W_t) \text{ est un brownien standard sur } \left[0, 1\right].$$

Cette distribution n'est pas gaussienne, et des tabulations (obtenues par des méthodes de type Monte-Carlo) sont nécessaire pour tabuler la distribution limite¹¹.

¹¹Le lien entre les processus intégrés et le mouvement brownien est donné page 31.

Tests de Phillips et Perron Ces tests non paramétriques ont été introduits en 1988. La distribution théorique à la base des tests de Dickey & Fuller repose sur l'hypothèse d'hétéroscédasticité du bruit. La généralisation des tests DF aux tests ADF se fait en considérant

$$Y_t = D_t + \rho Y_{t-1} + \varepsilon_t \quad \to \quad Y_t = D_t + \rho Y_{t-1} + \sum_i \alpha_i \Delta y_{t-i} + \varepsilon_t,$$

où (D_t) est une tendance déterministe. La généralisation des tests DF proposée par Phillips et Perron consiste à ne plus supposer que (ε_t) est un bruit blanc, et à autoriser que ce processus soit autocorrélée. La généralisation de ces tests au cas hétéroscédastique a été proposée par Phillips et Perron, les valeurs critiques correspondant à celles des tests ADF. Ces tests reposent sur des résultats de la théorie de la convergence faible fonctionelle (théorème central limite fonctionel (FCLT) par exemple). L'utilisation du FCLT pour des tests de racines unité a été proposé dès 1958 par White.

Si (X_t) est un processus stationnaire alors les statistiques calculées sur ce processus vérifiront le FCLT. Considérons par exemple le cas AR(1), $X_t = \rho X_{t-1} + \varepsilon_t$ pour t = 1, ..., T, et cherchons à tester $\rho = 1$ (hypothèse H_0). En supposons H_0 vérifiée, et considérons la somme partielle du processus d'innovation,

$$S_t = X_t - X_0 = \sum_{i=1}^t \varepsilon_i.$$

On prendra comme valeur initiale de (S_t) , $S_0 = 0$, mais pour le choix de X_0 trois possibilités sont généralement envisagées : (i) $X_0 = c$ (constante), (ii) X_0 admet une distribution spécifiée a priori, (iii) $X_0 = X_T$. Cette dernière condition, dite hypothèse de cicularité, a été proposé par Hotelling. Phillips avait suggéré la seconde possibilité.

En notant $X_T(r) = S_{[Tr]}/\sqrt{T}$, il possible de montrer (cd partie précédante) que $X_T(r)$ converge faiblement ($not \epsilon \Longrightarrow$) vers un mouvement brownien (cf. Billigsley (1968)).

Proposition 212. Si (ε_t) vérifie l'hypothèse () et si $\sup \{|\varepsilon_t|^{\beta+\eta}\} < \infty$ pour $\eta > 0$ et $\beta > 0$ alors, quand $T \to \infty$, sous l'hypothèse $H_0: \rho = 1$ dans le modèle $X_t = \rho X_{t-1} + \varepsilon_t$ on a les résultats suivants

$$(i) \frac{1}{T^2} \sum_{t=1}^{T} X_{t-1}^2 \Longrightarrow \sigma^2 \int_0^1 W_s^2 ds$$

$$(ii) \frac{1}{T} \sum_{t=1}^{T} X_{t-1} (X_t - X_{t-1}) \Longrightarrow \frac{\sigma^2}{2} \left[W_1^2 - \frac{\sigma_{\varepsilon}^2}{\sigma^2} \right]$$

$$(iii) T (\widehat{\rho} - 1) \Longrightarrow \frac{1}{2} \frac{W_1^2 - \sigma_{\varepsilon}^2 / \sigma^2}{\int_0^1 W_s^2 ds}$$

$$(iv) \widehat{\rho} \stackrel{\mathbb{P}}{\to} 1$$

$$(v) t_{\widehat{\rho}} = \frac{\widehat{\rho} - 1}{\widehat{\sigma}} \sqrt{\sum_{t=1}^{T} (X_t - X_{t-1})^2} \Longrightarrow \frac{\sigma}{2\sigma_{\varepsilon}} \frac{W_1^2 - \sigma_{\varepsilon}^2 / \sigma^2}{\sqrt{\int_0^1 W_s^2 ds}}$$

Proof. Phillips (1987), Testing for a unit root in a time series regression.

Le point (iv) montre que les moindres carrés ordinaires conservent la propriété de convergence quand il y a une racine unité.

Exemple 213. En reprenant la série de l'exemple (208), on retrouve que la série (X_t) admet une racine unité, que l'on teste un modèle simple, sans constante ni tendance (à gauche), ou avec tendance et constante (à droite),

avec les mêmes conclusions pour la série différenciée une fois,

En revanche, dans le cas de la série différenciée deux fois, tous les tests valident l'hypothèse d'absence de racine unité

Remarques complémentaires Un certains nombres d'études sur des données simulées ont montré que ces tests rejettent difficilement l'hypothèse H_0 dans le cas de séries désaisonnalisée. Il est alors parfois intéressant d'agréger des données mensuelles en données annuelles, et de tester si la série annuelle présente une racine unité. Nelson et Plosser (1992) ont montré que les racines unitaires caractérisent un grand nombre de séries macroéconomiques.

Le test de **Schmidt-Philipps** repose sur l'idée que dans le cas du test ADF de type 4 - avec tendance linéaire - l'interprétation des paramètre n'est pas la même : considérons le modèle $Y_t = \alpha + \beta t + \rho Y_{t-1} + \varepsilon_t$ et l'hypothèse $H_0: \beta = 0$ et $\rho = 1$. Sous H_0 et l'hypothèse alternative H_a , on a respectivement

$$H_0: Y_t = Y_0 + \alpha t + \sum_{k=0}^t \varepsilon_{t-k} \text{ et } H_a: Y_t = \left[\beta \rho + \frac{\alpha}{1-\rho}\right] + \beta \left(1-\rho\right) + \sum_{k=0}^\infty \rho^k \varepsilon_{t-k}.$$

Autrement dit, sous H_a , (Y_t) est stationnaire autour d'une tendance déterministe dont la pente est β $(1-\rho)$, alors que sous H_0 , (Y_t) est non stationnaire, avec pour tendance α . Aussi, Schmidt et Philipps ont proposé de modéliser (Y_t) sous la forme $Y_t = \alpha + \beta t + X_t$ où (X_t) est non stationnaire sous H_0 et (X_t) est stationnaire sous H_a . On a alors

$$\begin{cases} Y_t = \alpha + \beta t + X_t \\ X_t = \rho X_{t-1} + \varepsilon_t \end{cases} \text{ où } |\rho| \le 1 \text{ et } (\varepsilon_t) \sim BB\left(0, \sigma^2\right) \text{ et on teste } \begin{cases} H_0 & \rho = 1 \\ H_a & \rho < 1 \end{cases}$$

7.1.3 Tests de racines unitaires saisonnières

Dans le cas d'une modélisation SARIMA, avec une saisonnalité d'ordre s, il peut être intéressant de tester l'ordre s. Un certain nombre de tests on été mis en oeuvre dans les années 80 et 90, en particulier pour tester de la saisonnalité à l'ordre 4 et à l'ordre 12.

Tests de Hasza et Fuller (1982) et de Osborn, Chui, Smith & Birchenhall (OCSB, 1988) Hasza et Fuller ont considéré le modèle

$$Y_t = \phi_1 Y_{t-1} + \phi_s Y_{t-s} + \phi_{s+1} Y_{t-s-1} + \varepsilon_t$$

où (ε_t) est un bruit blanc. L'hypothèse H_0 s'écrit ici $H_0: \phi_1 = \phi_s = -\phi_{s+1} = 1$. Osborn, Chui, Smith et Birchenhall ont alors étendu cette approche sous la forme

$$\Theta(L)(1-L)(1-L^{s})Y_{t} = \sum_{i=1}^{s} \delta_{s}D_{s,t} + \lambda(1-L^{s})Y_{t-1} + \mu(1-L)Y_{t-s} + \varepsilon_{t}$$

Si l'on accepte l'hypothèse $\mu = 0$, la différence à l'ordre s est appropriée, et si $\lambda = \mu = 0$, alors le filtre $(1 - L)(1 - L^s)$ est nécessaire.

Test de Hylleberg, Engle, Granger et Yoo (HEGY, 1990) Ce test utilise la décomposition des polynômes $(1 - L^4)$ et $(1 - L^{12})$, avec respectivement 4 et 12 racines unités : dans le cas d'une saisonnalité à l'ordre s = 12, on considère une écriture de la forme

$$\Theta(L) P_8(L) Y_t = \mu_t + \pi_1 P_1(L) Y_{t-1} + \pi_2 P_2(L) Y_{t-2} + \pi_3 P_3(L) Y_{t-1} + \pi_4 P_3(L) Y_{t-2} + \pi_5 P_4(L) Y_{t-1} + \pi_7 P_5(L) Y_{t-1} + \pi_8 P_5(L) Y_{t-2} + \pi_9 P_6(L) Y_{t-1} + \pi_{10} P_6(L) Y_{t-2} + \pi_{11} P_7(L) Y_{t-1} + \pi_8 P_5(L) Y_{t-1}$$

où les polynômes retards P_i sont définis par

$$\begin{cases} P_{1}\left(L\right) = -\left(1+L\right)\left(1+L^{2}\right)\left(1+L^{4}+L^{8}\right) & \text{et} \quad P_{2}\left(L\right) = \left(1-L\right)\left(1+L^{2}\right)\left(1+L^{4}+L^{8}\right), \\ P_{3}\left(L\right) = \left(1-L^{2}\right)\left(1+L^{4}+L^{8}\right) & \text{et} \quad P_{4}\left(L\right) = \left(1-L^{4}\right)\left(1-\sqrt{3}L+L^{2}\right)\left(1+L^{2}+L^{2}\right), \\ P_{5}\left(L\right) = \left(1-L^{4}\right)\left(1+\sqrt{3}L+L^{2}\right)\left(1+L^{2}+L^{4}\right) & \text{et} \quad P_{6}\left(L\right) = \left(1-L^{4}\right)\left(1-L^{2}+L^{4}\right)\left(1-L+L^{2}\right), \\ P_{7}\left(L\right) = \left(1-L^{4}\right)\left(1-L^{2}+L^{4}\right)\left(1+L+L^{2}\right) & \text{et} \quad P_{8}\left(L\right) = \left(1-L^{12}\right). \end{cases}$$

Les variables $Z_t^{(i)} = P_i(L) Y_t$ sont alors associées aux différentes racines du polynôme. On peut alors considérer les t de Student pour les variables π_1 et π_2 , ainsi que les F de Fisher associés aux couples. $(\pi_3, \pi_4), (\pi_5, \pi_6), (\pi_7, \pi_8), (\pi_9, \pi_{10})$ et (π_{11}, π_{12}) .

Test de Franses (1990) Ce test a été mis en place pour tester une saisonnalité à l'ordre 12.

Détection graphique d'une racine unitaire saisonnière Considérons les séries suivantes, (X_t) , (Y_t) et (Z_t) comportant respectivement une racine unitaire saisonnière d'ordre 2, 4 et 12,

Sur ces trois graphiques, en considérant la série partielle des autocorrélogrammes $r^s(h) = |\rho(sh)|$, on obtient une série 'constante', proche de 1, de même que l'autocorrélogramme d'une série en présence de racine unitaire.

Toutefois, si ce genre de comportement laisse à penser qu'il y a une racine unitaire saisonnière, l'ordre s n'est pas nécessairement celui indiqué par l'autocorrélogramme : une série saionnière d'ordre 4 peut avoir un autocorrélogramme proche de celui de gauche.

7.1.4 Complément sur la notion de sur-différentiation

Considérons la série suivante, correspondant à une marche aléatoire (X_t) . On notera alors $Y_t = (1 - L) X_t$ et $Z_t = (1 - L) Y_t$, autrement dit, on différencie respectivement une fois et deux fois la marche aléatoire. On représentera respectivement les autocorrélations et les autocorrélation inverses, au centre et à droite,

Comme nous l'avons déjà évoqué, l'autocorrélogramme de la série (X_t) permet - a priori - de conclure à la présence d'une racine unité. Le comportement de l'autocorrélogramme inverse de la série (Z_t) présente, de façon moins nette certes, le même genre de comportement.

On peut noter également sur les autocorrélogrammes de (Y_t) , correspondant à un bruit blanc, que les autocorrélations et les autocorrélations inverses sont identiques (ce qui est une caractérisation des bruits blancs).

[A COMPLETER]

7.2 Estimation des ordres p et q d'un modèle ARMA(p,q)

Pour l'estimation des paramètres p et q, on utilise le fait que si (X_t) suit un ARIMA(p,d,q), alors $(1-L)^d X_t$ suit asymptotiquement un processus ARMA(p,q). En pratique, l'idée est d'aplliquer la règle suivante : si $(X_t) \sim ARIMA(p,d,q)$ alors $(1-L)^d X_t \sim ARMA(p,q)$.

On appelle processus ARMA(p,q), un processus stationnaire (X_t) vérifiant une relation du type

$$X_t + \sum_{i=1}^p \phi_i X_{t-i} = \varepsilon_t + \sum_{i=1}^q \theta_i \varepsilon_{t-i} \text{ pour tout } t \in \mathbb{Z},$$
 (31)

où les θ_i sont des réels et (ε_t) est un bruit blanc de variance σ^2 . (22) est équivalent à l'écriture

$$\Phi(L) X_t = \Theta(L) \varepsilon_t \text{ où } \begin{cases} \Theta(L) = \mathbb{I} + \theta_1 L + \dots + \theta_q L^q \\ \Phi(L) = \mathbb{I} + \phi_1 L + \dots + \phi_p L^p. \end{cases}$$
(32)

On supposera de plus que les polyômes Φ et Θ n'ont pas de racines en module strictement supérieures à 1 (écriture sous forme canonique), et n'ont pas de racine commune. On supposera de plus que les degrés de Θ et Φ sont respectivement q et p, au sens où $\theta_q \neq 0$ et $\phi_p \neq 0$.

7.2.1 Problèmes d'unicité de la représentation ARMA

On peut noter que l'écriture ARMA (32) n'est pas unique. En effet, il suffit de multiplier à gauche et à droite de (32) par un même polynôme en L, $\Gamma(L)$. Alors, en posant $\Phi^*(L) = \Gamma(L) \circ \Phi(L)$ et $\Theta^*(L) = \Gamma(L) \circ \Theta(L)$, on peut noter que $\Phi(L)^* X_t = \Theta(L)^* \varepsilon_t$.

Proposition 214. Soit Φ un polynôme dont les racines $z \in \mathbb{C}$ soient toutes à l'extérieur du disque unité. Alors l'équation $\Phi(L) X_t = \Theta(L) \varepsilon_t$ admet une solution stationnaire (X_t) et celle-ci est unique.

Définissons la matrice suivante, à partir des autocorrélations $\rho(h)$ du processus stationnaire (X_t)

$$\Omega_{i,j} = \begin{bmatrix} \rho(i) & \rho(i-1) & \rho(i-2) & \rho(i-j+2) & \rho(i-j+1) \\ \rho(i+1) & \rho(i) & \rho(i-1) & \rho(i-j+3) & \rho(i-j+2) \\ \rho(i+2) & \rho(i+1) & \rho(i) & \ddots & \rho(i-j+4) & \rho(i-j+3) \\ & & \ddots & \ddots & \ddots \\ \rho(i+j-2) & \rho(i+j-3) & \rho(i+j-4) & \ddots & \rho(i) & \rho(i-1) \\ \rho(i+j-1) & \rho(i+j-2) & \rho(i+j-3) & \rho(i+j-3) & \rho(i+1) & \rho(i) \end{bmatrix}$$

et soit $\Delta(i, j)$ son déterminant.

Définition 215. Un processus (X_t) est un ARMA(p,q) minimal si $\Phi(L)X_t = \Theta(L)\varepsilon_t$ où (ε_t) est un bruit blanc et où Φ et Θ sont de degré respectif p et q (avec $\phi_p \neq 0$ et $\theta_q \neq 0$) dont les racines sont de module supérieur à 1, et où Φ et Θ n'ont pas de racines communes.

Proposition 216. Le processus (X_t) est un ARMA(p,q) minimal si et seulement si

- (i) $\Delta(i, j) = 0 \text{ pour } i \ge q + 1 \text{ et } j \ge p + 1,$
- (ii) $\Delta(i,j) \neq 0$ pour $i \geq q$,
- (iii) $\Delta(i,j) \neq 0$ pour $j \geq p$.

Autrement dit, on peut construire le tableau des $\Delta(i, j)$, et il aura la forme suivante pour un processus ARMA(p, q) minimal,

$i \setminus j$	1	2		p	p+1	p+2	• • •
1	$\Delta\left(1,1\right)$	$\Delta(1,2)$		$\Delta\left(1,p\right)$	$\Delta\left(1,p+1\right)$	$\Delta\left(1,p+2\right)$	
2	$\Delta\left(2,1\right)$	$\Delta(2,2)$	• • •	$\Delta\left(2,p\right)$	$\Delta\left(2,p+1\right)$	$\Delta\left(2,p+2\right)$	• • •
:	i:	:		:	:		
q	$\Delta\left(q,1 ight)$	$\Delta\left(q,2 ight)$		$\Delta\left(q,p ight)$	$\Delta\left(q,p+1\right)$	$\Delta\left(q,p+2\right)$	
q+1	$\Delta\left(q+1,1\right)$	$\Delta\left(q+1,2\right)$	• • •	$\Delta\left(q+1,p\right)$	0	0	• • •
q+2	$\Delta\left(q+2,1\right)$	$\Delta \left(q+2,2\right)$		$\Delta\left(q+2,p\right)$	0	0	• • •
:	:	÷		÷	÷	:	

soit

$$\begin{bmatrix} D_{p,q} & D_p \\ D_q & 0 \end{bmatrix}$$

où les termes $D_{p,q}$, D_q et D_p sont non-nuls.

Remarque 217. Dans le cas d'un processus MA(q), le tableau des $\Delta(i,j)$ a la forme

suivante

Remarque 218. Dans le cas d'un processus AR(p), le tableau des $\Delta(i,j)$ a la forme suivante

$$[D_p \mid 0] = \begin{vmatrix} \frac{i \backslash j}{1} & 1 & 2 & \cdots & p & p+1 & p+2 & \cdots \\ 1 & \Delta(1,1) & \Delta(1,2) & \cdots & \Delta(1,p) & 0 & 0 & \cdots \\ 2 & \Delta(2,1) & \Delta(2,2) & \cdots & \Delta(2,p) & 0 & 0 & \cdots \\ \vdots & \vdots \end{vmatrix}$$

L'autocorrélogramme partiel s'écrit $a(h) = (-1)^{j-1} \Delta(1,j) / \Delta(0,j)$ où $\Delta(0,j)$ est strictement positif (comme déterminant d'une matrice de corrélation) pour un AR(p), et donc a(h) = 0 pour $h \ge p+1$.

7.2.2 Comportement asymptotique des moments empiriques

Nous avions vu dans la partie (2.4.3) que les moments empiriques $(\gamma(h), \rho(h), \rho(h), \rho(h), \dots)$ convergeaient vers les vraies moments.

Proposition 219. Sous l'hypothèse où $(X_t) \sim MA(q)$, et que (ε_t) est stationnaire à l'ordre 4, alors

$$\sqrt{T} \frac{\widehat{\rho}_T(h) - \rho(h)}{\sqrt{1 + 2\sum_{k=1}^q \rho^2(k)}} \xrightarrow{\mathcal{L}} N(0, 1) \quad pour \ h > q.$$

Cette proposition permet en particulier d'avoir l'intervalle de confiance à 95% des autocorrélations,

$$\left[\widehat{\rho}_{T}(h) \pm 1.96\sqrt{\frac{1+2\sum_{k=1}^{q}\rho^{2}(k)}{T}}\right].$$
 (33)

Proposition 220. Sous l'hypothèse où $(X_t) \sim AR(p)$, et que (ε_t) est stationnaire à l'ordre 4, alors

$$\sqrt{T}\left[\widehat{a}_{T}\left(h\right)-a\left(h\right)\right]\overset{\mathcal{L}}{\rightarrow}N\left(0,1\right)\ pour\ h>q.$$

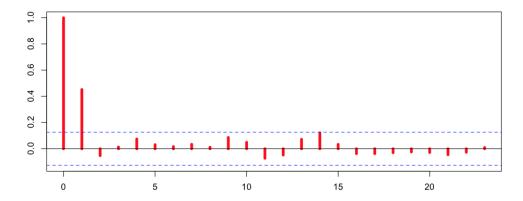
Cette proposition permet en particulier d'avoir l'intervalle de confiance à 95% des autocorrélations partielles,

$$\left[\widehat{a}_T(h) \pm 1.96 \frac{1}{\sqrt{T}}\right],\,$$

(résultat de Quenouille, 1949).

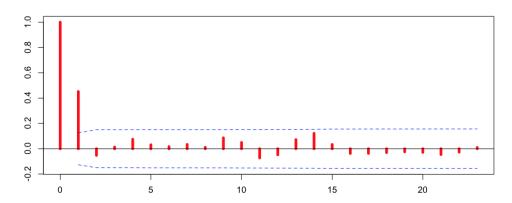
Sur un processus MA(1) simulé, par défaut, l'intervalle de confiance est le suivant

- > X=arima.sim(list(order=c(0,0,1),ma=.8),n=240)
- > acf(X,col="red",lwd=5)



mais il est possible d'avoir la version MA de l'intervalle de confiance

> acf(X,col="red",lwd=5, ci.type="ma")



7.2.3 Méthode pratique d'estimation des ordres p et q

Pour estimer les ordres p ou q, on utilise les propriétés vues précédemment sur les formes des autocorrélogrammes $(\rho(h))$ ou des autocorrélogrammes partiels (a(h)). En particulier

- (i) pour les processus AR(p) l'autocorrélogramme partiel s'annule à partir de p (à gauche)
 - (ii) pour les processus MA(q) l'autocorrélogramme s'annule à partir de q (à droite)

Remarque 221. S'il reste de la saisonnalité, celle-ci apparaîtra également dans les autocorrélogrammes

7.2.4 Cas d'un processus MA(q)

Si (X_t) suit un processus MA(q), on peut noter que la variance des autocorrélations empiriques est donnée par la relation

$$V(\widehat{\rho}(h)) \approx 1 + 2\sum_{i=1}^{q} \rho^{2}(i)$$
, pour $h > q$,

et donc, on peut prendre comme estimation de l'écart-type

$$\widehat{\sigma}\left(\widehat{\rho}\left(h\right)\right) = \frac{1}{\sqrt{T}}\sqrt{1+2\sum_{i=1}^{q}\widehat{\rho}^{2}\left(i\right)}.$$

En pratique, on identifie q, ordre d'un processus MA(q) comme la première valeur à partir de laquelle les $\rho(h)$ sont dans l'intervalle dont les extrémités sont délimitées par

$$\pm \frac{1.96}{\sqrt{T}} \left[1 + 2 \left(\hat{\rho}^2 (1) + \hat{\rho}^2 (2) + \dots + \hat{\rho}^2 (h-1) \right) \right]^{1/2},$$

puisque sous l'hypothèse où le processus est effectivment un MA(q)

$$\sqrt{T}\widehat{\rho}(h) \stackrel{\mathcal{L}}{\to} N\left(0, 1+2\left(\rho^2(1)+...+\rho^2(q-1)\right)\right) \text{ pour } h > q.$$

7.2.5 Cas d'un processus ARMA(p,q)

La méthode du coin (Beguin, Gourieroux, Monfort) La méthode suivante, dite 'méthode du coin' permet d'estimer conjointement p et q lorsque les deux sont non-nuls. Elle est basée sur la propriété (216). Les valeurs de Ω_{ij} où

$$\Omega_{i,j} = \begin{bmatrix} \rho(i) & \rho(i-1) & \rho(i-2) & \rho(i-j+2) & \rho(i-j+1) \\ \rho(i+1) & \rho(i) & \rho(i-1) & \rho(i-j+3) & \rho(i-j+2) \\ \rho(i+2) & \rho(i+1) & \rho(i) & \ddots & \rho(i-j+4) & \rho(i-j+3) \\ & & \ddots & \ddots & \ddots \\ \rho(i+j-2) & \rho(i+j-3) & \rho(i+j-4) & \ddots & \rho(i) & \rho(i-1) \\ \rho(i+j-1) & \rho(i+j-2) & \rho(i+j-3) & \rho(i+1) & \rho(i) \end{bmatrix}$$

sont inconnues mais peuvent être estimée par les $\widehat{\rho}(h)$. On pose alors $\Delta(i,j) = \det \Omega_{ij}$, qui sera, de la même façon, estimé par $\widehat{\Delta}(i,j) = \det \widehat{\Omega}_{ij}$. Les $\widehat{\Delta}(i,j)$ sont alors des estimateurs convergents des $\Delta(i,j)$ (par continuité du déterminant). Les coefficients p et q sont alors les valeurs pour lesquels s'observent une rupture. La variance asymptotique de $\widehat{\Delta}(i,j)$ est une fonction différentiable du vecteur des autocorrélations $\widehat{\rho}(h)$, avec une loi normale asymptotique.

Un test de nullité est basé sur l'utilisation de la statistique de Student $\widehat{\Delta}\left(i,j\right)/\sqrt{\widehat{V}\left(\widehat{\Delta}\left(i,j\right)\right)}$, qui doit être comparée à 1.96 pour un seuil de 5%.

Exemple 222. Considérons le processus simulé (sur 250 valeurs) $(1-0.5L)X_t = (1+0.1L-0.7L^2)\varepsilon_t$ où (ε_t) est un bruit blanc gaussien de variance 1 Le tableau des Δ_{ij} est donné par

$i \backslash j$	1	2	3	4	5		$\overline{i \backslash j}$	1	2	3	4	5
1	0.352	0.420	0.006	0.095	-0.003		1	0.352	0.420	0.006	0.095	-0.003
2	-0.296	0.199	-0.067	0.022	-0.006	_	2	-0.296	0.199	-0.067	0.022	-0.006
3	-0.316	0.047	0.006	0.001	0.003	~	3	-0.316	0.047	0.000	0.000	0.000
4	-0.179	0.021	0.000	-0.001	-0.001		4	-0.179	0.021	0.000	0.000	0.000
5	-0.036	0.010	0.002	0.001	0.000		5	-0.036	0.010	0.000	0.000	0.000

En effet, par exemple, le terme $\Delta_{1,2}$ est donné par

$$\Delta_{1,2} = \begin{vmatrix} \rho(1) & \rho(0) \\ \rho(2) & \rho(1) \end{vmatrix} = \begin{vmatrix} 0.352 & 1 \\ -0.296 & 0.352 \end{vmatrix} = 0.352^2 + 0.296 = 0.420.$$

L'approximation indiquée ci-dessous semble valider l'hypothèse de modélisation ARMA(1,2). Cette intuition est confirmée en étudiant le tableau des 'Student'.

Utilisation de la fonction d'autocorrélation étendue (Tsay, & Ciao) Cette méthode est appelée EACF ($Extended\ Autocorrelation\ Function$). Pour cela, on effectue des regressions linéaires, de façon itérative pour calculer les paramètres AR d'un ARMA ($stationnaire\ ou\ pas$). Ensuite, à partir de cette estimation, la série observée est modélisée sous forme MA.

Soit (X_t) un processus ARMA(p,q) dont on observe n réalisations, suivant le modèle

$$\Phi(L) X_t = (1 - L)^d \phi(L) X_t = \Theta(L) \varepsilon_t$$
 où (ε_t) suit un bruit blanc de variance σ^2 .

Sur la partie autorégressive du processus, on utilise une régression linéaire pour obtenir des estimateurs ($par\ moindres\ carrés$) des paramètres autorégressifs de la composante AR. On définit alors la première regression

$$X_t = \underbrace{\sum_{i=0}^{p} \phi_i^{p,1} X_{t-i} + \theta_i^{p,1} \eta_{t-1}^{p,0}}_{\text{Forme autorégressive}} + u_t^{p,1}.$$

Ce modèle est estimé par les mco. On définit alors la k-ème régression itérative d'un AR(m) quelconque

$$X_{t} = \sum_{i=0}^{m} \phi_{i}^{m,k} X_{t-i} + \sum_{j=0}^{k} \theta_{j}^{m,k} \eta_{t-j}^{j,k} + u_{t}^{m,k},$$

où les $\eta_t^{j,k}$ sont les erreurs du processus AR de la k-ième régression, et les $u_t^{m,k}$ les résidus de la régression. Comme on ignore l'ordre p de la partie autorégressive, on choisit m

variant de 1 à p', et on effectue q' régressions itératives : on choisira a priori p' et q' suffisamment grands. Les paramètres peuvent alors être estimés récursivement par

$$\widehat{\phi}_{i}^{m,j} = \widehat{\phi}_{i}^{m+1,j-1} - \widehat{\phi}_{i-1}^{m,j-1} \frac{\widehat{\phi}_{m+1,j-1}^{m+1,j-1}}{\widehat{\phi}_{m}^{m,j-1}}.$$

Ces paramètres sont alors utilisés pour définir la ESACF, fonction d'autocorrélation étendue, telle que l'a définie Tsay et Tia (1984),

Définition 223. On appelle fonction d'autocorrélation étendue la fonction $r_j(m)$, fonction d'autocorrélation du processus

$$\omega_j^m = X_t - \sum_{i=1}^m \widehat{\phi}_i^{m,j} X_{t-i} \ pour \ j = 1, 2, ...$$

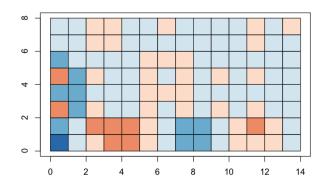
Si le processus suit un ARMA(p+d,q) la série ω_j^m suit un processus MA(q) pour $j \geq q$, c'est à dire

$$\begin{cases} r_j (p+d) \approx 0 \text{ pour } j > q \\ r_j (p+q) \neq 0 \text{ pour } j = q. \end{cases}$$
 (34)

La nullité théorique de (??) est interprétée statistiquement par une valeur inférieur à $1.96/\sqrt{n}$.

```
> library(TSA)
> X=arima.sim(list(ar=c(.8,0,-.5),ma = c(.4,.6)),n=240)
> extacf=eacf(X)
AR/MA
 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 x x x x x x x x x o x x
2 x x x x o o x x x x x o
3 x x x x o o o o o o x
4 x x x x o x o o x o o
5 x x x x o x o o x o o
6 x o x o x o o o x x o o o
7 o o x o x o o o o x o
> extacf$eacf
          [,2]
                  [,3]
                         [,4]
                                [,5]
                                       [,6]
                                             [,7]
[1,] 0.749 0.274 -0.270 -0.544 -0.495 -0.198 0.160 0.358 0.341
[2,] 0.652 0.291 -0.404 -0.638 -0.494 -0.207 0.231 0.427 0.361
[3,] -0.576 0.631 -0.301 0.186 0.022 -0.130 0.163 -0.215 0.201 -0.139
[4,] 0.551 0.519 0.134 0.199 0.035 -0.078 -0.022 -0.060 0.102
[5,] -0.440 0.496 -0.206 0.190 0.034 -0.155 0.054 -0.027 0.182 -0.002
[6,] 0.500 0.302 0.140 0.154 0.042 -0.228 -0.092 -0.034 0.172
[7,] 0.245 0.058 -0.245 -0.035 0.264 0.066 0.020 0.049 0.180 0.205
[8,] 0.058 0.045 -0.185 -0.035 0.163 0.020 -0.074 0.007 0.049 0.188
```

On peut visualiser ces valeurs sur la figure suivante



Méthode 'SCAN' Cette méthode vise à utiliser la plus petite corrélation canonique (smallest canonical correlation) pour identifier les ordres p et q. Considérons une série X_t que nous allons centrer, $Z_t = X_t - \mu$, dont on observe n réalisations, suivant un processus ARIMA(p,d,q). Cette méthode analyse les valeurs propres de la matrice de corrélation du processus.

[A COMPLETER]

Exemple 224. Dans le cas d'un processus ARMA (2,1), les tables ESACF et SCAN théoriques seront de la forme

Table ESACF										Tabi	le S	CA	1.
AR-MA	0	1	2	3	4	5	6		AR- MA	0	1	2	
0	*	*	*	*	*	*	*		0	*	*	*	
1	*	*	*	*	*	*	*		1	*	*	*	
2	*	0	0	0	0	0	0		2	*	0	0	
3	*	*	0	0	0	0	0		3	*	0	0	
4	*	*	*	0	0	0	0		4	*	0	0	

où l'ordre de l'AR se lit à gauche, et l'ordre du MA se lit en haut. Dans l'exemple ci-dessous, nous avons simulé 1500 réalisations d'un tel processus.

Les sorties ESACF, et SCAN peuvent se réécrire

	Table ESACF									$Table\ SCAN$						
AR- MA	0	1	2	3	4	5		AR- MA	0	1	2	3	4			
0	0.53	0.01	-0.32	-0.41	-0.36	-0.21		0	0.28	0.00	0.10	0.17	0.13			
1	0.52	0.02	-0.25	-0.16	-0.16	-0.17		1	0.14	0.14	0.12	0.02	0.0			
2	-0.44	-0.03	-0.08	-0.06	0.00	-0.03		2	0.04	0.00	0.00	0.00	0.0			
3	-0.48	0.11	-0.10	-0.06	0.01	-0.02		3	0.02	0.00	0.00	0.00	0.0			
4	-0.50	-0.51	-0.40	0.02	0.05	-0.02		4	0.03	0.00	0.00	0.00	0.0			

0

0

Comme on peut le noter, la méthode SCAN donne de très bon résultats, et permet d'identifier les ordres 2 et 1.

7.2.6 Propriété des estimateurs

En notant $\omega = (\phi_1, ..., \phi_p, \theta_1, ..., \theta_q)'$, on a le résultat suivant

Proposition 225. L'estimateur du maximum de vraissemblance est convergent, et asymptotiquement normal,

$$\left[\begin{array}{c} \sqrt{T} \left(\widehat{\omega}_T - \omega\right) \\ \sqrt{T} \left(\widehat{\sigma}_T - \sigma\right) \end{array}\right] \xrightarrow{\mathcal{L}} \mathcal{N} \left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} \Omega & 0 \\ 0 & a \end{array}\right]\right).$$

Cette propriété permet de mettre en place des tests sur les paramètres.

7.3 Test de bruit blanc et de stationnarité

L'hypothèse $(X_t) \sim ARIMA(p, d, q)$ peut s'écrire $(1 - L)^d \Phi(L) X_t = \Theta(L) \varepsilon_t$, ou encore

$$\varepsilon_t = \Theta(L)^{-1} (1 - L)^d \Phi(L) X_t.$$

Une fois estimés les paramères d, p, q et l'ensemble des ϕ_i et θ_j , on obtient des polynômes estimés $\widehat{\Theta}(L)$ et $\widehat{\Phi}(L)$, qui permettent d'obtenir les résidus estimés,

$$\widehat{\varepsilon}_t = \widehat{\Theta}(L)^{-1} (1 - L)^d \widehat{\Phi}(L) X_t.$$

Pour que les modèles obtenus précédamment soient valides, il convient de vérifier que les résidus estimés suivent bien un bruit blanc $H_0: (\varepsilon_t) \sim BB$.

7.3.1 Analyse des fonctions d'autocorrélation

L'autocorrélation peut être estimée par

$$\widehat{\rho}(h) = \frac{\widehat{\gamma}(h)}{\widehat{\gamma}(0)} \text{ où } \widehat{\gamma}(h) = \frac{1}{n-h} \sum_{t=1}^{n-k} \left(X_t - \overline{X} \right) \left(X_{t-h} - \overline{X} \right) \text{ et } \overline{X} = \frac{1}{n} \sum_{t=1}^{n} X_t.$$

L'intervalle de confiance de $\widehat{\rho}(h)$ est, dans le cas d'un bruit blanc gaussien $\left[-t_{\alpha/2}/\sqrt{T};t_{\alpha/2}/\sqrt{T}\right]$ où $t_{\alpha/2}$ est le quantile d'ordre $\alpha/2$ de la loi de Student (1.96 pour $\alpha=5\%$). Pour avoir un bruit blanc, il est nécessaire qu'aucune valeur de l'autocorrélogramme ne soit significativement non-nulle.

Exemple 226. Pour la série (1) à gauche, aucune valeur n'est significativement nonnulle alors que pour la série (2), à droite, certaines le sont, en particulier pour h = 8 ou h = 16.

7.3.2 Statistique de Box-Pierce, ou test de "portmanteau"

Le test de Box-Pierce permet d'identifier les processus de bruit blanc (i.e. les processus aléatoires de moyenne nulle, de variance constante et non autocorrélés). Cette statistique permet de tester $cov(\varepsilon_t, \varepsilon_{t-h}) = 0$ pour tout h, soit $\rho(h) = 0$ pour tout h. Ce test s'écrit

$$\begin{cases} H_0: \rho(1) = \rho(2) = \dots = \rho(h) = 0 \\ H_a: \text{ il existe } i \text{ tel que } \rho(i) \neq 0. \end{cases}$$

Pour effectuer ce test, on utilise la statistique de Box et Pierce (1970) Q, donnée par

$$Q_h = T \sum_{k=1}^h \widehat{\rho}_k^2,$$

où h est le nombre de retards, T est le nombre d'observations et $\widehat{\rho}_k$ l'autocorrélation empirique. Asymptotiquement, sous H_0 , Q_h suit un χ^2 à h degrés de liberté. Nous rejetons l'hypothèse de bruit blanc au seuil h si Q est supérieure au quantile d'ordre $(1-\alpha)$ de la loi du χ^2 à h degrés de liberté.

Une statistique ayant de meilleurs propriétés asymptotiques peut être utilisée :

$$Q'_{h} = T(T+2) \sum_{k=1}^{h} \frac{\widehat{\rho}_{k}}{T-k},$$

qui suit asymptotiquement, sous H_0 une loi du χ^2 à h degrés de liberté. Ces tests sont appelés par les anglo-saxons 'portmanteau tests', soit littéralement tests 'fourre-tout'.

Exemple 227. Cette statistique est généralement fournie avec l'autocorrélogramme (Q-stat). Les deux sorties ci-dessous correspondent aux valeurs pour 2 séries de résidus La table du χ^2 est donnée ci-dessous. A titre comparatif, nous obtenons le tableau suivant

h	1	2	3	4	5	6	7	8	9	10
Série (1)	0.000	0.102	0.819	4.095	4.476	6.852	9.087	10.676	11.310	11.388
Série (2)	2.088	2.206	4.059	4.673	7.2646	8.643	10.341	19.234	19.281	19.281
$\chi_{10\%}\left(h\right)$	2.706	4.605	6.251	7.779	9.236	10.645	12.017	13.362	14.684	15.987
$\chi_{5\%}\left(h\right)$	3.841	5.991	7.815	9.488	11.070	12.592	14.067	15.507	16.919	18.307

Si la série (1) est statistiquement un bruit blanc, il ne semble pas en être de même pour la seconde série, pour laquelle Q_h est parfois trop elevée (en particulier à partir de h=8 - ce qui était confirmé par l'analyse graphique des autocorrélogrammes, avec cette valeur $\rho(8)$ significativement non nulle).

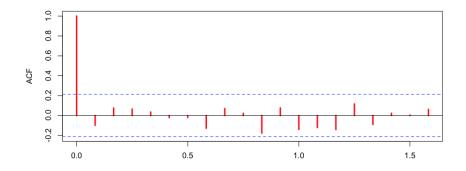
- > library(forecast)
- > (modele=auto.arima(X))

Series: X

ARIMA(1,0,1)(2,1,0)[12] with drift

Coefficients: sar2 drift ar1 ma1 sar1 -0.0344 -0.0686 -0.444 -0.4048 69.1618 16.9562 s.e. NaN NaN NaN 0.0010 sigma^2 estimated as 9819923: log likelihood=-692.24 AIC=1396.48 AICc=1397.75 BIC=1410.22 > plot(modele\$residuals)

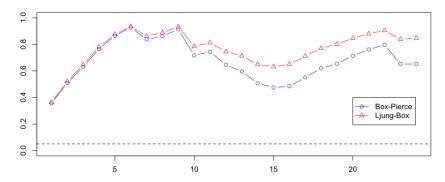
> acf(modele\$residuals,lwd=3,col="red")



Il est possible d'utiliser les tests de Box-Pierce ou Ljung-Box

que l'on peut aussi visualiser graphiquement

```
> BP=function(h) Box.test(modele$residuals,lag=h,type="Box-Pierce")$p.value
> LB=function(h) Box.test(modele$residuals,lag=h,type="Ljung-Box")$p.value
> plot(1:24,Vectorize(LB)(1:24),ylim=c(0,1),type="b",col="blue")
> points(1:24,Vectorize(BP)(1:24),ylim=c(0,1),type="b",col="red",pch=2)
> abline(h=.05,lty=2)
> legend(20,.4,
+ c("Box-Pierce", "Ljung-Box"),col=c("blue","red"),lty=1,pch=c(1,2))
```



7.3.3 Compléments : les tests de normalité

Dans le cadre de la prévision, ou lors des tests de Student sur les paramètres, il convient de vérifier la normalité des résidus. Un test possible est celui de Bera & Jarque (1984), basé sur le skewness (coefficient d'asymétrie de la distribution) et la kurtosis (aplatissement - épaisseur des queues).

En notant μ_k le moment d'ordre k de la distribution, $\mu_k = \mathbb{E}\left(\left[X - \mathbb{E}\left(X\right)\right]^k\right)$, on appelle skewness le coefficient $s = \mu_3/\mu_2^{3/2}$ et kurtosis $k = \mu_4/\mu_2^2$. Sous des hypothèses de normalité, on a normalité des estimateurs du skewness et de la kurtosis,

$$s \stackrel{\mathcal{L}}{\to} \mathcal{N}\left(0, \sqrt{6/T}\right) \text{ et } k \stackrel{\mathcal{L}}{\to} \mathcal{N}\left(3, \sqrt{24/T}\right) \text{ quand } T \to \infty.$$

Le test de Bera & Jarque repose sur le fait que, si la distribution suit une loi normale, alors la quantité

$$BJ = \frac{T}{6}s^2 + \frac{T}{24}[k-3]^2,$$

suit asymptotiquement une loi du χ^2 à 2 degrés de liberté. Aussi, si $BJ \geq \chi^2_{1-\alpha}(2)$ on rejette l'hypothèse H_0 de normalité des résidus au seuil α .

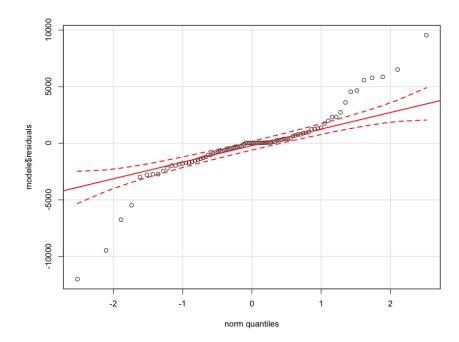
```
> jarque.bera.test(residuals(modele))

Jarque Bera Test

data: residuals(modele)
X-squared = 81.2819, df = 2, p-value < 2.2e-16</pre>
```

On peut aussi faire des tests graphiques, comme des QQ-plots

- > library(car)
- > qqPlot(modele\$residuals)



Parmi les autres tests, il y a la statistique de test proposée par Shapiro & Wilk,

$$W = \frac{\left(\sum_{i=1}^{n} a_i X_{i:n}\right)^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

où $X_{i:n}$ désigne la *i*ème statistique d'ordre, et où

$$\boldsymbol{a} = (a_1, \dots, a_n) = \frac{\boldsymbol{m}' V^{-1}}{(\boldsymbol{m}' V^{-1} V^{-1} \boldsymbol{m})^{1/2}}$$

où $\mathbf{m} = (m_1, \dots, m_n)'$ sont les espérances des statistiques d'ordre d'un échantillon de variables indépendantes et identiquement distribuée suivant une loi normale, et V est la matrice de variance-covariance de ces statistiques d'ordre.

7.3.4 Complément : Test de rupture et de changement de tendance

Perron a proposé d'introduire, dès 1989, dans la régression de Dickey & Fuller une variable indicatrice spécifiant l'existence d'une rupture. La date de rupture peut d'ailleurs être

connue ou inconnue. Dans le cas où elle est inconnue, une procédure séquentielle permet de la localiser. Ce lien entre les tests de racine unité et les changements de structure ont donné lieu à de nombreuses publications depuis une dizaine d'années. Différentes formes de changement de structure ont d'ailleurs été étudiées : changement de niveau, changement du coefficient de tendance linéaire, changement sur les coefficients des variables de la modélisation... etc.

```
> library("strucchange")
  library(datasets)
   plot(Nile)
> breakpoints(Nile~1,breaks=1)
         Optimal 2-segment partition:
Call:
breakpoints.formula(formula = Nile ~ 1, breaks = 1)
Breakpoints at observation number:
28
Corresponding to breakdates:
1898
> abline(v=time(Nile)[breakpoints(Nile~1,breaks=1)$breakpoints],col="red")
               1200
               1000
               800
               900
                        1880
                                   1900
                                               1920
                                                          1940
                                                                      1960
```

breakpoint-Nile.png

Les tests de racine unité Plusieurs tests ont été implémentés afin de tester l'hypothèse nulle que la série stationnaire (Y_t) possède une racine unité et une constante, éventuellement nulle, avec une rupture au temps τ où $1 < \tau < T$, contre l'hypothèse alternative que la série soit stationnaire autour d'une tendance linéaire avec rupture en τ sur cette tendance. Une distinction est alors généralement apportée entre deux cas :

• AO - "additive outliers" - effet instantanné

• IO - "innovational outliser" - effet avec transition

Pour chacun des effets, trois modèles sont alors considérés : dans la version AO

$$\begin{cases} (1) & X_{t} = \mu + \beta t + \gamma DU_{t}\left(\tau\right) + Y_{t} & \text{pour } t = 1, ..., T, \\ (2) & X_{t} = \mu + \beta t + \theta DT_{t}^{*}\left(\tau\right) + Y_{t} & \text{pour } t = 1, ..., T, \\ (3) & X_{t} = \mu + \beta t + \gamma DU_{t}\left(\tau\right) + \theta DT_{t}^{*}\left(\tau\right) + Y_{t} & \text{pour } t = 1, ..., T, \end{cases}$$

où (Y_t) est la série (X_t) à laquelle on a retiré la tendance déterministe, avec $DU_t(\tau) = 1$ si $t > \tau$ et 0 sinon $(DU_t(\tau) = \mathbb{I}(t > \tau))$ et $DT_t^*(\tau) = (t - \tau)$ si $t > \tau$, 0 sinon $(DT_t^*(\tau) = [t - \tau] . \mathbb{I}(t > \tau))$. La mise en oeuvre du test se fait en deux étapes ;

- (i) estimation (par une méthode de type moindre carrés) de la tendance avec les modèles de régression (1), (2) et (3), et calcul de la série résiduelle obtenue en retranchant à la série observée la tendance estimée
- (ii) pour les modèles (1) et (3), le test est basé sur la valeur de la t-statistique relative à $\alpha = 0$, noté $t_{\widehat{\alpha}}(\tau)$ et correspond au test de racine unité dans la régression ADF

$$\Delta Y_{t} = \alpha Y_{t-1} + \sum_{j=0}^{k} d_{j} DT B_{t-j}\left(\tau\right) + \sum_{i=1}^{k} \alpha_{i} \Delta Y_{t-i} + \varepsilon_{t} \quad \text{où } DT B_{t-j}\left(\tau\right) = \mathbb{I}\left(t = \tau + 1\right).$$

Pour le modèle (2), la seconde étape consiste à effectuer la régression

$$\Delta Y_t = \alpha Y_{t-1} + \sum_{i=1}^k \alpha_i \Delta Y_{t-i} + \varepsilon_t ,$$

et à utiliser la t-statistique $t_{\hat{\alpha}}(\tau)$ pour effectuer les tests classiques ADF. Dans la version IO, les équations de régression s'écrivent

$$\begin{cases}
(1) \quad \Delta X_{t} = \mu + \beta t + \theta D U_{t}(\tau) + \delta D T B_{t}(\tau) + \left[\alpha X_{t-1} + \sum_{i=1}^{k} c_{i} \Delta X_{t-i} + \varepsilon_{t}\right] & \text{pour } t = \\
(2) \quad \Delta X_{t} = \mu + \beta t + \gamma D T_{t}^{*}(\tau) + \left[\alpha X_{t-1} + \sum_{i=1}^{k} c_{i} \Delta X_{t-i} + \varepsilon_{t}\right] & \text{pour } t = \\
(3) \quad \Delta X_{t} = \mu + \beta t + \theta D U_{t}(\tau) + \delta D T B_{t}(\tau) + \gamma D T_{t}^{*}(\tau) + \left[\alpha X_{t-1} + \sum_{i=1}^{k} c_{i} \Delta X_{t-i} + \varepsilon_{t}\right] & \text{pour } t = \\
\end{cases}$$

où, encore une fois, $DTB_t(\tau) = \mathbb{I}(t = \tau + 1)$. Le test de Zivot et Andrews (1992) considère seulement les modèles de type IO, sans introduire l'indicatrice $DTB_{t-j}(\tau)$ (la "justification" étant que ce coefficient est asymptotiquement négligeable)¹².

Toutefois, dans le cas général, la date de rupture τ est inconnue, ainsi que le paramètre k, permettant d'approcher le processus ARMA(p,q) par un processus AR(k+1). Différentes méthodes pour sélectionner k ont été proposée par Perron (1989 et 1993) pour les trois modèles et les deux types d'effets, AO et IO. Les procédures séquentielles d'identification de Zivot et Andrews (1992) et de Perron (1993) permettent de déterminer τ , ou plutôt $\lambda = \tau/T$. Cette méthode consiste à estimer les modèles de régressions (A),

 $^{^{12}}$ Ce test est évoqué ici car il existe des codes téléchargeables sur internet, en EViews, SAS ou Gauss.

(B) et (C) dans les deux cas AO et IO, et à retenir le cas où $t_{\widehat{\alpha}}(\tau) = t_{\widehat{\alpha}}(\lambda)$ est minimal. Les auteurs ont étudié la disctribution asymptotique de inf $t_{\widehat{\alpha}}(\lambda)$ quand λ appartient à un intervalle fermé de $]0,1[,\ \Lambda=[3/20,17/20]$ dans l'étude de Zivot et Andrews. On rejette alors l'hypothèse nulle de présence de racine unité si inf $\{t_{\widehat{\alpha}}(\lambda),\lambda\in\Lambda\}$ est plus petit que le fractile correspondant à une probabilité fixée de la distribution asymptotique de inf $\{t_{\widehat{\alpha}}(\lambda),\lambda\in\Lambda\}$.

Les tests de Gregory et Hansen (1996) Ces tests sont une généralisation des tests de Zivot et Andrews dans le cas mutlivarié, où $X_t = (X_t^1, X_t^2)$.

Les tests du "CUSUM" Ce test permet d'étudier la stabilité d'un modèle économétrique estimé au cours du temps. Il existe deux versions de ce test : le CUSUM fondé sur la somme cumulée des résidus récursifs, et le CUSUMSQ (SQ pour 'square') fondé sur la somme cumulée des carrés des résidus rérursifs. Pour cela, on note $(\tilde{\epsilon}_t)$ le résidu normalisé par rapport à l'écart-type, c'est à dire $\tilde{\epsilon}_t = \hat{\epsilon}_t/\hat{\sigma}_{\varepsilon}$, et on note k le nombre de paramètres à estimer dans le modèles. Les statistiques S_t du CUSUM et S_t' du CUSUMSQ sont définies par

$$S_t = (T - k) \frac{\sum_{i=k+1}^t \widetilde{\varepsilon}_i}{\sum_{i=k+1}^t \widetilde{\varepsilon}_i^2} \text{ pour } t = k+1, ..., T,$$

et

$$S'_t = \frac{\sum_{i=k+1}^t \tilde{\varepsilon}_i^2}{\sum_{i=k+1}^T \tilde{\varepsilon}_i^2} \text{ pour } t = k+1, ..., T.$$

Si les coefficients sont variables au cours du temps, alors les résidus récursifs S_t doivent rester dans l'intervalle défini par

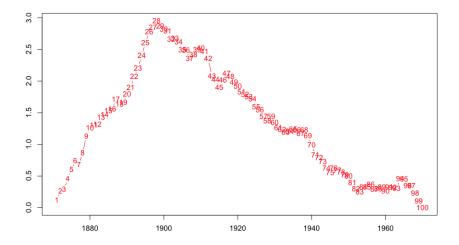
$$S_t \in \left[-\frac{\alpha \left(2t + T - 3k \right)}{\sqrt{T - k}}, + \frac{\alpha \left(2t + T - 3k \right)}{\sqrt{T - k}} \right],$$

où $\alpha=1.143,0.918$ ou 0.850 suivant que le seuil est 1%,5% ou 10%. De la même façon, les résidus S_t' doivent appartenir à l'intervalle

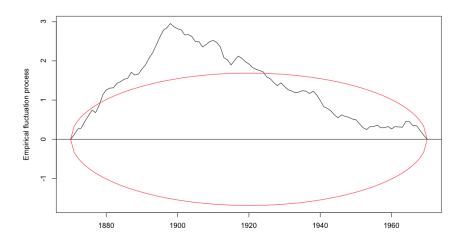
$$S'_t \in \left[\frac{t-T}{T-k} - C, \frac{t-T}{T-k} + C\right],$$

où C est la constante du Durbin. En fait, on peut montrer que sous l'hypothèse de stabilité, l'espérance de S'_t est $\mathbb{E}(S'_t) = (t-T)/(T-k)$ allant de 0 à 1 quand t varie entre k et T. Plus précisément, la variable S'_t suit une loi Bêta.

```
> cusum=efp(Nile~1,type="OLS-CUSUM")
> plot(time(Nile),cusum$process[-1],type="b",col="red")
```

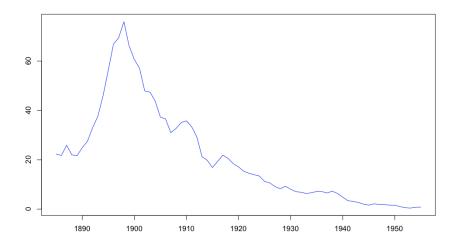


> plot(cusum,alt.boundary = TRUE)



Le test de Chow ou test d'homoscédasticité Puisque les bruits blancs doivent être homoscédastiques, le test de Chow, visant à comparer les variances des résidus sur des sous-périodes, peuvent être utilisés¹³.

- > library("strucchange")
- > plot(Fstats(Nile~1)\$Fstats,col="blue")



7.4 Estimation des paramètres d'un modèle ARMA(p,q)

A cette étape, les coefficients d, p et q ont été fixés. Il convient alors d'estimer les paramètres ϕ_i et θ_j du processus ARIMA(p,d,q), ainsi que la volatilité σ^2 du bruit blanc. Sous l'hypothèse $\varepsilon_t \sim \mathcal{N}(0,\sigma^2)$, on peut utiliser des méthodes du type maximum de vraissemblance. On supposera ici que le processus (X_t) est centré.

7.4.1 Attention à la constante

Par défaut, les modèles ARMA ne sont pas nécessairement centrés. Comme nous l'avons noté, la forme générale serait (pour un AR(1) par exemple)

$$X_t = a + \phi X_{t-1} + \varepsilon_t$$

Si la série est stationnaire, de moyenne μ , alors μ devrait être solution de

$$\mu = a + \mu$$
, i.e. $\mu = \frac{a}{1 - \phi}$ ou $a = (1 - \phi)\mu$.

Si on considère un modèle ARMA plus général $\Phi(L)X_t = a + \Theta(L)\varepsilon_t$, alors $a = \Phi(1)\mu$. Simulons un processus AR(1) de moyenne 2,

```
> X=arima.sim(list(order=c(1,0,0),ar=1/3),n=1000)+2
> mean(X)
[1] 1.931767
```

ou plus simplement, en utilisant une boucle récursive

```
> X=rep(NA,1010)
> X[1]=0
> for(t in 2:1010){X[t]=4/3+X[t-1]/3+rnorm(1)}
> X=X[-(1:10)]
> mean(X)
[1] 2.03397
```

L'estimation avec R donne ici

```
> arima(X, order = c(1, 0, 0))

Call:
arima(x = X, order = c(1, 0, 0))

Coefficients:
    ar1 intercept
0.3738    2.0334
s.e. 0.0294    0.0487

sigma^2 estimated as 0.9318: log likelihood = -1383.68
```

Autrement dit, le coefficient appelé intercept n'est pas la constante a dans le modÂlle AR(1), mais la moyenne μ . Le modéle estimé est alors

$$(X_t - \mu) = \phi(X_{t-1} - \mu) + \varepsilon_t.$$

Ces deux formes sont (bien entendu) équivalentes. Mais les coefficients estimés ne sont pas tout Ãă fait ce que l'on attendait...

Si on regarde maintenant la version intégrée, i.e. un processus ARIMA(1,1,0), avec une constante, on est tenté d'écrire

$$(1 - L)(1 - \phi L)X_t = a + \varepsilon_t$$
 ou $(1 - L)X_t = a + \phi(1 - L)X_{t-1}\varepsilon_t$.

Cette écriture laisse à penser qu'en intégrant, une tendance linéaire apparaîtra. Posons alors $Y_t = X_t - \beta t$, précisément pour enlever la tendance. Alors

$$(1 - L)[Y_t + \beta t] = a + \phi(1 - L)[Y_{t-1} + \beta(t-1)] + \varepsilon_t$$

qui peut se réécrire

$$(1-L)Y_t = a + (\phi - 1)\beta + \phi(1-L)Y_{t-1} + \varepsilon_t$$

i.e. $X_t - a(1-\phi)^{-1}t$ sera un processus ARIMA(1,1,0) sans constante. Supposons ici que l'on inègre le processus

$$U_t = 2 + \frac{1}{3}U_{t-1} + \varepsilon_t$$
 i.e. $X_t = X_{t-1} + U_t$,

avec $X_0 = 0$.

```
> U=rep(NA,1010)
> U[1]=0
> for(t in 2:1010){U[t]=4/3+U[t-1]/3+rnorm(1)}
> U=U[-(1:10)]
> X=cumsum(U)
```

La simulation (brute) donne ici

Mais cet estimation n'a rien à voir avec ce qui a été simulé. On peut tenter un processus AR(1) (avec constante) sur la série différenciée,

Les estimateurs proposés évoquent des choses que l'on a pu voir, même si ce n'est pas la constante du modèle ARIMA, mais la moyenne du processus différencié. Mais cette fois, on a un interprétation, c'est que la constante est la pente de la tendance! Si on estime la pente associée a , on écupère la même valeur,

```
> arima(X, order = c(1, 1, 0), xreg=1:length(X))

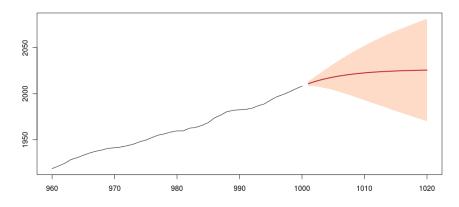
Call:
arima(x = X, order = c(1, 1, 0), xreg = 1:length(X))

Coefficients:
    ar1 1:length(X)
0.3566    2.0519
s.e. 0.0296    0.0487

sigma^2 estimated as 0.9787: log likelihood = -1406.82
```

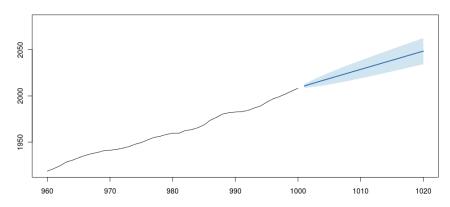
Si on fait de la prévision (détaillée plus loin dans ces notes de cours), on obtient dans le premier cas

```
> ARIMA1=arima(X, order = c(1, 1, 0))
> ARIMA2=arima(X, order = c(1, 1, 0), xreg=1:length(X))
> Xp1=predict(ARIMA1,20)
> Xp2=predict(ARIMA2,20,newxreg=
+ (length(X)+1):(length(X)+20))
> plot(960:1000,X[960:1000],xlim=c(960,1020),type="l")
> polygon(c(1001:1020,rev(1001:1020)),
+ c(Xp1$pred+2*Xp1$se,rev(Xp1$pred-2*Xp1$se)),
+ col=CL[3],border=NA)
> lines(1001:1020,Xp1$pred,col="red",lwd=2)
```



alors qu'avec le modèle prenant en compte la constante

> lines(1001:1020, Xp2\$pred, col="blue", lwd=2)



7.4.2 Estimation pour les modèles AR(p) par la m éthode des moindres carrés

Un modèle AR(p) s'écrit

$$X_t = c + \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + \varepsilon_t \text{ où } (\varepsilon_t) \text{ est un bruit blanc,}$$
$$= Z_t' \beta + \varepsilon_t \text{ où } Z_t' = (1, X_{t-1}, X_{t-2}, \dots, X_{t-p}) \text{ et } \beta' = (c, \phi_1, \phi_2, \dots, \phi_p).$$

L'estimation des paramètres du modèle $X=Z'\beta+\varepsilon$ par la méthode des moindres carrés donne

$$\widehat{\beta} = (ZZ')^{-1} ZX \text{ et } \widehat{\sigma}^2 = \frac{1}{T - (p+1)} \sum (X_t - Z_t' \widehat{\beta})^2.$$

Toutefois, les résultats usuels d'économétries ne sont pas vérifiés ici, en particulier $\mathbb{E}\left(\widehat{\beta}\right) \neq \beta$. Il est toutefois possible de montrer le résultat suivant,

Proposition 228. Si les racines du polynôme charactérisque (racines de $\Phi(z) = 0$) sont à l'extérieur du disque unité alors

$$\widehat{\beta} \xrightarrow{\mathbb{P}} \beta \ et \ \widehat{\sigma}^2 \xrightarrow{\mathbb{P}} \sigma^2,$$

et de plus

$$\sqrt{T}\left(\widehat{\beta}-\beta\right) \overset{\mathcal{L}}{\to} N\left(0,\sigma^2V\right) \ \text{où } V = p\lim_{T\to\infty} \frac{1}{T}ZZ'.$$

Remarque 229. Si la méthode des moindres carrés peut être utilisée pour estimer les paramètres d'un modèle AR(p), elle ne marche plus dès lors que l'on a des termes autorégressifs sur les résidus.

7.4.3 Vraissemblance d'un processus ARMA(p,q)

Pour déterminer la vraissemblance, il est nécessaire de supposer connue la loi des erreurs : nous supposerons les erreurs normalement distribuées. Les erreurs étant normalement distribuées et indépendantes (le processus (ε_t) est, par hypothèse un bruit blanc), le vecteur $(\varepsilon_1, ..., \varepsilon_n)$ est un vecteur gaussien. Les composantes du vecteur $(X_1, ..., X_n)$ étant obtenues par combinaisons linéaires des composantes du vecteur $(\varepsilon_1, ..., \varepsilon_n)$, $(X_1, ..., X_n)$ sera un vecteur gaussien :

$$\mathcal{L}\left(X = (X_1, ..., X_n)', \phi, \theta, \sigma^2\right) = \frac{1}{(2\pi\sigma^2)^{n/2}} \frac{1}{\left[\det \Omega\right]^{1/2}} \exp\left(-\frac{1}{2\sigma^2} X' \Omega^{-1} X\right),$$

où $\sigma^2\Omega$ est la matrice $(n \times n)$ des covariances du vecteur $X = (X_1, ..., X_n)'$.

La maximisation, et même le calcul de cette vraissemblance étaient relativement difficile il y a quelques années, en particulier à cause du calcul de l'inverse Ω^{-1} , et du déterminant, de Ω , surtout lorsque n devenait relativement grand. Newbold a proposé une autre expression de cette vraissemblance, plus facile à calculer. Soit H la matrice triangulaire inférieure, à éléments positifs sur la diagonale telle que $HH' = \Omega$ (décomposition de Cholesky). Soit alors e le vecteur tel que $e = H^{-1}X$. La log-vraissemblance du modèle s'écrit alors

$$\log \mathcal{L} = -\frac{n}{2} \log 2\pi - \frac{1}{2} \log \sigma^2 - \frac{1}{2} \log |\det \Omega| - \frac{1}{2\sigma^2} X' \Omega^{-1} X,$$

$$= -\frac{n}{2} \log 2\pi - \frac{n}{2} \log (e'e) - \log |\det H| = -\frac{n}{2} \log \left(|\det H|^{1/n} e'e |\det H|^{1/n} \right).$$

La méthode du maximum de vraissemlance revient alors à chercher le minimum de $\ell = \left(|\det H|^{1/n} \, e'e \, |\det H|^{1/n} \right)$.

Une autre écriture, relativement proche est possible dans le cas des processus MA(q). Soit ε^* le vecteur d'innitialisation des erreurs,

$$\varepsilon^* = (\varepsilon_{1-q}, ..., \varepsilon_{-1}, \varepsilon_0)',$$

permettant d'engendrer la série $x_1,...,x_n$. Considérons alors les vecteurs $\varepsilon = (\varepsilon_{1-q},...,\varepsilon_{-1},\varepsilon_0,\varepsilon_1,...,\varepsilon_n)'$ et X. On peut alors écrire

$$\varepsilon = NX + M\varepsilon^*$$
,

où M est une matrice $(n+q) \times q$ et N $(n+q) \times n$. L'initialisation des erreurs s'estimant par $\widehat{\varepsilon}^* = -(M'M)^{-1} M'NX$, et en notant

$$S(\theta) = (NX + M\widehat{\varepsilon}^*)'(NX + M\widehat{\varepsilon}^*),$$

on peut alors montrer que la log-vraissemblance peut s'écrire

$$\log \mathcal{L} = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 - \frac{1}{2}\log \left(\det \left(M'M\right)\right) - \frac{S\left(\theta\right)}{2\sigma^2}.$$

Et finallement, puisqu'on peut écrire $\sigma^2 = S(\theta)/n$, la fonction à minimiser s'écrit

$$\ell^* = n \log S(\theta) + \log (\det (M'M)).$$

Exemple 230. Dans le cas d'un modèle AR(1), de la forme $X_t = c + \phi X_{t-1} + \varepsilon_t$ où ε_t est i.i.d. et distribué suivant une loi $\mathcal{N}(0, \sigma^2)$, avec $|\phi| < 1$, alors

$$X_t|X_{t-1} \sim \mathcal{N}\left(c + \phi X_{t-1}, \sigma^2\right)$$
.

Aussi, la loi conditionnelle de X_t est donnée par

$$f(x_t|x_{t-1}, (c, \phi, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} (x_t - c - \phi x_{t-1})^2\right],$$

c'est à dire que

$$X_{t} \sim \mathcal{N}\left(\mathbb{E}\left(X_{t}\right), V\left(X_{t}\right)\right) \text{ soit } X_{t} \sim \mathcal{N}\left(\frac{c}{1-\phi}, \frac{\sigma^{2}}{1-\phi^{2}}\right).$$

En posant $\beta = (c, \theta, \sigma^2)$, la vraissemblance conditionelle du modèle est alors donnée par

$$\mathcal{L}(\beta|X_1, ..., X_T) = \prod_{t=2}^{T} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} (X_t - c - \phi X_{t-1})^2\right],$$

$$\log \mathcal{L}(\beta|X_1,...,X_T) = -\frac{T-1}{2}\ln(2\pi) - \frac{T-1}{2}\ln\sigma^2 + \frac{1}{2\sigma^2}\sum_{t=2}^{T}(X_t - c - \phi X_{t-1})^2.$$

La vraissemblance marginale s'écrivant

$$\mathcal{L}(\beta, X_1) = \sqrt{\frac{1 - \phi^2}{2\pi\sigma^2}} \exp\left[-\frac{(1 - \phi^2)}{2\sigma^2} \left(X_1 - \frac{c}{1 - \phi}\right)^2\right],$$

on en déduit la forme de la log-vraissemblance (exacte, et non plus conditionelle),

$$\log \mathcal{L}(\beta, X_1, ..., X_T) = -\frac{1}{2} \ln (2\pi) - \frac{1}{2} \ln \left(\frac{\sigma^2}{1 - \phi^2}\right) - \frac{(1 - \phi^2)}{2\sigma^2} \left(X_1 - \frac{c}{1 - \phi}\right)^2 - \frac{T - 1}{2} \ln (2\pi) - \frac{T - 1}{2} \ln (\sigma^2) - \frac{1}{2\sigma^2} \sum_{t=2}^{T} (X_t - c - \phi X_{t-1})^2.$$

On peut noter que la maximisation de la vraissemblance exacte est un problème d'optimisation non-linéaire.

7.4.4 Résolution du programme d'optimisation

Une fois écrite la vraissemblance, deux méthodes sont alors possibles

- (1) des méthodes exactes, visant à minimiser effectivement la log-vraissemblance $\log \mathcal{L}$, de façon numérique
- (2) des méthodes de type moindres carrés, visant à minimiser la fonction $S(\theta)$ dans le cas MA, le second terme dans $\log \mathcal{L}_n$ devenant négligeable quand n augmente (méthode utilisée sous EViews).

Pour les modèles ARMA stationnaires, les méthodes de maximisation de la vraissemblance conditionnelle, et de maximisation de la vraissemblance (exacte), sont asymptotiquement équivalentes. L'explication heuristique est que pour les modèles stationnaires, l'effet des valeurs initiales devient asymptotiquement négligeable, alors que dans le cas où des racines du polynôme charactéristique sont sur le cercle unité, les valeurs initiales influencent les échantillons finis.

Critère des moindres carrés conditionnel (MCC)

Exemple 231. Considérons ici un modèle de la forme MA(1), $X_t = \varepsilon_t - \theta \varepsilon_{t-1}$. Cette équation peut s'écrire $\varepsilon_t = x_t + \theta \varepsilon_{t-1}$, et donc, en supposant $\varepsilon_0 = 0$,

$$\varepsilon_t = \sum_{i=0}^{t-1} \theta^i x_{t-i}, \ pour \ t \ge 2, \tag{35}$$

et donc, la somme des carrés, conditionnelle à $\varepsilon_0 = 0$ s'écrit

$$S(\theta|\varepsilon_0 = 0) = \sum_{t=1}^{T} \varepsilon_t^2 = \sum_{t=1}^{T} \left[\sum_{i=0}^{t-1} \theta^i x_{t-i} \right]^2.$$

L'équation permettant d'estimer θ n'est pas linéaire.

Dans le cas général, pour un processus ARMA(p,q), on suppose que $x_1 = ... = x_p$ sont fixés et connus, et que $\varepsilon_p = \varepsilon_{p+1} = ... \varepsilon_{p+q} = 0$. Alors, par récurence

$$\varepsilon_t = x_t - \sum_{i=1}^p \phi_i x_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j}.$$

La somme des carrés conditionnelle aux valeurs initiales s'écrit

$$S\left(\theta|\varepsilon_{0}=0\right) = \sum_{t=1}^{T} \varepsilon_{t}^{2} = \sum_{t=1}^{T} \left[x_{t} - \sum_{i=1}^{p} \phi_{i} x_{t-i} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}\right]^{2},$$

où les ε_{t-j} peuvent être écrits en fonction des $x_{t-j},...,x_{t-j-p}$ et des $\varepsilon_{t-j-1},...,\varepsilon_{t-q}$.

Critère des moindres carrés non conditionnel (MCN)

Exemple 232. Considérons ici un modèle de la forme MA(1), $X_t = \varepsilon_t - \theta \varepsilon_{t-1}$, que l'on notera, en considérant les innovations en temps inversé $\overline{\varepsilon}_t$, $X_t = \overline{\varepsilon}_t - \theta \overline{\varepsilon}_{t+1}$. On supposant $\overline{\varepsilon}_{T+1} = 0$, on détermine récurviement $\overline{\varepsilon}_T = x_T, \overline{\varepsilon}_{T-1} = x_T + \theta \overline{\varepsilon}_T$...etc. De façon rétrospective, on peut ainsi défiir $\widehat{x}_0 = -\theta \overline{\varepsilon}_1$. De façon anologue à (35), on peut écrire

$$\widehat{x}_0 = -\sum_{t=1}^T \theta^t x_T.$$

En posant alors $\varepsilon_0 = \widehat{x}_0$, on peut obtenir les ε_t en utilisant (35). On obtient alors une expression (non conditionelle) de la somme des carrés des résidus

$$S(\theta) = \sum_{t=1}^{T} \varepsilon_t^2 = \sum_{t=1}^{T} \left[\sum_{i=0}^{t-1} \theta^i x_{t-i} - \theta^t \sum_{i=1}^{T} \theta^i x_i \right]^2.$$

Là encore, l'équation permettant d'estimer θ n'est pas linéaire.

Un des problèmes de cette méthode est que, dans le cas de processus comprenant une part autorégressive, les valeurs initiales doivent être obtenues, théoriquement, en $-\infty$. Ceci impose de faire une approximantion sur la base d'un critère d'arrêt portant sur la convergence numérique de la récurrence.

Critère du maximum de vraissemblance conditionelle (MV) Pour utiliser la méthode du maximumum de vraissemblance, il est nécessaire de faire des hypothèses sur la loi des ε_t : ce sont des variables indépendantes, et de même loi $\mathcal{N}(0, \sigma^2)$. La vraissemblance conditionnelle est obtenue de la façon suivante :

La densité de $\varepsilon = (\varepsilon_1, ..., \varepsilon_T)'$ est donnée par

$$f(\varepsilon_1, ..., \varepsilon_T) = \frac{1}{(2\pi\sigma^2)^{T/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{t=1}^T \varepsilon_t^2\right).$$

On supposera connues les valeurs initiales x^* et ε^* . La densité de x peut s'exprimer conditionellement à ε^* et x^* .

Programme d'optimisation Nous allons ici nous limiter à un cas simple, d'un modèle MA(1), avec un critère de type MCC. On part d'une valeur initiale θ_0 , et on va mettre en place un algorithme convergent vers la vraie valeur θ . A la i + 1-ème étape, on estime θ_{i+1} en fonction de θ_i en utilisant

$$S(\theta_{i+1}) = S(\theta_i) + [\theta_{i+1} - \theta_i] g(\theta^*) \text{ où } g(\theta^*) = \frac{\partial S(\theta)}{\partial \theta} \bigg|_{\theta = \theta^*},$$

où θ^* est compris entre θ_i et θ_{i+1} . Aussi, on minimise la fonction $S(\theta)$ en choisant θ_{i+1} de telle sorte que θ_i soit de signe opposé au gradient de $S(\theta)$ en θ^* . Mais comme θ^* est inconnu, on choisit

$$\theta_{i+1} = \theta_i - \lambda g(\theta_i) \text{ avec } \lambda > 0$$

et ainsi, $S(\theta_{i+1}) < S(\theta_i)$. Le gradient, s'il est difficile à évaluer peut être remplacé par une différence de la forme $[S(\theta_i + \mu) - S(\theta_i)]/\mu$ avec μ petit. Ces deux constantes λ et μ , propres à l'algorithme, peuvent être fixée initialement, par exemple $\lambda = 0.001$ et $\mu = 0.01$.

Exemple 233. Considérons un cas relativement simple avec 6 observations (5,6,3,2,7,6), et cherchons θ tel que $X_t = \varepsilon_t + \theta \varepsilon_{t-1}$.

 $\theta_0 = 0 \text{ et } \theta_0 + \mu = 0.01. \text{ Alors } S\left(\theta_0\right) = 5^2 + 6^2 + \dots + 7^2 + 6^2 = 159. \text{ Alors } X_1^{(i)} = 5, \\ X_2^{(i)} = X_2 + (\theta_0 + \mu) \times X_1^{(i)} = 6 + 5 \times 0.01 = 6.05, X_3^{(i)} = X_3 + (\theta_0 + \mu) \times X_2^{(i)} = 3 + 6.05 \times 0.01 = 3.06, \dots \text{etc. D'où la somme } S\left(\theta_0 + \mu\right) = 161.225. \text{ Aussi, on obtient } \\ g\left(\theta_0\right) = 222.458 \text{ d'où finallement } \theta_1 = -0.222.$

Cet algorithme se répète à l'étape suivante, et les résultats sont alors

		- 4						0 (0)	(0)	0
itération i		$_{i}$ 1	2	3	4	5	6	$S\left(\theta_{i}\right)$	$g\left(heta_{i} ight)$	θ_{i+1}
0	θ_i 0.00	5.000	6.000	3.000	2.000	7.000	6.000	159.00	222.46	-0.222
	$\theta_i + \mu = 0.01$) 5.000	6.050	3.061	2.031	7.020	6.070	161.22		
1	$\theta_i -0.22$	2 5.000	4.888	1.913	1.575	6.650	4.521	119.68	302.02	-0.524
	$\theta_i + \mu = -0.21$	$2 \mid 5.000$	4.988	2.001	1.606	6.679	4.651	122.70		
2	$\theta_i = -0.52$	5.000	3.378	1.229	1.356	6.289	2.702	86.61	181.06	-0.706
	$\theta_i + \mu = -0.51$	$4 \mid 5.000$	3.478	1.271	1.377	6.312	2.823	88.42		
3	$\theta_i = -0.70$	5.000	2.472	1.256	1.114	6.214	1.616	75.16	115.23	-0.821
	$\theta_i = -0.69$	$5 \mid 5.000$	2.572	1.271	1.146	6.223	1.742	76.31		
4	$\theta_i -0.82$	5.000	1.896	1.444	0.815	6.331	0.804	72.07	59.32	-0.880
	$\theta_i -0.81$	$1 \mid 5.000$	1.996	1.442	0.861	6.322	0.945	72.66		
5	$\theta_i = -0.88$	5.000	1.600	1.592	0.599	6.473	0.303	72.44	19.73	-0.900
	$\theta_i -0.87$) 5.000	1.700	1.582	0.654	6.451	0.457	72.64		
6	$\theta_i = -0.90$	5.000	1.501	1.649	0.516	6.536	0.119	72.97	4.01	-0.905
	$\theta_i -0.89$) 5.000	1.601	1.636	0.575	6.509	0.279	73.01		

En allant jusqu'à l'étape 10, on obtient $\theta = -0.905$.

Dans le cas des modèles moyennes mobiles (MA), l'algorithme du filtre de Kalman peut être utilisé, en considérant que ε_t $(ou\ \varepsilon_{t-1})$ est inobservable. La méthode d'estimation

est alors la suivante : (Y_t) suit un modèle de la forme $Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$ où ε_t est i.i.d. et suit une loi $\mathcal{N}(0,\sigma^2)$, avec $|\theta|<1$. La fonction de vraissemblance conditionnelle est $Y_t|\varepsilon_{t-1} \sim N\left(\mu + \theta\varepsilon_{t-1}, \sigma^2\right)$ et

$$f\left(y_{t}|\varepsilon_{t-1}, \theta, \mu, \sigma^{2}\right) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{1}{2}\left[Y_{t} - \mu - \theta\varepsilon_{t-1}\right]^{2}\right]$$

Le problème est que ε_{t-1} est "inobservable". Le raisonnement est alors le suivant :

- on suppose que $\varepsilon_0 = 0$, alors $Y_1 | \varepsilon_0 \sim \mathcal{N}(\mu, \sigma^2)$
- $-Y_1 = \mu + \varepsilon_1 + \theta \varepsilon_0 = \mu + \varepsilon_1 \text{ donc } \varepsilon_1 = Y_1 \mu$ $-Y_2 = \mu + \varepsilon_2 + \theta \varepsilon_1 \text{ donc } \varepsilon_2 = Y_2 \mu \theta (Y_1 \mu)$
- $Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$ et donc

$$\varepsilon_t = (Y_t - \mu) - \theta (Y_{t-1} - \mu) + \dots + (-\theta)^{t-1} (Y_1 - \mu)$$
(36)

(on peut reconnaître la version tronquée de la représentation $AR(\infty)$ du processus MA(1) La log vraissemblance conditionelle est

$$-\frac{T}{2}\ln(2\pi) - \frac{T}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{t=1}^{T}\varepsilon_t^2 \text{ où }\varepsilon_t \text{ est donn\'ee par (36)}$$

Compléments: introduction au filtre de Kalman Un modèle espace-état est défini par le système d'équation

$$\begin{cases} Z_{t+1} = A_t Z_t + \varepsilon_t : \text{ \'equation d\'etat} \\ Y_t = C_t Z_t + \eta_t : \text{\'equation de mesure} \end{cases}$$
 où $(\varepsilon_t, \eta_t)'$ est un bruit blanc normal

où A_t et C_t sont déterministes, où $Z_0 \sim \mathcal{N}(m,p)$ est indépendant des $(\varepsilon_t, \eta_t)'$. Les variables peuvent ici être de dimension supérieure à 1. La matrice de variance-covariance

$$V\left(\begin{array}{c} \varepsilon_{t} \\ \eta_{t} \end{array}\right) = \Omega = \left[\begin{array}{cc} V\left(\varepsilon_{t}\right) & cov\left(\varepsilon_{t}, \eta_{t}\right) \\ cov\left(\varepsilon_{t}, \eta_{t}\right) & V\left(\eta_{t}\right) \end{array}\right]$$

On dira alors

 Z_t) : état du système à la date t : inobservable

 (Z_t) : etat du système à la date t: mobservable (Y_t) : observations du système à la date t: observable (ε_t) : innovations du système à la date t: inobservable (η_t) : erreurs de mesure $(ou\ bruit)$ en t: inobservable (A_t) : matrice de transition (C_t) : matrice de mesure (C_tZ_t) : signal à la date t

Le filtre de Kalman permet de calculer $_t\widehat{Z}_t=\mathbb{E}\left(Z_t|Y_0,...,Y_t\right)$ la prévision de $Z_t.$ On notera

$$\left\{ \begin{array}{l} _t\Sigma_t = \mathbb{E}\left[\left(Z_t -_t \, \widehat{Z}_t\right) \left(Z_t -_t \, \widehat{Z}_t\right)'\right] : \text{ erreur quadratique du filtre sur } Z_t \text{ en } t \\ _{t-1}\widehat{Z}_t = \mathbb{E}\left(Z_t | Y_0, ..., Y_{t-1}\right) : \text{ prévision de } Z_t \text{ faite en } t-1 \\ _{t-1}\Sigma_t = \mathbb{E}\left[\left(Z_t -_{t-1} \, \widehat{Z}_t\right) \left(Z_t -_{t-1} \, \widehat{Z}_t\right)'\right] : \text{ erreur quadratique moyenne de prévision} \end{array} \right.$$

Dans le cas où $cov(\varepsilon_t, \eta_t) = 0$, alors, pour tout $t \ge 0$, le filtre de covariance,

$$\begin{cases} (a) & _{t}\widehat{Z}_{t} =_{t-1}\widehat{Z}_{t} + K_{t} \left[Y_{t} - C_{t \cdot t-1}\widehat{Z}_{t} \right] \\ (b) & _{t}\widehat{Z}_{t+1} = A_{t \cdot t}\widehat{Z}_{t} \end{cases} \text{ et } \begin{cases} (a') & _{t}\Sigma_{t} = [I - K_{t}C_{t}]_{t-1}\Sigma_{t} \\ (b') & _{t}\Sigma_{t+1} = A_{t \cdot t}\Sigma_{t} \cdot A'_{t} + Q \end{cases}$$

οù

$$K_t =_{t-1} \Sigma_t . C_t' \left(C_{t \cdot t-1} \Sigma_t . C_t' + R \right)^{-1}$$
: matrice de gain du filtre à la date t

On peut alors en déduire directement les formules de calcul de prévisions de la variable observée : soit $_{t-1}\widehat{Y}_t = \mathbb{E}\left(Y_t|Y_0,...,Y_{t-1}\right)$ et $_{t-1}M_t = V\left(Y_t -_{t-1}\widehat{Y}_t\right)$ alors

(c)
$$_{t}\widehat{Y}_{t+1} = C_{t+1}._{t}\widehat{Z}_{t+1}$$

(c') $_{t}M_{t+1} = C_{t+1}._{t}\Sigma_{t+1}.C'_{t+1} + R$

Dans le cas dit "stationnaire", c'est à dire quand $A_t = A$ et $C_t = C$ alors le modèle se réécrit

$$\begin{cases} Z_{t+1} = AZ_t + \varepsilon_t \\ Y_t = CZ_t + \eta_t \end{cases}$$

Le filtre doit être initialisé, et on prend généralement $_{-1}\widehat{Z}_0 = \mathbb{E}\left(Z_0\right) = m$ et $_{-1}\Sigma_0 = V\left(Z_0\right) = P$. De façon récursive, on peut alors calculer les $_t\widehat{Z}_t$ à l'aide de (a) et (a'), puis $_t\Sigma_t$ et $_t\widehat{Y}_{t+1}$ à l'aide de (b) et (b'), ainsi que de (c) et (c').

Remarque 234. Dans le cas où les bruits sont corrélés, des méthodes similaires peuvent être utilisées, en introduisant le résidu de la régression de (ε_t) sur (η_t) .

Pour une prévision à l'ordre h, on introduit une seconde itération : on cherche

$$\begin{cases} \widehat{tY}_{t+h} = \mathbb{E}\left(Y_{t+h}|Y_0, ..., Y_t\right) \\ \widehat{tZ}_{t+h} = \mathbb{E}\left(Z_{t+h}|Y_0, ..., Y_t\right) \end{cases} \text{ et } \begin{cases} \widehat{tM}_{t+h} = V\left(\widehat{tY}_{t+h} - Y_{t+h}\right) \\ \widehat{t\Sigma}_{t+h} = V\left(\widehat{tZ}_{t+h} - Z_{t+h}\right) \end{cases}$$

(pour h = 1 on retrouve le filtre de covariance). Dans le cas où $cov(\varepsilon_t, \eta_t) = 0$, on a les formules de récurrence

$$\begin{cases} {}_{t}\widehat{Y}_{t+h} = C_{t+h \cdot t}\widehat{Z}_{t+h} \\ {}_{t}\widehat{Z}_{t+h} = A_{t+h-1 \cdot t}\widehat{Z}_{t+h-1} \end{cases} \text{ et } \begin{cases} {}_{t}M_{t+h} = C_{t+h \cdot t}\Sigma_{t+h}.C'_{t+h} + R \\ {}_{t}\Sigma_{t+h} = A_{t+h+1 \cdot t}\Sigma_{t+h-1}.A_{t+h-1} + Q \end{cases}$$

La procédure itératif prend alors la forme suivante :

- (i) initialisation : $t=0, h=1, \text{ on pose } _{-1}\widehat{Z}_{0}=\mathbb{E}\left(Z_{0}\right)=m \text{ et } _{-1}\Sigma_{0}=V\left(Z_{0}\right)=P$
- (ii) formules (a) et (a')
- (iii) formules (b) et (b'), et (c) et (c')
- (iv) si h < H (horizon de prévision), alors h = h + 1 et (iii), sinon (v)
- (v) si t < T alors t = t + 1 et h = 1, observation de Y_{t+1} , et (ii), sinon fin

Remarque 235. De façon analogue, on peut utiliser le filtre d'information, basé sur ${}_{t}\widehat{U}_{t} = {}_{t} \Sigma_{t}^{-1} {}_{\cdot t}\widehat{Z}_{t}$ et ${}_{t}\widehat{U}_{t+1} = {}_{t} \Sigma_{t+1}^{-1} {}_{\cdot t}\widehat{Z}_{t+1}$, et on alors les relations

$$\begin{cases} (\alpha) & {}_{t}\widehat{U}_{t} =_{t-1}\widehat{U}_{t} + C'_{t}R^{-1}Y_{t} \\ (\beta) & {}_{t}\widehat{U}_{t+1} = [\mathbb{I} - M_{t}]A'_{t}^{-1}._{t}\widehat{U}_{t} \end{cases} et \begin{cases} (\alpha') & {}_{t}\Sigma_{t}^{-1} =_{t-1}\Sigma_{t}^{-1} + C'_{t}R^{-1}C_{t} \\ (\beta') & {}_{t}\Sigma_{t+1}^{-1} = [\mathbb{I} - M_{t}]N_{t} \end{cases}$$

$$où M_t = N_t (N_t + Q^{-1})^{-1} et N_t = A_t'^{-1} \cdot L_t \Sigma_t^{-1} \cdot A_t^{-1}$$

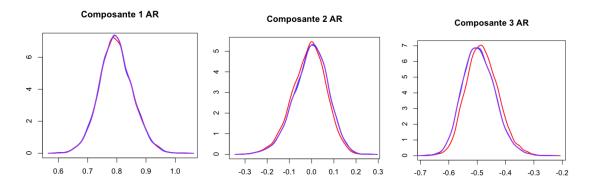
7.4.5 Comparaison des différentes méthodes d'inférence

Commençons par étudier (sur des simulations) l'estimation des paramêtres $\phi = (\phi_1, \phi_2, \phi_3)$ pour un modèle AR(3),

$$X_t = 0.8X_{t-1} - 0.5X_{t-3} + \varepsilon_t$$
, i.e. $\phi = (\phi_1, \phi_2, \phi_3) = (0.8, 0, -0.5)$.

```
> CFYL= CFOLS= CFMLE=matrix(NA,5000,3)
> for(s in 1:5000){
+ X=arima.sim(list(ar=c(.8,0,-.5)),n=240)
+ CFYL[s,]=ar(X,order.max=3,method="yw")$ar
+ CFOLS[s,]=ar(X,order.max=3,method="ols")$ar[1:3]
+ CFMLE[s,]=ar(X,order.max=3,method="mle")$ar
+ }
> plot(density(CFYL[,k]),lwd=2,col="red",main="Composante 1 AR")
> lines(density(CFOLS[,k]),lwd=2,col="blue")
> lines(density(CFMLE[,k]),lwd=2,col="purple")
```

i.e. la distribution de $\widehat{\varphi}_k$ par Yule-Walker est en rouge, par moindre carrés en bleu, et par maximum de vraisemblance est en mauve,

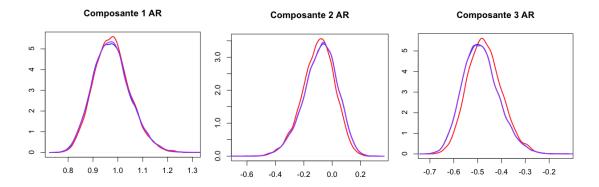


Si le bruit n'est plus un bruit blanc, mais que le vrai processus simulé est un processus ARMA(3,2)

$$X_t = 0.8X_{t-1} - 0.5X_{t-3} + \varepsilon_t + 0.4\varepsilon_{t-1} + 0.6\varepsilon_{t-2},$$

la distribution des coefficients AR est alors biaisée

```
> CFYL= CFOLS= CFMLE=matrix(NA,5000,3)
> for(s in 1:5000){
+ X=arima.sim(list(ar=c(.8,0,-.5),ma = c(.4,.6)),n=240)
+ CFYL[s,]=ar(X,order.max=3,method="yw")$ar
+ CFOLS[s,]=ar(X,order.max=3,method="ols")$ar[1:3]
+ CFMLE[s,]=ar(X,order.max=3,method="mle")$ar
+ }
```



7.4.6 Tests statistiques de validation du modèle

Après avoir estimé les paramètres p et q d'un modèle ARMA, il convient de vérifier que les polynômes AR et MA ne possèdent pas de racine commune. Lorsque c'est le cas, il y a redondance, ce qui peut conduire à des erreurs lors des prévisions. Il convient alors d'estimer les paramètres processus ARMA avec moins de retards (ou d'autres types de retards).

Comme lors d'une regression linéaire, un certain nombre d'indicateurs sont intéressants. Par exemple le test de Student des paramètres permet de vérifier que les paramètres sont bien significatifs.

Il convient ensuite de vérifier que le processus ε_t est effectivement un bruit blanc. Par exemple, pour vérifier que la moyenne est nulle, on compare la moyenne $\overline{\varepsilon}$ à $t_{\alpha/2}\widehat{\sigma}/\sqrt{n-p-q}$ dans le cas d'un processus p+q. Pour tester l'absence d'autocorrélation de ε_t , il est possible d'utiliser la statistique de Box & Pierce (Q) ou la statistique de Ljung & Box (Q') définies par

$$Q(k) = n \sum_{i=1}^{k} r_i^2 \text{ et } Q'(k) = n(n+2) \sum_{i=1}^{k} \frac{r_i^2}{n-i},$$

qui sont à comparer aux quantiles du chi-deux à k-(p+q) degrés de liberté (*l'hypothèse* H_0 testée étant $\rho(1) = \dots = \rho(h) = 0$).

7.5 Choix d'un modèle

7.5.1 Critère de pouvoir prédicitf

Comme nous le verrons par la suite, dans un modèle ARMA, l'erreur de prévision à horizon 1 dépend de la variance du résidu. On peut alors choisir le modèle conduisant à la plus petite erreur de prévision. Plusieurs indicateurs sont alors possibles :

- (i) la variance du résidu σ^2 , ou la somme des carrés des résidus SCR
- (ii) le coefficient de détermination \mathbb{R}^2 , correspondant à une normalisation de la variance
 - (iii) le coeffivient de détermination modifié \overline{R}^2
 - (iv) la statistique de Fisher (comme dans le cas du modèle linéaire)

Le but est alors de minimiser (i), ou de maximiser (ii), (iii) ou (iv).

Exemple 236. Dans l'exemple ci-dessous, considérons les 2 modèles suivants : un modèle ARMA(1,1) à gauche, ou un modèle AR(4), à droite

$$\begin{cases}
[1]: X_t = 0.767 X_{t-1} + \varepsilon_t - 0.463 \varepsilon_{t-1} \\
(0.019) & (0.026)
\end{cases}$$

$$[2]: X_t = 0.303 X_{t-1} + 0.226 X_{t-1} + 0.162 X_{t-1} + 0.116 X_{t-1} \\
(0.014) & (0.014)
\end{cases}$$

Nous obtenons les indicateurs suivants

	σ^2	R^2	\overline{R}^2	F-stat
[1]	1.01737	0.18304	0.18287	1119.579
[2]	1.02751	0.17505	0.17455	353.3722

Le modèle [1] semble meilleur que le modèle [2] : la variance du résidu est plus faible, mais de plus, les trois autres indicateurs sont plus élevés dans le premier cas que dans le second.

7.5.2 Critère d'information

Cette approche a été introduite par Akaïke en 1969. Cette mesure de l'écart entre le modèle proposé et la vraie loie peut être obtenue à l'aide de la quantité d'information de Kullback.

Définition 237. Soit f_0 la densité inconnue d'observations, et $\{f(.), f \in \mathcal{F}\}$ la famille des densités parmi lesquelles ont fait l'estimation. L'écart entre la vraie loi et le modèle est donné par

$$I\left(f_{0}, \mathcal{F}\right) = \min_{f \in \mathcal{F}} \int \log \frac{f_{0}\left(x\right)}{f\left(x\right)} . f_{0}\left(x\right) dx$$

Cette quantité est toujours positive, et ne s'annule que si f_0 appartient à \mathcal{F} . Cette mesure étant inconnue puisque f_0 est inconnue, on essaiera de minimiser un estimateur de I, \widehat{I} . Plusieurs estimateur de la quantité d'information ont été proposé, dans le cas de modèles ARMA(p,q), à partir de T observations,

(i) **Aikaïke** (1969) :

$$AIC(p,q) = \log \hat{\sigma}^2 + 2\frac{p+q}{T}$$

(ii) Schwarz (1977):

$$BIC(p,q) = \log \hat{\sigma}^2 + [p+q] \frac{\log T}{T}$$

(iii) Hanna-Quinn (1979):

$$\phi(p,q) = \log \hat{\sigma}^2 + [p+q] c \frac{\log(\log T)}{T} \text{ avec } c > 2$$

Exemple 238. En reprenant l'exemple précédant un critère d'Akaïke (AIC sous EViews) de 0.017628 pour le modèle ARMA(1,1) contre 0.027968 pour le modèle AR(4). Ici encore, le modèle ARMA est préféré au modèle AR.

7.6 Application

Nous allons essayer ici de modéliser la série mensuelle du nombre de voyageurs SNCF.

7.6.1 Identification du modèle : recherche des paramètres d, p et q

La série, composée de 204 observations peut être représentée par

Compte tenu de la significativité des premières autocorrélations (ou tout du moins le fait qu'elles sont significativement non-nulles pour les 40 premiers retards) suggère de différencier au moins un fois la série,

La série $Y_t = (1 - L) X_t$ présente alors de fortes corrélations pour les retards multiples de 12 (nous retrouvons ici la saisonnalité annuelle longuement développée dans les premières parties)

La série $Z_t = (1 - L^{12}) Y_t = (1 - L) (1 - L^{12}) X_t$ semble cette fois-ci stationnaire. Néanmois, la présence de fortes valeurs pour $\rho(1)$ et $\rho(12)$ suggère d'introduire une moyenne mobile de la forme $(1 - \theta_1 L) (1 - \theta_2 L^{12})$. Ce type de représentation est confirmé par la forme de l'autocorrélogramme partiel : une modèlisation de type AR nécessiterait d'introduire un trop grand nombre de termes (les 5 premières valeurs de l'autocorrélogramme partiel étant significativement non-nulles). De plus, la moyenne mobile $\Theta(L) = (1 - \theta_1 L) (1 - \theta_2 L^{12})$ s'écrit

$$\Theta(L) \varepsilon_{t} = \varepsilon_{t} - \theta_{1} \varepsilon_{t-1} - \theta_{2} \varepsilon_{t-12} + \theta_{1} \theta_{2} \varepsilon_{t-13}$$

admettant des autocorrélations $\rho(h)$ non nulles pour h = 1, 11, 12, 13 (ce qui est confirmé par le graphique des autocorrélations).

Enfin, l'hypothèse de processus centré (ne nécessitant pas d'introduire - a priori - de constance ou de tendance linéaire) semble également validée. En effet, la moyenne des Z_t vaut -0.157, avec un écart-type empirique valant 169.

7.6.2 Estimation du modèle ARIMA

Le modèle retenu est un modèle ARIMA, ou SARIMA, de la forme

$$(1-L)(1-L^{12})X_t = (1-\theta_1 L)(1-\theta_2 L^{12})\varepsilon_t$$
 où $\mathbb{E}(\varepsilon_t) = 0$ et $V(\varepsilon_t) = \sigma^2$

Les trois paramètres à estimer sont θ_1, θ_2 et σ^2 . Une méthode basée sur les moindres carrés permet d'estimer les 3 paramètres de $\varepsilon_t - \lambda \varepsilon_{t-1} - \mu \varepsilon_{t-12} + \nu \varepsilon_{t-13}$:

Toutefois, cette estimation (à gauche, sous EViews) ne permet pas d'intégrer la contrainte $\nu = \lambda \mu$.

D'où finallement le modèle,

$$(1 - L) \left(1 - L^{12}\right) X_t = \left(1 - \underset{(0.0402)}{0.8344}L\right) \left(1 - \underset{(0.0687)}{0.4926}L^{12}\right) \varepsilon_t$$

$$X_t = X_{t-1} + X_{t-12} - X_{t-13} + \varepsilon_t - 0.8344\varepsilon_{t-1} - 0.4926\varepsilon_{t-12} + 0.4110\varepsilon_{t-13}$$

7.6.3 Vérification

On peut tout d'abord noter que les rapports de Student des 2 paramètres θ_1 et θ_2 sont respectivment 21 et 7 (≥ 1.96) : ce deux coefficients sont significatifs.

Toutefois, il serait bien sûr possible d'améliorer le modèle. En particulier, on peut noter que les résidus présentent des pics au niveau de l'autocorrélogramme pour les h multiples de 6.

Prévisions à l'aide des modèles ARIMA : 8 Box-**Jenkins**

Etant donnée une série stationnaire (X_t) , observée entre 1 et T, on cherche à faire de la prévision à horizon h, et donc à prévoir $X_{T+1},...,X_{T+h}$. Tous les processus AR, MA et ARMA seront supposés mis sous forme canonique, et n'avoir aucune racine unité. Aussi, toutes les racines des polynômes autorégressifs Φ et des polynômes moyennes-mobiles Θ auront leurs racines à l'extérieur du disque unité. Ainsi, pour tous les processus X_t tels que $\Phi(L) X_t = \Theta(L) \varepsilon_t$, ε_t sera l'innovation du processus X_t .

8.1 Prévisions à l'aide d'un modèle AR(p)

Le modèle s'écrit, quite à recentrer le processus,

$$X_t = \phi_1 X_{t-1} + ... + \phi_p X_{t-p} + \varepsilon_t \text{ ou } \Phi(L) X_t = \varepsilon_t$$

La prévision optimale à la date T + 1, faite à la date T est ${}_{T}X_{T+1}^{*}$ $EL(X_{T+1}|X_T, X_{T-1}, ...)$. Aussi,

$$_{T}X_{T+1}^{*} = \phi_{1}X_{T} + \dots + \phi_{p}X_{T-p}$$

car (ε_t) est l'innovation. De façon analogue, $X_{T+h} = \phi_1 X_{T+h-1} + ... + \phi_p X_{T+h-p} + \varepsilon_{T+h}$ et donc $_TX_{T+h}^* = EL(X_{T+h}|X_T,X_{T-1},...)$ est donné, de façon récursive par

$${}_{T}X_{T+h}^{*} = \left\{ \begin{array}{l} \phi_{1}.{}_{T}X_{T+h-1}^{*} + \ldots + \phi_{h-1}.{}_{T}X_{T+1}^{*} + \phi_{h}X_{T} + \ldots + \phi_{p}X_{T+h-p} \text{ pour } h \leq p \\ \phi_{1}.{}_{T}X_{T+h-1}^{*} + \ldots + \phi_{p}.{}_{T}X_{T+h-p}^{*} \text{ pour } h > p \end{array} \right.$$

Exemple 239. Dans le cas d'un processus AR(1) tel que $X_t = \mu + \phi X_{t-1} + \varepsilon_t$ alors

- (i) $_{T}X_{T+1}^{*} = \mu + \phi X_{T}$,
- (ii) $_{T}X_{T+2}^{*} = \mu + \phi._{T}X_{T+1}^{*} = \mu + \phi \left[\mu + \phi X_{T}\right] = \mu \left[1 + \phi\right] + \phi^{2}X_{T},$ (iii) $_{T}X_{T+3}^{*} = \mu + \phi._{T}X_{T+2}^{*} = \mu + \phi \left[\mu + \phi \left[\mu + \phi X_{T}\right]\right] = \mu \left[1 + \phi + \phi^{2}\right] + \phi^{3}X_{T},$ et récursivement, on peut obtenir $_TX_{T+h}^*$ de la forme

$$_{T}X_{T+h}^{*} = \mu + \phi \cdot _{T}X_{T+h-1}^{*} = \mu \left[1 + \phi + \phi^{2} + \dots + \phi^{h-1} \right] + \phi^{h}X_{T}.$$

Exemple 240. Une méthode alternative est de considérer le processus centré $Y_t = X_t - X_t$ μ/ϕ , alors $Y_t = \phi Y_{t-1} + \varepsilon_t$. Alors de façon récursive $_TY_{T+h}^* = \phi_{T}Y_{T+h}^{*-1}$, et donc $_TY_{T+h}^* = \phi_{T}Y_{T+h}^{*-1}$ $\phi^h Y_T$. Aussi, on peut écrire

$$_{T}X_{T+h}^{*} = \frac{\mu}{\phi} + \phi^{h} \left[X_{T} - \frac{\mu}{\phi} \right] = \mu \underbrace{\frac{1 - \phi^{h}}{1 - \phi}}_{1 + \phi + \phi^{2} + \dots + \phi^{h-1}} + \phi^{h}X_{T}.$$

8.2 Prévisions à l'aide d'un modèle MA(q)

On supposera là aussi que l'on s'est ramené à un processus centré (X_t) , satisfaisant

$$X_{t} = \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} = \Theta(L)\varepsilon_{t}.$$

La prévision optimale à la date T+1, faite à la date T est ${}_TX_{T+1}^*=EL\left(X_{T+1}|X_T,X_{T-1},\ldots\right)=EL\left(X_{T+1}|\varepsilon_T,\varepsilon_{T-1},\ldots\right)$ car (ε_t) est le processus d'innovation. Aussi,

$$_{T}X_{T+1}^{*} = 0 + \theta_{1}\varepsilon_{T} + \dots + \theta_{q}\varepsilon_{T+1-q}$$

De façon analogue, X_{T+h} est estimé par $_TX_{T+h}^* = EL(X_{T+h}|X_T,X_{T-1},...) = EL(X_{T+h}|\varepsilon_T,\varepsilon_{T-1},...)$, et donc

$${}_{T}X_{T+h}^{*} = \begin{cases} \theta_{h}\varepsilon_{T} + \dots + \theta_{q}\varepsilon_{T+h-q} \text{ pour } h \leq q \\ 0 \text{ pour } h > q. \end{cases}$$
 (37)

Toutefois, cette méthode présente le désavantage d'estimer X_{T+h} à partir des résidus passés, a priori non observables, et non pas du passé de la variable.

8.2.1 Utilisation de l'écriture $AR(\infty)$ du processus MA(q)

L'équation $X_t = \Theta(L) \varepsilon_t$ peut se réécrire $\Theta^{-1}(L) X_t = \varepsilon_t$, soit

$$X_t = \sum_{k=1}^{\infty} a_k X_{t-k} + \varepsilon_t \text{ et donc } X_{t+h} = \sum_{k=1}^{\infty} a_k X_{t+h-k} + \varepsilon_{t+h} \text{ pour tout } h \ge 0$$

Aussi, ${}_{T}X_{T+h}^*$ peut être écrit de façon itérative

$$_{T}X_{T+h}^{*} = \sum_{k=1}^{h-1} a_{k}._{T}X_{T+h-k}^{*} + \sum_{k=h}^{\infty} a_{k}X_{t+h-k}$$

Toutefois, un des problèmes est que les (X_t) ne sont pas observés, en pratique, pour t < 0. On utilise alors l'écriture suivante

$$X_{T+h} = \sum_{k=1}^{\infty} a_k X_{T+h-k} + \varepsilon_{t+h} = \sum_{k=1}^{h-1} a_k X_{T+h-k} + \sum_{\substack{k=h \ \text{Reste d'une série ACV}}}^{\infty} a_k X_{T+h-k} + \varepsilon_{T+h},$$

où le reste de la série absolument convergente tend (au sens de L^2) vers 0 quand $T \to \infty$. On peut alors considérer, quand T est suffisement grand que

$${}_{T}X_{T+h}^{*} = \sum_{k=1}^{h-1} a_{k}.{}_{T}X_{T+h-k}^{*} + \sum_{k=h}^{T+h} a_{k}X_{T+h-k} + \underbrace{\sum_{k=T+h+1}^{\infty} a_{k}X_{T+h-k}}_{\text{N\'egligeable (hyp.)}},$$

et on approxime ${}_TX^*_{T+h}$ par ${}_T\widehat{X}^*_{T+h}$

$$_{T}\widehat{X}_{T+h}^{*} = \sum_{k=1}^{h-1} a_{k}._{T}\widehat{X}_{T+h-k}^{*} + \sum_{k=h}^{T+h} a_{k}X_{T+h-k}.$$

8.2.2 Utilisation de la formule de mise à jour des résultats

L'idée est ici de comparer l'estimation faite en T de X_{T+1} , ${}_TX_{T+1}^*$ avec la vraie valeur :

$$X_{T+1} -_T X_{T+1}^* = \varepsilon_{T+1}.$$

La relation (37) permet d'obtenir une estimation, à la date T de X_{T+h} . En se plaçant à la date T+1, on peut noter que T+1 $X_{T+h}^* = T+1$ $X_{T+h+1}^* = T+1$ $X_{T+h+1}^* = T+1$ de donc

$$_{T+1}X_{T+h}^* = \left\{ \begin{array}{l} \theta_{h-1}\varepsilon_{T+1} +_T X_{T+h}^* \text{ pour } h \leq q+1 \\ 0 \text{ pour } h > q+1, \end{array} \right.$$

et donc, pour $h \leq q+1$

$$T_{T+1}X_{T+h}^* = TX_{T+h}^* + \theta_{h-1}[X_{T+1} - TX_{T+1}^*]$$
: Formule de mise à jour

8.3 Prévisions à l'aide d'un modèle ARMA(p,q)

On supposera là aussi que l'on s'est ramené à un processus centré (X_t) , satisfaisant

$$\Phi(L) X_t = \Theta(L) \varepsilon_t$$

Remarque 241. Dans le cas d'un processus non centré, $\Phi(L) X_t = \mu + \Theta(L) \varepsilon_t$, on peut noter que $\mathbb{E}X_t = \mu/\Phi(1) = m$, et que $\Phi(L)(X_t - m) = \Theta(L) \varepsilon_t$. Il est donc toujours possible, en translatant le processus, de se ramener à un processus centré (pour des processus ARMA seulement).

Sous cette forme ARMA, alors

$$X_t = \sum_{i=1}^p \phi_i X_{t-i} + \varepsilon_t + \sum_{j=1}^q \theta_j \varepsilon_{t-j} \text{ et donc } X_{t+h} = \sum_{i=1}^p \phi_i X_{t+h-i} + \varepsilon_{t+h} + \sum_{j=1}^q \theta_j \varepsilon_{t+h-j}.$$

On a alors $_TX_{T+h}^* = EL(X_{T+h}|X_T,X_{T-1},...) = EL(X_{T+h}|\varepsilon_T,\varepsilon_{T-1},...)$ car ε_t est le processus d'innovation. On peut noter que pour h > q

$$_{T+1}X_{T+h}^* = \left\{ \begin{array}{l} \phi_{1 \cdot T}X_{T+h-1}^* + \ldots + \phi_{h-1 \cdot T}X_{T+1}^* + \phi_h X_T + \ldots + \phi_p X_{T+h-p} \text{ pour } h \leq p \\ \phi_{1 \cdot T}X_{T+h-1}^* + \ldots + \phi_{p \cdot T}X_{T+h-p}^* \text{ pour } h > p. \end{array} \right.$$

La forme générale des solutions est connue (comme dans le cas des AR(p)). Toutefois, il y a ici un problème d'initialisation des calculs.

8.3.1 Utilisation de la forme $AR(\infty)$ pu processus ARMA(p,q)

L'équation $\Phi(L) X_t = \Theta(L) \varepsilon_t$ peut se réécrire $\Theta^{-1}(L) \Phi(L) X_t = \varepsilon_t$, c'est à dire, comme dans le cas des processus MA(q),

$$X_t = \sum_{k=1}^{\infty} a_k X_{t-k} + \varepsilon_t \text{ et donc } X_{t+h} = \sum_{k=1}^{\infty} a_k X_{t+h-k} + \varepsilon_{t+h} \text{ pour tout } h \ge 0,$$

et de la même façon que pour la modélisation $AR(\infty)$ des processus MA(q), on peut réécrire

$$X_{T+h} = \sum_{k=1}^{\infty} a_k X_{T+h-k} + \varepsilon_{t+h} = \sum_{k=1}^{h-1} a_k X_{T+h-k} + \sum_{\substack{k=h \\ \text{n\'egligeable dans } L^2}}^{\infty} a_k X_{T+h-k} + \varepsilon_{T+h},$$

d'où la forme itérative, obtenue par approximation, en ne tenant pas compte du second terme, négligeable dans L^2 ,

$$_{T}\widehat{X}_{T+h}^{*} = \sum_{k=1}^{h-1} a_{k}._{T}\widehat{X}_{T+h-k}^{*} + \sum_{k=h}^{T+h} a_{k}X_{T+h-k}.$$

8.3.2 Utilisation de la forme $MA(\infty)$ pu processus ARMA(p,q) et des formules de mise à jour

L'équation $\Phi(L) X_t = \Theta(L) \varepsilon_t$ peut se réécrire $X_t = \Phi(L)^{-1} \Theta(L) \varepsilon_t$ soit encore

$$X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \dots = \varepsilon_t + \sum_{j=1}^{\infty} b_j \varepsilon_{t-j}.$$

Puisque¹⁴ $\overline{L^2}(X_t, X_{t-1}, ...) = \overline{L^2}(\varepsilon_t, \varepsilon_{t-1}, ...)$, on peut écrire ${}_TX_{T+h}^* = EL(X_{T+h}|X_T, X_{T-1}, ...) = EL(X_{T+h}|\varepsilon_T, \varepsilon_{T-1}, ...)$, soit

$$_{T}X_{T+h}^{*} = \sum_{j=h}^{\infty} b_{j}\varepsilon_{t+h-j}.$$

De plus, puisque $T+1X_{T+h}^* = T+1X_{(T+1)+(h-1)}^*$, on peut écrire

$$_{T+1}X_{T+h}^*=_TX_{T+h}^*+b_{h-1}\left[X_{T+1}-_TX_{T+1}^*\right]$$
 : Formule de mise à jour.

8.4 Prévisions dans le cas d'un processus ARIMA(p, d, q)

On considérons ici (X_t) satisfaisant une équation de la forme $\Phi(L) (1-L)^d X_t = \Theta(L) \varepsilon_t$ avec les conditions initiales

$$Z = (X_{-1}, ..., X_{-p-d}, \varepsilon_{-1}, ..., \varepsilon_{-q})'$$
.

Posons alors $\Psi\left(L\right)=\Phi\left(L\right)\left(1-L\right)^{d}$. La forme $ARIMA\left(p,d,q\right)$ peut s'écrire

$$X_t = \sum_{i=1}^{p+d} \psi_i X_{t-i} + \varepsilon_t + \sum_{j=1}^q \theta_j \varepsilon_{t-j} \text{ et donc } X_{t+h} = \sum_{i=1}^{p+d} \psi_i X_{t+h-i} + \varepsilon_{t+h} + \sum_{j=1}^q \theta_j \varepsilon_{t+h-j}.$$

 $^{^{14}}$ Cette propriété $\overline{L^2}\left(X_t,X_{t-1},\ldots\right)=\overline{L^2}\left(\varepsilon_t,\varepsilon_{t-1},\ldots\right)$ est une caractérisation du fait que ε_t est l'innovation du processus $X_t.$

Notons $_TX_{T+h}^*$ la prévision faite à la date T, $_TX_{T+h}^* = EL(X_{T+h}|X_T, X_{T-1}, ..., X_0, Z)$. Alors

$${}_{T}X_{T+h}^* = \sum_{i=1}^{p+d} \psi_{i \cdot T} X_{T+h-i}^* + 0 + \sum_{j=1}^{q} \theta_{j \cdot T} \varepsilon_{T+h-j}^* \text{ où } \begin{cases} {}_{T}X_{T+h-i}^* = X_{T+h-i} \text{ pour } i \geq h \\ {}_{T}\varepsilon_{T+h-j}^* = \begin{cases} 0 \text{ pour } j < h \\ \varepsilon_{T+h-j} \text{ pour } j \geq h \end{cases}$$

En particulier, pour $h \ge q$, on obtient une relation de récurence de la forme

$$_{T}X_{T+h}^{*} = \sum_{i=1}^{p+d} \psi_{i}._{T}X_{T+h-i}^{*}.$$

8.4.1 Utilisation de l'approximation AR

Cette approximation est basée sur la propriété (186), rappelée ci-dessous,

Proposition 242. Soit (X_t) un processus ARIMA(p, d, q) de valeurs initiales Z, alors (X_t) peut s'écrire sous la forme AR,

$$X_{t} = \sum_{j=1}^{t} a_{j} X_{t-j} + f^{*}(t) Z + \varepsilon_{t},$$

où les a_j sont les coefficients (pour $j \geq 1$) de la division selon les puissances croissantes de Φ par Θ , et $f^*(t)$ est un vecteur (ligne) de fonctions de t qui tend vers 0 quand $t \to \infty$.

On peut alors écrire

$$X_{t+h} = \sum_{j=1}^{t+h} a_j X_{t+h-j} + f'(t+h) Z + \varepsilon_{t+h},$$

et ainsi,

$$_{T}X_{T+h}^{*} = EL(X_{t+h}|X_{T}, X_{T-1}, ..., X_{0}, Z) = \sum_{j=1}^{t+h} a_{j}._{T}X_{T+h-j}^{*} + f'(T+h)Z + 0,$$

avec la convention $_TX^*_{T+h-j}=X_{T+h-j}$ pour $j\geq h$. Or la limite de f(t) est 0 quand $t\to\infty$, d'où l'approximation

$$_{T}\widehat{X}_{T+h}^{*} = \sum_{k=1}^{h-1} a_{k}._{T}\widehat{X}_{T+h-k}^{*} + \sum_{k=h}^{T+h} a_{k}X_{T+h-k}.$$

8.4.2 Utilisation de l'approximation MA

De la même façon, un processus ARIMA peut être approximé par un processus MA,

Proposition 243. Soit (X_t) un processus ARIMA(p, d, q) de valeurs initiales Z, alors (X_t) peut s'écrire sous la forme MA,

$$X_{t} = \sum_{j=1}^{t} b_{j} \varepsilon_{t-j} + g'(t) Z, \qquad (38)$$

où les h_j sont les coefficients de la division selon les puissances croissantes de Θ par Φ , et g'(t) est un vecteur (ligne) de fonctions de t.

La relation (38) permet alors d'écrire

$$X_{t+h} = \sum_{j=1}^{t+h} b_j \varepsilon_{t+h-j} + g'(t+h) Z \text{ avec } \lim_{u \to \infty} g(u) = 0.$$

Puisque $\overline{L^2}(X_t, X_{t-1}, ...) = \overline{L^2}(\varepsilon_t, \varepsilon_{t-1}, ...)$, on peut écrire ${}_TX_{T+h}^* = EL(X_{T+h}|X_T, X_{T-1}, ..., X_0, Z) = EL(X_{T+h}|\varepsilon_T, \varepsilon_{T-1}, ..., \varepsilon_0, Z)$, soit

$${}_{T}X_{T+h}^{*} = \sum_{j=h}^{T+h} b_{j}\varepsilon_{T+h-j} + g'\left(T+h\right)Z,$$

d'où les approximations, compte tenu de la limite de g(.),

$$_T\widehat{X}_{T+h}^* = \sum_{j=h}^{T+h} b_j \varepsilon_{T+h-j} \text{ et } _{T+1}\widehat{X}_{T+h}^* = \sum_{j=h-1}^{T+h} b_j \varepsilon_{T+h-j}.$$

D'où la relation

$$_{T+1}\widehat{X}_{T+h}^*=_T\widehat{X}_{T+h}^*+b_{h-1}\left[X_{T+1}-_T\widehat{X}_{T+1}^*\right]$$
 : Formule de mise à jour

8.5 Intervalle de confiance de la prévision

Cet intervalle est obtenu à partir de la forme $MA(\infty)$ dans le cas où (X_t) est stationnaire, ou de son approximation MA dans le cas non-stationnaire (ARIMA).

(i) dans le cas stationnaire,

$$X_{T+h} = \sum_{i=0}^{\infty} b_i \varepsilon_{T+h-i} = \sum_{i=0}^{T+h} b_i \varepsilon_{T+h-i} + \sum_{i=T+h+1}^{\infty} b_i \varepsilon_{T+h-i},$$

et donc

$$_{T}\Delta_{h} = X_{t+h} -_{T} \widehat{X}_{T+h}^{*} \approx \sum_{i=0}^{h} b_{i} \varepsilon_{T+h-i}.$$

(i) dans le cas non-stationnaire (ARIMA),

$$X_{T+h} = \sum_{i=0}^{\infty} b_i \varepsilon_{T+h-i} + g'(T+h)Z = \sum_{i=0}^{T+h} b_i \varepsilon_{T+h-i} + \sum_{i=T+h+1}^{\infty} b_i \varepsilon_{T+h-i} + g'(T+h)Z,$$

et donc

$$_{T}\Delta_{h} = X_{t+h} -_{T} \widehat{X}_{T+h}^{*} \approx \sum_{i=0}^{h} b_{i} \varepsilon_{T+h-i}.$$

Sous l'hypothèse de normalité des résidus (ε_t) , $H_0: \varepsilon_t$ i.i.d., $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$, alors

$$_{T}\Delta_{h} = X_{t+h} -_{T} \widehat{X}_{T+h}^{*} \sim \mathcal{N}\left(0, \sigma^{2} \sum_{i=0}^{h} b_{i}^{2}\right),$$

d'où l'intervalle de confiance pour X_{T+h} au niveau $1-\alpha$

$$\left[{}_{T}\widehat{X}_{T+h}^{*} \pm u_{1-\alpha/2}.s\sqrt{\sum_{i=0}^{h}\widehat{b}_{i}^{2}} \right],$$

où les \hat{b}_i sont des estimateurs des coefficients de la forme moyenne mobile, et s est un estimateur de la variance du résidu.

8.6 Prévision pour certains processus AR et MA

8.6.1 Prévision pour un processus AR(1)

Considérons le processus stationnaire (X_t) , sous la forme générale $X_t = \phi_1 X_{t-1} + \mu + \varepsilon_t$. La prévision à horizon 1, fait à la date T, s'écrit

$$_{T}X_{T+1}^{*} = \mathbb{E}\left(X_{T+1}|X_{T}, X_{T-1}, ..., X_{1}\right) = \phi_{1}X_{T} + \mu,$$

et de façon similaire

$$_{T}X_{T+2}^{*} = \phi_{1T}X_{T+1}^{*} + \mu = \phi_{1}^{2}X_{T} + [\phi_{1} + 1]\mu.$$

De façon plus générale, on obtient récursivement la prévision à horizon h,

$$_{T}X_{T+h}^{*} = \phi_{1}^{h}X_{T} + \left[\phi_{1}^{h-1} + \dots + \phi_{1} + 1\right]\mu. \tag{39}$$

On peut noter que quand $h \to \infty$, ${}_TX_{T+h}^*$ tend vers $\delta/(1-\phi_1)$, la moyenne du processus X_t . L'erreur de prévision à horizon h est donnée par

$$T^{\Delta_h} = T^*X_{T+h}^* - X_{T+h} =_T X_{T+h}^* - \left[\phi_1 X_{T+h-1} + \mu + \varepsilon_{T+h}\right]$$

= \(\dots =_T X_{T+h}^* - \left[\phi_1^h X_T + \left(\phi_1^{h-1} + \dots + \phi_1 + 1\right) \mu + \varepsilon_{T+h} + \phi_1 \varepsilon_{T+h-1} + \dots + \phi_1^{h-1} \varepsilon_{T+1}\right],

d'où, en substituant (39), on obtient

$$_{T}\Delta_{h} = \varepsilon_{T+h} + \phi_{1}\varepsilon_{T+h-1} + \dots + \phi_{1}^{h-1}\varepsilon_{T+1},$$

qui possède la variance

$$\hat{V} = \left[1 + \phi_1^2 + \phi_1^4 + \dots + \phi_1^{2h-2}\right] \sigma^2$$
, où $V(\varepsilon_t) = \sigma^2$.

La variance de la prévision croit avec l'horizon.

Exemple 244. Considérons le processus suivant,

$$X_t = 5 + 0.5X_{t-1} + \varepsilon_t \text{ où } \varepsilon_t \sim \mathcal{N}(0, 1),$$

dont les dernières observations ont été 11.391, 12.748, 10.653, 9.285 et 10.738. La prévision pour la date T+1 est alors

$$_{T}X_{T+1}^{*} = \mathbb{E}\left(X_{T+1}|X_{T}, X_{T-1}, ..., X_{1}\right) = \phi_{1}X_{T} + \mu = 5 + 0.5 * 10.738 = 10.369$$

$$_{T}X_{T+2}^{*} = \begin{cases} \phi_{1}._{T}X_{T+1}^{*} + \mu \\ \mu(1+\phi_{1}) + \phi_{1}.X_{T} \end{cases} = 10.184.$$

D'où finallement les prévisions suivantes, avec la variance, l'intervalle de confiance, et la taille relative de l'intervalle de confiance

horizon	0	1	2	3	4	5	6	7
$_TX^*_{T+h}$	10.738	10.369	10.184	10.092	10.046	10.023	10.012	10.006
$ \widehat{V} $		1.000	1.250	1.313	1.328	1.332	1.333	1.333
$B_{\mathrm{inf}}^{90\%}$		8.739	8.362	8.225	8.168	8.142	8.130	8.124
$B_{\sup}^{90\%}$		11.999	12.007	11.960	11.925	11.904	11.893	11.888
$IC^{90\%}$		$\pm 15.7\%$	$\pm 17.9\%$	$\pm 18.5\%$	$\pm 18.7\%$	$\pm 18.8\%$	$\pm 18.8\%$	$\pm 18.8\%$

Graphiquement, on obtient à gauche les prévisions suivantes (avec la "vraie" valeur de X_t), et à droite la variation relative de l'intervalle de confiance,

8.6.2 Prévision pour un processus MA(1)

Considérons le processus stationnaire (X_t) , sous la forme générale

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

La prévision à horizon 1, fait à la date T, s'écrit

$$_{T}X_{T+1}^{*} = \mathbb{E}\left(X_{T+1}|X_{T}, X_{T-1}, ..., X_{1}\right) = \mu + \theta_{1}\varepsilon_{T}$$

où ε_T est l'erreur de la dernière observation, à la date T. De façon plus générale, on obtient récursivement la prévision à horizon h,

$$_{T}X_{T+h}^{*} = \mathbb{E}\left(X_{T+h}|X_{T}, X_{T-1}, ..., X_{1}\right) = \mathbb{E}\left(\mu + \varepsilon_{T+h} + \theta_{1}\varepsilon_{T+h-1}\right) = \mu$$
 (40)

C'est à dire qu'à partir d'un horizon 2, la meilleure prévision est la moyenne du processus. L'erreur de prévision à horizon h est donnée par

$$_{T}\Delta_{h} =_{T} X_{T+h}^{*} - X_{T+h} = \varepsilon_{T+h} + \theta_{1}\varepsilon_{T+h-1}$$

dont la variance est

$$\widehat{V} = (1 + \theta_1^2) \sigma^2$$
 où $V(\varepsilon_t) = \sigma^2$

pour $h \ge 2$. Sinon, pour h = 1, la variance est $\widehat{V} = \theta_1^2 \sigma^2$.

Exemple 245. Considérons le processus suivant,

$$X_t = 5 + \varepsilon_t - 0.5\varepsilon_{t-1} \text{ où } \varepsilon_t \sim \mathcal{N}(0, 1)$$

dont les dernières observations ont été 4.965, 5.247, 4.686 et 5.654. Pour faire de la prévision, soit on considère la forme $AR(\infty)$ du processus, soit on cherche uniquement à exprimer (ε_t) en fonction du passé de (X_t) , ou de $Y_t = X_t - 5$, processus centré

$$\varepsilon_{t} = Y_{t} + 0.5\varepsilon_{t-1} = Y_{t} + 0.5 [Y_{t-1} + 0.5\varepsilon_{t-2}] = Y_{t} + 0.5 [Y_{t-1} + 0.5 [Y_{t-2} + 0.5\varepsilon_{t-3}]] = \dots$$

$$= \sum_{i=0}^{\infty} (0.5)^{i} Y_{t-i} = \sum_{i=0}^{\infty} (0.5)^{i} [X_{t-i} - 5]$$

La prévision pour la date T+1 est alors

$$_{T}X_{T+1}^{*} = \mathbb{E}\left(X_{T+1}|X_{T}, X_{T-1}, ..., X_{1}\right) = \mu + \theta_{1}\varepsilon_{t} = 5 - 0.5 \times 0.606 = 3.3049$$

et la prévision à un horizon $h \geq 2$ est alors μ , la constante du modèle,

$$_{T}X_{T+2}^{*} = \mu = 5$$

D'où finallement les prévisions suivantes, avec la variance, l'intervalle de confiance, et la taille relative de l'intervalle de confiance

horizon	0	1	2	3	4	5	6	7
$_TX_{T+h}^*$	5.654	3.304	5.000	5.000	5.000	5.000	5.000	5.000
$ \widehat{V} $		0.250	1.250	1.250	1.250	1.250	1.250	1.250
$B_{\mathrm{inf}}^{90\%}$		2.489	3.178	3.178	3.178	3.178	3.178	3.178
$B_{\sup}^{90\%}$ $IC^{90\%}$		4.119	6.822	6.822	6.822	6.822	6.822	6.822
$IC^{90\%}$		$\pm 24.7\%$	$\pm 36.4\%$					

Graphiquement, on obtient à gauche les prévisions suivantes (avec la "vraie" valeur de X_t), et à droite la variation relative de l'intervalle de confiance,

8.6.3 Prévision pour un processus ARIMA (1, 1, 0)

Il s'agit ici d'un modèle AR(1) pour la variable intégrée $Y_t = X_t - X_{t-1}$, $Y_t = \phi_1 Y_{t-1} + \mu + \varepsilon_t$. Aussi, la prévision à horizon h = 1 est donnée par

$$_{T}X_{T+1}^{*} = X_{T} +_{T} Y_{T+1}^{*},$$

et de façon plus générale

$$_{T}X_{T+h}^{*} = X_{T} +_{T} Y_{T+1}^{*} +_{T} Y_{T+2}^{*} + \dots +_{T} Y_{T+h}^{*}.$$

En substituant aux $_TY_{T+i}^*$ ce qui a été trouvé précédemment pour les processus AR, on obtient

$$_{T}X_{T+1}^{*} = (1 + \phi_{1})X_{T} - \phi_{1}X_{T-1} + \mu,$$

et, pour un horizon h=2,

$$_{T}X_{T+2}^{*} = (1 + \phi_1 + \phi_1^2) X_T - (\phi_1 + \phi_1^2) X_{T-1} + (\phi_1 + 1) \mu + \mu.$$

L'expression générale de la prévision à la date h s'obtient récursivement à l'aide de

$$\begin{cases} TY_{T+h}^* = \phi_1^h Y_T + \left[\phi_1^{h-1} + \dots + \phi_1 + 1\right] \mu \\ TX_{T+h}^* = TX_{T+1}^* + \phi_1 \cdot TY_{T+h-1}^* + \mu. \end{cases}$$

L'erreur faite sur la prévision à horizon 1 est donnée par

$$_{T}\Delta_{1} =_{T} X_{T+1}^{*} - X_{T+1} =_{T} Y_{T+1}^{*} - Y_{T+1} = \varepsilon_{T+1}$$
, de variance σ^{2} .

A horizon 2, l'erreur de prévision est

$$_{T}\Delta_{2} =_{T} X_{T+2}^{*} - X_{T+2} = (_{T}Y_{T+1}^{*} - Y_{T+1}) + (_{T}Y_{T+2}^{*} - Y_{T+2}) = (1 + \theta_{1}) \varepsilon_{T+1} + \varepsilon_{T+2},$$

dont la variance est $\hat{V} = \left[1 + (1 + \phi_1)^2\right] \sigma^2$. De façon plus générale, l'erreur de prévision à horizion h est

$$T\Delta_{h} = (TY_{T+1}^{*} - Y_{T+1}) + (TY_{T+2}^{*} - Y_{T+2}) + (TY_{T+1}^{*} - Y_{T+1}) + \dots + (TY_{T+h}^{*} - Y_{T+h})$$

$$= \varepsilon_{T+1} + (\varepsilon_{T+2} + \phi_{1}\varepsilon_{T+1}) + \dots + (\varepsilon_{T+h} + \phi_{1}\varepsilon_{T+h-1} + \dots + \phi_{1}^{h-2}\varepsilon_{T+2} + \phi_{1}^{h-1}\varepsilon_{T+1})$$

$$= \varepsilon_{T+h} + (1 + \phi_{1})\varepsilon_{T+h-1} + \dots + (1 + \phi_{1} + \dots + \phi_{1}^{h-1})\varepsilon_{T+1},$$

d'où la variance

$$\widehat{V} = \left[\sum_{i=1}^h \left(\sum_{j=0}^{i-1} \phi_1^j \right)^2 \right] \sigma^2.$$

L'erreur de prévision sur X_{T+h} est alors l'accumulation des erreurs de prévision de $Y_{T+1},...,Y_{T+h}$.

Exemple 246. Considérons le processus (X_t) tel que $X_t - X_{t-1} = Y_t$ où (Y_t) vérifie,

$$Y_t = 2 + 0.2Y_{t-1} + \varepsilon_t \text{ où } \varepsilon_t \sim \mathcal{N}(0, 1),$$

dont les dernières observations ont été 81.036, 84.074 et 86.586. Le processus (Y_t) sousjacent peut être obtenu comme différence entre X_t et X_{t-1} . On cherche alors les prévisions de (Y_t) et les prévisions de (X_t) correspondent à la somme des (Y_t) prévus (processus intégré).

(X_t)	70.788	73.606	74.937	78.035	81.036	84.074	86.586
(Y_t)	*	2.818	1.331	3.098	3.001	3.037	2.512

La prévision pour la date T+1 est alors

$$_{T}X_{T+1}^{*} = X_{T} +_{T}Y_{T+1}^{*} \text{ où }_{T}Y_{T+1}^{*} = \mu + \phi_{1}Y_{T} = 2.502,$$

et donc $_TX^*_{T+1}=89.088$. Lla prévision à un horizon $h\geq 2$ est alors μ

$$_{T}X_{T+2}^{*} = X_{T} +_{T}Y_{T+1}^{*} +_{T}Y_{T+2}^{*} \text{ où } \begin{cases} _{T}Y_{T+1}^{*} = \mu + \phi_{1}Y_{T} = 2.5024 \\ _{T}Y_{T+2}^{*} = \mu + \phi_{1} \cdot_{T}Y_{T+1}^{*} = 2.5005 \end{cases}$$

D'où finallement les prévisions suivantes, avec la variance, l'intervalle de confiance, et la taille relative de l'intervalle de confiance

horizon	0	1	2	3	4	5	6	7
	2.512							
$_TX_{T+h}^*$	86.586	89.088	91.589	94.089	96.589	99.089	101.59	104.09
$ \widehat{V} $		1.000	2.440	3.978	5.535	7.097	8.659	10.22
$B_{\rm inf}^{90\%}$		87.458	89.043	90.838	92.754	94.747	96.793	98.878
$B_{\sup}^{90\%}$ $IC^{90\%}$						103.43		
$IC^{90\%}$		$\pm 1.8\%$	$\pm 2.8\%$	$\pm 3.5\%$	$\pm 4.0\%$	$\pm 4.4\%$	$\pm 4.7\%$	$\pm 5.0\%$

Graphiquement, on obtient à gauche les prévisions suivantes (avec la "vraie" valeur de X_t), et à droite la variation relative de l'intervalle de confiance,

8.7 Application

8.7.1 Example de prévision : cas d'école

Considérons le modèle ARIMA(1, 1, 1) donné par

$$(1-L)(1-0.5L)X_t = (1-0.8L)\varepsilon_t,$$

où l'on suppose que ε_t est gaussien, centré, de variance connue $\sigma^2 = 0.5$, avec $X_T = 12$ et $T\widehat{X}_{T+1}^* = EL\left(X_{T+1}|\underline{X_T}\right) = 10$, où $\underline{X_T} = \{X_1, ..., X_T, Z\}$.

La prévision à horizon h faite en T est $_T\widehat{X}_{T+h}^* = \mathbb{E}\left(X_{T+h}|\underline{X_T}\right)$.

(i) estimation de ${}_T\widehat{X}^*_{T+h}$: Cette forme ARIMA s'écrit

$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} = \varepsilon_t + \theta_1 \varepsilon_{t-1}$$
, avec une racine unité.

Aussi, pour $h \geq 2$, on peut écrire $_T\widehat{X}_{T+h}^* - \phi_{1.T}\widehat{X}_{T+h-1}^* - \phi_{2.T}\widehat{X}_{T+h-2}^* = 0$. Pour expliciter les solutions, on se ramène au problème suivant : "recherche des suites u_n telle que $u_n = \alpha u_{n-1} + \beta u_{n-2}$ ". Les racines du polynôme caractéristique étant 1 et 1/2, on peut écrire $_T\widehat{X}_{T+k} = \lambda.1^h + \mu. (1/2)^h$. Compte tenu du fait que $X_T = 12$ et $_T\widehat{X}_{T+1}^* = 10$ on en déduit $\lambda = 8$ et $\mu = 4$. Aussi

$$_{T}\hat{X}_{T+h}^{*} = 8 + \frac{4}{2^{k}}$$
 d'où les premières valeurs $\{12, 10, 9, 8.5, 8.25, 8.125, ...\}$

(ii) expression de l'intervalle de confiance : L'intervalle de confiance à 95% de la prévision est de la forme

$$\left[{}_{T}\widehat{X}_{T+h}^{*} - 1.96\sqrt{V\left({}_{T}\widehat{X}_{T+h}^{*}\right)};_{T}\widehat{X}_{T+h}^{*} + 1.96\sqrt{V\left({}_{T}\widehat{X}_{T+h}^{*}\right)} \right].$$

Cette variance s'obtient en approximant la forme ARIMA par une forme $MA(\infty)$,

$$X_{T+1} - X_T = \varepsilon_T + b_1 \varepsilon_{T-1} + b_2 \varepsilon_{T-2} + \dots$$

On note alors que

$$\begin{cases} X_{T+1} - X_T = \varepsilon_{T+1} + b_1 \varepsilon_T + b_2 \varepsilon_{T-1} + \dots \\ X_{T+2} - X_{T+1} = \varepsilon_{T+2} + b_1 \varepsilon_{T+1} + b_2 \varepsilon_T + \dots \\ \dots \\ X_{T+h} - X_{T+h-1} = \varepsilon_{T+h} + b_1 \varepsilon_{T+h-1} + b_2 \varepsilon_{T+h-2} + \dots \end{cases}$$

d'où , par sommation, l'expression de $X_{T+h}-X_T$ et en considérant la variance (puique les ε_t sont identiquement distribués, de variance σ^2 , et surtout indépendant),

$$V\left(T\widehat{X}_{T+h}^{*}\right) = \sigma^{2}\left[1 + (1+b_{1})^{2} + (1+b_{1}+b_{2})^{2} + \dots + (1+b_{1}+\dots+b_{h})^{2}\right].$$

Or l'expression des b_i est donnée par la relation $B(L) = \Theta(L) \Phi^{-1}(L) = (1-0.8L) (1-0.5L)^{-1}$

$$B(L) = (1 - 0.8L) (1 + 0.5L + 0.5^{2}L^{2} + \dots) = 1 - 0.3L - 0.3\frac{L^{2}}{2} - 0.3\frac{L^{3}}{2^{2}} - \dots$$

$$\begin{cases} u_1 = \lambda r_1 + \mu r_2 \\ u_2 = \lambda r_1^2 + \mu r_2^2 \end{cases}$$

The strain of t

et donc $b_0 = 1$ et $b_i = -0.3/2^{i-1}$. Aussi

$$1 + b_1 + \dots + b_j = 1 - 0.3 \left[1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{j-1}} \right] = 1 - 0.6 \left[1 - \frac{1}{2^j} \right] = 0.4 + \frac{0.6}{2^j},$$

et donc

$$V\left(T\widehat{X}_{T+h}^*\right) = \sigma^2 \sum_{j=0}^{h-1} \left[0.4 + \frac{0.6}{2^j}\right]^2.$$

D'où finalement les prévisions et les premiers intervalles de confiance suivant :

h	0	1	2	3	4	5	6	7	8	9
$B_{ m inf}^{95\%} \ B_{ m inf}^{90\%}$		8.040	6.444	5.560	5.015	4.639	4.353	4.116	3.906	3.71
$B_{ m inf}^{90\%}$		8.360	6.862	6.040	5.543	5.209	4.959	4.755	4.577	4.41
$T\widehat{X}_{T+h}^*$	12.000	10.000	9.000	8.500	8.250	8.125	8.063	8.031	8.016	8.00
$B_{ m sup}^{90\%} \ B_{ m sup}^{95\%}$		11.640	11.138	10.960	10.957	11.041	11.166	11.307	11.454	11.60
$B_{ m sup}^{95\%}$		11.960	11.556	11.440	11.485	11.611	11.772	11.947	12.125	12.30
$IC_{95\%}$		$\pm 19.6\%$	$\pm 28.4\%$	$\pm 34.6\%$	$\pm 39.2\%$	$\pm 42.9\%$	$\pm 46.0\%$	$\pm 48.7\%$	$\pm 51.3\%$	± 53.6

On notera bien sur cet exemple que les prévisions à l'aide à dun modèle ARIMA à moyen terme sont déjà relativement incertaines. Graphiquement, on obtient, à gauche, la prévision suivante (avec les intervalles de confiance à 90% et 95%), et à droite, l'évolution relative de l'intervalle de confiance en fonction de l'horizon de prévision

8.7.2 Exemple d'application : cas pratique

Considérons ici la série du nombre de voyageurs SNCF, et la modélisation ARIMA que nous avions pu faire,

$$(1-L)\left(1-L^{12}\right)X_t = \left(1 - 0.8344L\right)\left(1 - 0.4926L^{12}\right)\varepsilon_t. \tag{41}$$

La série Z_t peut alors être utilisée pour faire de la prévision, à l'aide de sa modélisation MA.

Comme nous le voyons sur cet exemple, la prévision à l'aide d'un modéliation ARMA reste relativement floue, même ici à court terme (un exemple analogue sera repris plus en détails dans la partie suivante).

9 Mise en oeuvre de la méthode de Box & Jenkins

9.1 Application de la série des taux d'intérêt à 3 mois

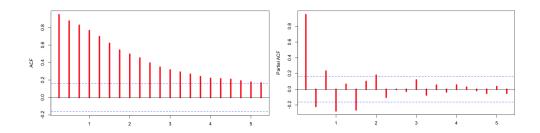
Nous allons considérér ici les taux à 3 mois du trésor américain (comme le propose Pindyck et Rubinfeld (1998)), données mensuelles, de Janvier 1960 à Mars 1996.

```
> base=read.table("http://freakonometrics.free.fr/basedata.txt",header=TRUE)
> Y=base[,"R"]
> Y=Y[(base$yr>=1960)&(base$yr<=1996.25)]</pre>
> Y=ts(Y,frequency = 4, start = c(1960, 1))
> Y
       Qtr1
              Qtr2
                     Qtr3
                            Qtr4
      3.873
             2.993
                    2.360
1960
                           2.307
1961
      2.350
             2.303
                    2.303
                           2.460
      2.723
             2.717
                    2.840
      2.907
             2.940
                    3.293
1963
                           3.497
1964
      3.530
             3.477
                    3.497
      2.960
             2.967
                    3.003
1993
                           3.060
1994
      3.243
             3.987
                    4.477
                           5.280
      5.737 5.597
                    5.367 5.260
1996
     4.930 5.020
```



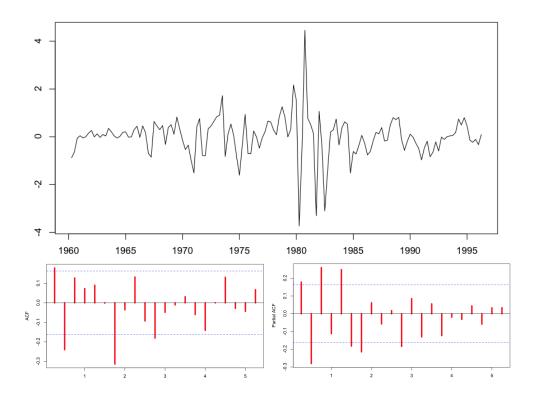
L'autocorrélogramme de la série bute des taux (X_t) permet de se rendre compte rapidement que la série n'est pas stationnaire.

```
> acf(Y,lwd=5,col="red")
> pacf(Y,lwd=5,col="red")
```



La série différenciée $Y_t = X_t - X_{t-1}$ a l'allure suivante,

```
> plot(diff(Y))
> acf(diff(Y),lwd=5,col="red")
> pacf(diff(Y),lwd=5,col="red")
```



La série ainsi formée semble stationnaire. A titre comparatif, la série Z_t obtenue en différenciant 2 fois donne des résultats ne semblant pas significativement différents Aussi, différencier 1 fois suffit pour obtenir un modèle stationnaire.

9.1.1 Modélisation de la série

Compte tenu de l'allure des autocorrélogrammes de Y_t , nous pouvons penser modéliser la série X_t par un processus ARMA(p,q). La méthode du coin, décrite auparavant, donne

le tableau Ω suivant

$i \setminus j$	1	2	3	4	5	6
1	0.272	0.189	-0.007	0.024	0.041	0.148
2	-0.116	0.041	-0.006	0.001	-0.003	0.040
3	-0.102	0.006	0.003	-0.001	0.001	0.011
4	-0.042	0.007	-0.002	0.002	0.003	0.003
5	0.055	-0.004	-0.005	0.002	-0.001	0.001
6	-0.180	0.043	-0.012	0.003	0.001	0.000

9.1.2 Estimation des paramètres d'une modélisation ARIMA(1,1,1)

L'estimation donne les résultats suivants (la constante était clairement non significative),

$$\left(1 + 0.3341L\right)Y_t = \left(1 + 0.7403L\right)\varepsilon_t$$

```
> arima(X,order=c(1,1,1))
Call:
arima(x = X, order = c(1, 1, 1))
Coefficients:
         ar1
     -0.3341 0.7403
    0.1066 0.0616
sigma^2 estimated as 0.6168: log likelihood = -170.89, aic = 347.78
   sur la série brute, ou encore, sur la série différenciée
  arima(diff(X),order=c(1,0,1))
Call:
arima(x = diff(X), order = c(1, 0, 1))
Coefficients:
                ma1 intercept
     -0.3342 0.7403 0.0076
     0.1066 0.0616
                         0.0850
sigma^2 estimated as 0.6168: log likelihood = -170.88, aic = 349.77
```

Si les estimations semblent significative, le résidu ne semble pas être un bruit blanc. L'étape suivante est donc d'augmenter le nombre de paramètres.

9.1.3 Estimation des paramètres d'une modélisation ARIMA (2, 1, 2)

L'estimation donne les résultats suivants (la constante étant là aussi non significative),

$$\left(1 + \frac{1.26 L}{(0.095)} + \frac{0.49 L^2}{(0.088)}\right) Y_t = \left(1 + \frac{1.767 L}{(0.067)} - \frac{0.8778 L^2}{(0.054)}\right) \varepsilon_t \text{ où } Y_t = (1 - L)X_t$$

> arima(X, order=c(2,1,2))

Call:

arima(x = X, order = c(2, 1, 2))

Coefficients:

 $sigma^2$ estimated as 0.5435: log likelihood = -162.24, aic = 334.48

A titre d'information, le modèle avec constante s'écrit

$$\left(1 + \underset{(0.095)}{1.26}L + \underset{(0.088)}{0.49}L^2\right)Y_t = \left(1 + \underset{(0.067)}{1.767}L - \underset{(0.054)}{0.8778}L^2\right)\varepsilon_t + \underset{(0.08)}{0.007}$$

> arima(X,order=c(2,1,2),xreg=1:length(Y))
Series: X

Coefficients:

ARIMA(2,1,2)

Encore une fois, l'hypothèse de bruit blanc des résidus est rejetée, de part la présence d'autocorrélations significativement non nulles.

9.1.4 Estimation des paramètres d'une modélisation ARIMA (4, 1, 4)

L'estimation donne les résultats suivants

```
arima(X, order=c(4,1,4))
Series: X
ARIMA(4,1,4)
Coefficients:
                 ar2
                         ar3
                                  ar4
                                          ma1
                                                  ma2
                                                          ma3
     -0.3360 0.0409 -0.3508 -0.1562 0.7713 -0.2380 0.3536 0.6052
     0.3592 0.3459
                      0.2173 0.1736 0.3406
                                               0.4341 0.2400 0.1916
sigma^2 estimated as 0.5205: log likelihood=-159.2
AIC=334.4 AICc=335.74
                       BIC=361.19
```

9.1.5 Estimation des paramètres d'une modélisation ARIMA (8, 1, 2)

L'estimation donne les résultats suivants,

```
arima(Y, order=c(8,1,2))
Series: Y
ARIMA(8,1,2)
Coefficients:
         ar1
                 ar2
                         ar3
                                 ar4
                                          ar5
                                                  ar6
                                                           ar7
                                                                   ar8
                                                                                     ma2
      0.5309 0.3147 0.1282 0.1482
                                                                                 -0.8809
                                     -0.1449 0.1134
                                                       -0.4324
                                                                0.2575
                                                                        -0.1191
s.e. 0.0983 0.1076 0.0931
                             0.0920
                                       0.0871 0.0859
                                                        0.0821
                                                               0.0818
sigma^2 estimated as 0.4826: log likelihood=-154.69
AIC=329.38
             AICc=331.36
                           BIC=362.12
```

9.1.6 Estimation des paramètres d'une modélisation ARIMA (8, 1, 4)

BIC=371.67

L'estimation donne les résultats suivants,

```
arima(Y, order=c(8,1,4))
Series: Y
ARIMA(8,1,4)
Coefficients:
                 ar2
                         ar3
                                          ar5
                                                                   ar8
         ar1
                                                           ar7
                                                                                              ma3
                                 ar4
                                                  ar6
                                                                             ma1
                                                                                      ma2
      0.6885
             0.2197 0.0672
                             0.1619
                                      -0.1847 0.1454
                                                       -0.4762
                                                                0.3106
                                                                        -0.2908
                                                                                 -0.8308
                                                                                           0.1653
                                                                                                   -0.
s.e. 0.4166 0.3146 0.2872
                                       0.1205 0.1227
                             0.2922
                                                        0.1132
                                                                0.1353
                                                                         0.4125
                                                                                  0.4678
                                                                                          0.3788
sigma^2 estimated as 0.4817: log likelihood=-154.48
```

9.1.7 Choix du modèle

AICc=335.75

Les différents critères sont

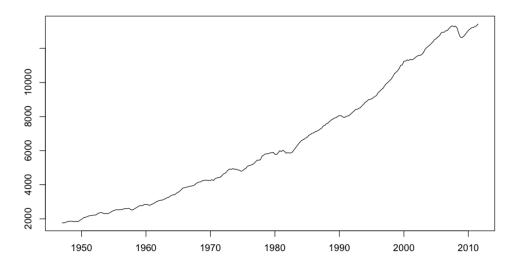
	σ^2	AIC	$\log \mathcal{L}$
ARIMA(1,1,1)	0.6168190	347.7753	-170.8877
ARIMA(2,1,2)	0.5434549	334.4843	-162.2421
ARIMA(4,1,4)	0.5204500	336.4037	-159.2019
ARIMA(8,1,2)	0.4826461	331.3783	-154.6892
ARIMA(8,1,4)	0.4816530	334.9689	-154.4845

Aucun modèle ne semble vraiment bien modéliser la série. En fait, aucun modèle de type ARMA ne pourra prendre en compte le pic de volatilité au début des années 80. Les modèles ARCH pourraient être une alternative intéressantes, mais au delà de l'objectif du cours.

9.2 Modélisation du taux de croissance du PIB américain

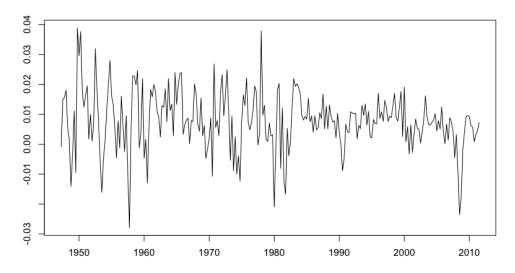
La série suivante correspond au PIB américain, depuis 1947

```
> base=read.table("http://freakonometrics.free.fr/GDP_United_States2.csv",
+ header=TRUE,sep=",")
> > Y=rev(base[,3])
Y=ts(Y,frequency = 4, start = c(1947, 1))
> plot(Y)
```

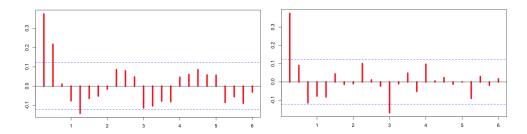


Il est parfois plus simple de travailler sur le taux de croissance trimestriel

```
> Z=diff(Y)/Y
> plot(Z)
```



```
> acf(Y,lwd=5,col="red")
> pacf(Y,lwd=5,col="red")
```



Compte tenu de la forme des autocorrélations, il est possible de tester un modèle AR(3), i.e.

Nous obtenons le modèle suivant

$$X_{t} - 0.35X_{t-1} - 0.18X_{t-2} + 0.11X_{t-3} = 0.007 + \varepsilon_{t}$$

```
> (modele=arima(Z,order=c(3,0,0)))
Series: Z
ARIMA(3,0,0) with non-zero mean
Coefficients:
         ar1
                 ar2
                               intercept
                          ar3
      0.3518 0.1279
                      -0.1152
                                  0.0078
     0.0618
              0.0651
                       0.0618
                                  0.0009
sigma^2 estimated as 8.18e-05: log likelihood=847.87
AIC=-1687.73
               AICc=-1687.5
                             BIC=-1669.97
```

On peut noter que le polynôme autorégressif s'écrit

$$(1 - 0.35L - 0.13L^2 + 0.11L^3) = (1 + 0.46L)(1 - 0.87L + 0.27L^2)$$

où le second terme a des racines complexes conjuguées.

```
> library(polynom)
> polyroot(c(1,-modele$coef[1:3]))
[1]  1.635739+1.157969i -2.161224-0.000000i  1.635739-1.157969i
> 2*pi/Arg(polyroot(c(1,-modele$coef[1:3])))
[1]  10.19964  -2.00000 -10.19964
```

On peut alors noter que la longueur moyenne du cycle stochastique est alors de 10.2 trimestres, c'est à dire entre 2 ans et demi et 3 ans.