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Quantiles

Let Y denote a random variable with cumulative distribution function F ,
F (y) = P[Y ≤ y]. The quantile is

Q(u) = inf
{
x ∈ R, F (x) > u

}
.
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Defining halfspace depth

Given y ∈ Rd, and a direction u ∈ Rd, define the closed half space

Hy,u = {x ∈ Rd such that u′x ≤ u′y}

and define depth at point y by

depth(y) = inf
u,u6=0

{P(Hy,u)}

i.e. the smallest probability of a closed half space containing y.

The empirical version is (see Tukey (1975)

depth(y) = min
u,u6=0

{
1
n

n∑
i=1

1(Xi ∈ Hy,u)
}

For α > 0.5, define the depth set as

Dα = {y ∈ R ∈ Rd such that ≥ 1− α}.

The empirical version is can be related to the bagplot, Rousseeuw et al., 1999.
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Empirical sets extremely sentive to the algorithm
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where the blue set is the empirical estimation for Dα, α = 0.5.
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The bagplot tool

The depth function introduced here is the multivariate extension of standard
univariate depth measures, e.g.

depth(x) = min{F (x), 1− F (x−)}

which satisfies depth(Qα) = min{α, 1− α}. But one can also consider

depth(x) = 2 · F (x) · [1− F (x−)] or depth(x) = 1−
∣∣∣∣12 − F (x)

∣∣∣∣ .
Possible extensions to functional bagplot. Consider a set of functions fi(x),
i = 1, · · · , n, such that

fi(x) = µ(x) +
n−1∑
k=1

zi,kϕk(x)

(i.e. principal component decomposition) where ϕk(·) represents the
eigenfunctions. Rousseeuw et al., 1999 considered bivariate depth on the first two
scores, xi = (zi,1, zi,2). See Ferraty & Vieu (2006).
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Quantiles and Quantile Regressions

Quantiles are important quantities in many
areas (inequalities, risk, health, sports, etc).

Quantiles of the N (0, 1) distribution.
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A First Model for Conditional Quantiles

Consider a location model, y = β0 + xTβ + ε i.e.

E[Y |X = x] = xTβ

then one can consider

Q(τ |X = x) = β0 +Qε(τ) + xTβ

where Qε(·) is the quantile function of the residuals.
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OLS Regression, `2 norm and Expected Value

Let y ∈ Rd, y = argmin
m∈R


n∑
i=1

1
n

[
yi −m︸ ︷︷ ︸

εi

]2 . It is the empirical version of

E[Y ] = argmin
m∈R


∫ [

y −m︸ ︷︷ ︸
ε

]2
dF (y)

 = argmin
m∈R

E
[
‖Y −m︸ ︷︷ ︸

ε

‖`2

]
where Y is a random variable.

Thus, argmin
m(·):Rk→R


n∑
i=1

1
n

[
yi −m(xi)︸ ︷︷ ︸

εi

]2 is the empirical version of E[Y |X = x].

See Legendre (1805) Nouvelles méthodes pour la détermination des orbites des
comètes and Gauβ (1809) Theoria motus corporum coelestium in sectionibus conicis
solem ambientium.

@freakonometrics 9

https://archive.org/details/nouvellesmthode00legegoog
https://archive.org/details/nouvellesmthode00legegoog
https://archive.org/details/bub_gb_ORUOAAAAQAAJ
https://archive.org/details/bub_gb_ORUOAAAAQAAJ


Arthur CHARPENTIER, Advanced Econometrics Graduate Course

OLS Regression, `2 norm and Expected Value

Sketch of proof: (1) Let h(x) =
d∑
i=1

(x− yi)2, then

h′(x) =
d∑
i=1

2(x− yi)

and the FOC yields x = 1
n

d∑
i=1

yi = y.

(2) If Y is continuous, let h(x) =
∫
R
(x− y)f(y)dy and

h′(x) = ∂

∂x

∫
R
(x− y)2f(y)dy =

∫
R

∂

∂x
(x− y)2f(y)dy

i.e. x =
∫
R
xf(y)dy =

∫
R
yf(y)dy = E[Y ]
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Median Regression, `1 norm and Median

Let y ∈ Rd, median[y] ∈ argmin
m∈R


n∑
i=1

1
n

∣∣yi −m︸ ︷︷ ︸
εi

∣∣ . It is the empirical version of

median[Y ] ∈ argmin
m∈R


∫ ∣∣y −m︸ ︷︷ ︸

ε

∣∣dF (y)

 = argmin
m∈R

E
[
‖Y −m︸ ︷︷ ︸

ε

‖`1

]
where Y is a random variable, P[Y ≤ median[Y ]] ≥ 1

2 and P[Y ≥ median[Y ]] ≥ 1
2 .

argmin
m(·):Rk→R


n∑
i=1

1
n

∣∣yi −m(xi)︸ ︷︷ ︸
εi

∣∣
 is the empirical version of median[Y |X = x].

See Boscovich (1757) De Litteraria expeditione per pontificiam ditionem ad
dimetiendos duos meridiani and Laplace (1793) Sur quelques points du système du
monde.
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Median Regression, `1 norm and Median

Sketch of proof: (1) Let h(x) =
d∑
i=1
|x− yi|

(2) If F is absolutely continuous, dF (x) = f(x)dx, and the

median m is solution of
∫ m

−∞
f(x)dx = 1

2.

Set h(y) =
∫ +∞

−∞
|x− y|f(x)dx

=
∫ y

−∞
(−x+ y)f(x)dx+

∫ +∞

y

(x− y)f(x)dx

Then h′(y) =
∫ y

−∞
f(x)dx−

∫ +∞

y

f(x)dx, and FOC yields

∫ y

−∞
f(x)dx =

∫ +∞

y

f(x)dx = 1−
∫ y

−∞
f(x)dx = 1

2
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OLS vs. Median Regression (Least Absolute Deviation)

Consider some linear model, yi = β0 + xT
i β + εi ,and define

(β̂ols
0 , β̂

ols
) = argmin

{
n∑
i=1

(
yi − β0 − xT

i β
)2
}

(β̂lad
0 , β̂

lad
) = argmin

{
n∑
i=1

∣∣yi − β0 − xT
i β
∣∣}

Assume that ε|X has a symmetric distribution, E[ε|X] = median[ε|X] = 0, then
(β̂ols

0 , β̂
ols

) and (β̂lad
0 , β̂

lad
) are consistent estimators of (β0,β).

Assume that ε|X does not have a symmetric distribution, but E[ε|X] = 0, then
β̂

ols
and β̂

lad
are consistent estimators of the slopes β.

If median[ε|X] = γ, then β̂lad
0 converges to β0 + γ.
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OLS vs. Median Regression

Median regression is stable by monotonic transformation. If

log[yi] = β0 + xT
i β + εi with median[ε|X] = 0,

then

median[Y |X = x] = exp
(
median[log(Y )|X = x]

)
= exp

(
β0 + xT

i β
)

while

E[Y |X = x] 6= exp
(
E[log(Y )|X = x]

)
(= exp

(
E[log(Y )|X = x]

)
·[exp(ε)|X = x]

1 > ols <- lm(y~x, data=df)

2 > library ( quantreg )

3 > lad <- rq(y~x, data=df , tau =.5)
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Notations

Cumulative distribution function FY (y) = P[Y ≤ y].
Quantile function QX(u) = inf

{
y ∈ R : FY (y) ≥ u

}
,

also noted QX(u) = F−1
X u.

One can consider QX(u) = sup
{
y ∈ R : FY (y) < u

}
For any increasing transformation t, Qt(Y )(τ) = t

(
QY (τ)

)
F (y|x) = P[Y ≤ y|X = x]
QY |x(u) = F−1(u|x)

@freakonometrics 15
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Empirical Quantile
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Quantile regression ?

In OLS regression, we try to evaluate E[Y |X = x] =
∫
R
ydFY |X=x(y)

In quantile regression, we try to evaluate

Qu(Y |X = x) = inf
{
y : FY |X=x(y) ≥ u

}
as introduced in Newey & Powell (1987) Asymmetric Least Squares Estimation and
Testing.

Li & Racine (2007) Nonparametric Econometrics: Theory and Practice suggested

Q̂u(Y |X = x) = inf
{
y : F̂Y |X=x(y) ≥ u

}
where F̂Y |X=x(y) can be some kernel-based estimator.

@freakonometrics 17
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Quantiles and Expectiles
Consider the following risk functions

Rq
τ (u) = u ·

(
τ − 1(u < 0)

)
, τ ∈ [0, 1]

with Rq
1/2(u) ∝ |u| = ‖u‖`1 , and

Re
τ (u) = u2 ·

(
τ − 1(u < 0)

)
, τ ∈ [0, 1]

with Re
1/2(u) ∝ u2 = ‖u‖2

`2
.

QY (τ) = argmin
m

{
E
(
Rq
τ (Y −m)

)}
which is the median when τ = 1/2,

EY (τ) = argmin
m

{
E
(
Re
τ (X −m)

)
}

which is the expected value when τ = 1/2.

@freakonometrics 18
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Quantiles and Expectiles

One can also write

quantile: argmin


n∑
i=1

ωq
τ (εi)

∣∣ yi − qi︸ ︷︷ ︸
εi

∣∣ where ωq
τ (ε) =

 1− τ if ε ≤ 0
τ if ε > 0

expectile: argmin


n∑
i=1

ωe
τ (εi)

(
yi − qi︸ ︷︷ ︸

εi

)2

 where ωe
τ (ε) =

 1− τ if ε ≤ 0
τ if ε > 0

Expectiles are unique, not quantiles...

Quantiles satisfy E[sign(Y −QY (τ))] = 0

Expectiles satisfy τE
[
(Y − eY (τ))+

]
= (1− τ)E

[
(Y − eY (τ))−

]
(those are actually the first order conditions of the optimization problem).
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Quantiles and M-Estimators

There are connections with M -estimators, as introduced in Serfling (1980)
Approximation Theorems of Mathematical Statistics, chapter 7.

For any function h(·, ·), the M -functional is the solution β of∫
h(y, β)dFY (y) = 0

, and the M -estimator is the solution of∫
h(y, β)dF̂n(y) = 1

n

n∑
i=1

h(yi, β) = 0

Hence, if h(y, β) = y − β, β = E[Y ] and β̂ = y.

And if h(y, β) = 1(y < β)− τ , with τ ∈ (0, 1), then β = F−1
Y (τ).

@freakonometrics 20
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Quantiles, Maximal Correlation and Hardy-Littlewood-Polya

If x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn, then
n∑
i=1

xiyi ≥
n∑
i=1

xiyσ(i), ∀σ ∈ Sn, and x

and y are said to be comonotonic.

The continuous version is that X and Y are comonotonic if

E[XY ] ≥ E[XỸ ] where Ỹ L= Y,

One can prove that

Y = QY (FX(X)) = argmax
Ỹ∼FY

{
E[XỸ ]

}

@freakonometrics 21



Arthur CHARPENTIER, Advanced Econometrics Graduate Course

Expectiles as Quantiles

For every Y ∈ L1, τ 7→ eY (τ) is continuous, and striclty increasing

if Y is absolutely continuous, ∂eY (τ)
∂τ

= E[|X − eY (τ)|]
(1− τ)FY (eY (τ)) + τ(1− FY (eY (τ)))

if X ≤ Y , then eX(τ) ≤ eY (τ) ∀τ ∈ (0, 1)

“Expectiles have properties that are similar to quantiles” Newey & Powell (1987)
Asymmetric Least Squares Estimation and Testing. The reason is that expectiles of
a distribution F are quantiles a distribution G which is related to F , see Jones
(1994) Expectiles and M-quantiles are quantiles: let

G(t) = P (t)− tF (t)
2[P (t)− tF (t)] + t− µ

where P (s) =
∫ s

−∞
ydF (y).

The expectiles of F are the quantiles of G.
1 > x <- rnorm (99)

2 > library ( expectreg )

3 > e <- expectile (x, probs = seq (0, 1, 0.1))
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Expectiles as Quantiles
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Elicitable Measures

“elicitable” means “being a minimizer of a suitable expected score”

T is an elicatable function if there exits a scoring function S : R× R→ [0,∞)
such that

T (Y ) = argmin
x∈R

{∫
R
S(x, y)dF (y)

}
= argmin

x∈R

{
E
[
S(x, Y )

]
where Y ∼ F.

}
see Gneiting (2011) Making and evaluating point forecasts.

Example: mean, T (Y ) = E[Y ] is elicited by S(x, y) = ‖x− y‖2
`2

Example: median, T (Y ) = median[Y ] is elicited by S(x, y) = ‖x− y‖`1

Example: quantile, T (Y ) = QY (τ) is elicited by
S(x, y) = τ(y − x)+ + (1− τ)(y − x)−
Example: expectile, T (Y ) = EY (τ) is elicited by
S(x, y) = τ(y − x)2

+ + (1− τ)(y − x)2
−

@freakonometrics 24
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Elicitable Measures

Remark: all functionals are not necessarily elicitable, see Osband (1985)
Providing incentives for better cost forecasting

The variance is not elicitable

The elicitability property implies a property which is known as convexity of the
level sets with respect to mixtures (also called Betweenness property) : if two
lotteries F , and G are equivalent, then any mixture of the two lotteries is also
equivalent with F and G.

@freakonometrics 25
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Empirical Quantiles

Consider some i.id. sample {y1, · · · , yn} with distribution F . Set

Qτ = argmin
{
E
[
Rq
τ (Y − q)

]}
where Y ∼ F and Q̂τ ∈ argmin

{
n∑
i=1
Rq
τ (yi − q)

}
Then as n→∞

√
n
(
Q̂τ −Qτ

) L→ N (0, τ(1− τ)
f2(Qτ )

)

Sketch of the proof: yi = Qτ + εi, set hn(q) = 1
n

n∑
i=1

(
1(yi < q)− τ

)
, which is a

non-decreasing function, with

E
[
Qτ + u√

n

]
= FY

(
Qτ + u√

n

)
∼ fY (Qτ ) u√

n

Var
[
Qτ + u√

n

]
∼ FY (Qτ )[1− FY (Qτ )]

n
= τ(1− τ)

n
.
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Empirical Expectiles

Consider some i.id. sample {y1, · · · , yn} with distribution F . Set

µτ = argmin
{
E
[
Re
τ (Y −m)

]}
where Y ∼ F and µ̂τ = argmin

{
n∑
i=1
Re
τ (yi −m)

}

Then as n→∞ √
n
(
µ̂τ − µτ

) L→ N (0, s2)
for some s2, if Var[Y ] <∞. Define the identification function

Iτ (x, y) = τ(y − x)+ + (1− τ)(y − x)− (elicitable score for quantiles)

so that µτ is solution of E
[
I(µτ , Y )

]
= 0. Then

s2 = E[I(µτ , Y )2]
(τ [1− F (µτ )] + [1− τ ]F (µτ ))2 .

@freakonometrics 27
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Quantile Regression

We want to solve, here, min
{

n∑
i=1
Rq
τ (yi − xT

i β)
}

yi = xT
i β + εi so that Q̂y|x(τ) = xTβ̂ + F−1

ε (τ)

@freakonometrics 28
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Geometric Properties of the Quantile Regression
Observe that the median regression will always have
two supporting observations.
Start with some regression line, yi = β0 + β1xi

Consider small translations yi = (β0 ± ε) + β1xi

We minimize
n∑
i=1

∣∣yi − (β0 + β1xi)
∣∣

From line blue, a shift up decrease the sum by ε
until we meet point on the left
an additional shift up will increase the sum
We will necessarily pass through one point
(observe that the sum is piecwise linear in ε)
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Geometric Properties of the Quantile Regression
Consider now rotations of the line around the support
point
If we rotate up, we increase the sum of absolute differ-
ence (large impact on the point on the right)
If we rotate down, we decrease the sum, until we reach
the point on the right

Thus, the median regression will always have two sup-
portting observations.

1 > library ( quantreg )

2 > fit <- rq(dist~speed , data=cars , tau =.5)

3 > which ( predict (fit)== cars$dist)

4 1 21 46

5 1 21 46
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Distributional Aspects

OLS are equivalent to MLE when Y −m(x) ∼ N (0, σ2), with density

g(ε) = 1
σ
√

2π
exp

(
− ε2

2σ2

)
Quantile regression is equivalent to Maximum Likelihood Estimation when
Y −m(x) has an asymmetric Laplace distribution

g(ε) =
√

2
σ

κ

1 + κ2 exp
(
−
√

2κ1(ε>0)

σκ1(ε<0) |ε|
)
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Quantile Regression and Iterative Least Squares

start with some β(0) e.g. βols

at stage k :
let ε(k)

i = yi − xT
i β

(k−1)

define weights ω(k)
i = R′τ (ε(k)

i )
compute weighted least square to estimate β(k)

One can also consider a smooth approximation of Rq
τ (·), and then use

Newton-Raphson.
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Optimization Algorithm

Primal problem is

min
β,u,v

{
τ1Tu+ (1− τ)1Tv

}
s.t. y = Xβ + u− v, with u,v ∈ Rn+

and the dual version is

max
d

{
yTd

}
s.t. XTd = (1− τ)XT1 with d ∈ [0, 1]n

Koenker & D’Orey (1994) A Remark on Algorithm AS 229: Computing Dual
Regression Quantiles and Regression Rank Scores suggest to use the simplex
method (default method in R)

Portnoy & Koenker (1997) The Gaussian hare and the Laplacian tortoise suggest to
use the interior point method
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Simplex Method

The beer problem: we want to produce beer, either blonde, or brown
barley : 14kg
corn : 2kg
price : 30e


barley : 10kg
corn : 5kg
price : 40e

 barley : 280kg
corn : 100kg

Admissible sets :
10qbrown + 14qblond ≤ 280 (10x1 + 14x2 ≤ 280)
2qbrown + 5qblond ≤ 100 (2x1 + 5x2 ≤ 100)

What should we produce to maximize the profit ?
max

{
40qbrown + 30qblond

}
(max

{
40x1 + 30x2

}
)
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Simplex Method

First step: enlarge the space, 10x1 + 14x2 ≤ 280 becomes 10x1 + 14x2 − u1 = 280
(so called slack variables)

max
{

40x1 + 30x2
}

s.t. 10x1 + 14x2 + u1 = 280
s.t. 2x1 + 5x2 + u2 = 100
s.t. x1, x2, u1, u2 ≥ 0

summarized in the following table, see wikibook
x1 x2 u1 u2

(1) 10 14 1 0 280
(2) 2 5 0 1 100

max 40 30 0 0
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Simplex Method

Consider a linear programming problem written in a standard form.

min
{
cTx

}
(1)

subject to

Ax = b , (2)
x ≥ 0 . (3)

Where x ∈ Rn, A is a m× n matrix, b ∈ Rm and c ∈ Rn.

Assume that rank(A) = m (rows of A are linearly independent)

Introduce slack variables to turn inequality constraints into equality constraints
with positive unknowns : any inequality a1 x1 + · · ·+ an xn ≤ c can be replaced
by a1 x1 + · · ·+ an xn + u = c with u ≥ 0.

Replace variables which are not sign-constrained by differences : any real number
x can be written as the difference of positive numbers x = u− v with u, v ≥ 0.
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Simplex Method

Example :

maximize {x1 + 2x2 + 3x3}

subject to

x1 + x2 − x3 = 1 ,
−2x1 + x2 + 2x3 ≥ −5 ,

x1 − x2 ≤ 4 ,
x2 + x3 ≤ 5 ,
x1 ≥ 0 ,
x2 ≥ 0 .

minimize {−x1 − 2x2 − 3u+ 3 v}

subject to

x1 + x2 − u+ v = 1 ,
2x1 − x2 − 2u+ 2 v + s1 = 5 ,

x1 − x2 + s2 = 4 ,
x2 + u− v + s3 = 5 ,

x1, x2, u, v, s1, s2, s3 ≥ 0 .
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Simplex Method

Write the coefficients of the problem into a tableau

x1 x2 u v s1 s2 s3

1 1 −1 1 0 0 0 1
2 −1 −2 2 1 0 0 5
1 −1 0 0 0 1 0 4
0 1 1 −1 0 0 1 5

−1 −2 −3 3 0 0 0 0

with constraints on top and coefficients of the objective function are written in a
separate bottom row (with a 0 in the right hand column)

we need to choose an initial set of basic variables which corresponds to a point in
the feasible region of the linear program-ming problem.

E.g. x1 and s1, s2, s3
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Simplex Method

Use Gaussian elimination to (1) reduce the selected columns to a permutation of
the identity matrix (2) eliminate the coefficients of the objective function

x1 x2 u v s1 s2 s3

1 1 −1 1 0 0 0 1
0 −3 0 0 1 0 0 3
0 −2 1 −1 0 1 0 3
0 1 1 −1 0 0 1 5

0 −1 −4 4 0 0 0 1

the objective function row has at least one negative entry
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Simplex Method

x1 x2 u v s1 s2 s3

1 1 −1 1 0 0 0 1
0 −3 0 0 1 0 0 3
0 −2 1 −1 0 1 0 3
0 1 1 −1 0 0 1 5

0 −1 −4 4 0 0 0 1

This new basic variable is called the entering variable. Correspondingly, one
formerly basic variable has then to become nonbasic, this variable is called the
leaving variable.
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Simplex Method

The entering variable shall correspond to the column which has the most
negative entry in the cost function row

the most negative cost function coefficient in column 3, thus u shall be the
entering variable

The leaving variable shall be chosen as follows : Compute for each row the ratio
of its right hand coefficient to the corresponding coefficient in the entering
variable column. Select the row with the smallest finite positive ratio. The
leaving variable is then determined by the column which currently owns the pivot
in this row.

The smallest positive ratio of right hand column to entering variable column is in
row 3, as 3

1 <
5
1 . The pivot in this row points to s2 as the leaving variable.
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Simplex Method

x1 x2 u v s1 s2 s3

1 1 −1 1 0 0 0 1
0 −3 0 0 1 0 0 3
0 −2 1 −1 0 1 0 3
0 1 1 −1 0 0 1 5

0 −1 −4 4 0 0 0 1
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Simplex Method

After going through the Gaussian elimination once more, we arrive at

x1 x2 u v s1 s2 s3

1 −1 0 0 0 1 0 4
0 −3 0 0 1 0 0 3
0 −2 1 −1 0 1 0 3
0 3 0 0 0 −1 1 2

0 −9 0 0 0 4 0 13

Here x2 will enter and s3 will leave
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Simplex Method

After Gaussian elimination, we find

x1 x2 u v s1 s2 s3

1 0 0 0 0 2
3

1
3

14
3

0 0 0 0 1 −1 1 5
0 0 1 −1 0 1

3
2
3

13
3

0 1 0 0 0 − 1
3

1
3

2
3

0 0 0 0 0 1 3 19

There is no more negative entry in the last row, the cost cannot be lowered
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Simplex Method

The algorithm is over, we now have to read off the solution (in the last column)

x1 = 14
3 , x2 = 2

3, x3 = u = 13
3 , s1 = 5, v = s2 = s3 = 0

and the minimal value is −19
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Duality

Consider a transportation problem.

Some good is available at location A (at no cost) and may be transported to
locations B, C, and D according to the following directed graph

B

4
!!

3

��

A

2 **

1
44

D

C

5

==

On each of the edges, the unit cost of transportation is cj for j = 1, . . . , 5.

At each of the vertices, bi units of the good are sold, where i = B,C,D.

How can the transport be done most efficiently?
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Duality

Let xj denotes the amount of good transported through edge j

We have to solve

minimize {c1 x1 + · · ·+ c5 x5} (4)

subject to

x1 − x3 − x4 = bB , (5)

x2 + x3 − x5 = bC , (6)

x4 + x5 = bD . (7)

Constraints mean here that nothing gets lost at nodes B, C, and D, except what
is sold.
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Duality

Alternatively, instead of looking at minimizing the cost of transportation, we seek
to maximize the income from selling the good.

maximize {yB bB + yC bC + yD bD} (8)

subject to

yB − yA ≤ c1 , (9)

yC − yA ≤ c2 , (10)

yC − yB ≤ c3 , (11)

yD − yB ≤ c4 , (12)

yD − yC ≤ c5 . (13)

Constraints mean here that the price difference cannot not exceed the cost of
transportation.
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Duality

Set

x =


x1
...
x5

 ,y =


yB

yC

yD

 , and A =


1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1

 ,

The first problem - primal problem - is here

minimize {cTx}

subject to Ax = b,x ≥ 0 .

and the second problem - dual problem - is here

maximize {yTb}

subject to yTA ≤ cT .
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Duality

The minimal cost and the maximal income coincide, i.e., the two problems are
equivalent. More precisely, there is a strong duality theorem

Theorem The primal problem has a nondegenerate solution x if and only if the
dual problem has a nondegenerate solution y. And in this case yTb = cTx.

See Dantzig & Thapa (1997) Linear Programming
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Interior Point Method

See Vanderbei et al. (1986) A modification of Karmarkar’s linear programming
algorithm for a presentation of the algorithm, Potra & Wright (2000) Interior-point
methods for a general survey, and and Meketon (1986) Least absolute value
regression for an application of the algorithm in the context of median regression.

Running time is of order n1+δk3 for some δ > 0 and k = dim(β)

(it is (n+ k)k2 for OLS, see wikipedia).
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Quantile Regression Estimators

OLS estimator β̂
ols

is solution of

β̂
ols

= argmin
{
E
[(
E[Y |X = x]− xTβ

)2]}
and Angrist, Chernozhukov & Fernandez-Val (2006) Quantile Regression under
Misspecification proved that

β̂τ = argmin
{
E
[
ωτ (β)

(
Qτ [Y |X = x]− xTβ

)2]}
(under weak conditions) where

ωτ (β) =
∫ 1

0
(1− u)fy|x(uxTβ + (1− u)Qτ [Y |X = x])du

β̂τ is the best weighted mean square approximation of the tru quantile function,
where the weights depend on an average of the conditional density of Y over xTβ

and the true quantile regression function.
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Assumptions to get Consistency of Quantile Regression Estimators

As always, we need some assumptions to have consistency of estimators.

• observations (Yi,Xi) must (conditionnaly) i.id.

• regressors must have a bounded second moment, E
[
‖Xi‖2] <∞

• error terms ε are continuously distributed given Xi, centered in the sense
that their median should be 0,∫ 0

−∞
fε(ε)dε = 1

2 .

• “local identification” property :
[
fε(0)XXT] is positive definite
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Quantile Regression Estimators

Under those weak conditions, β̂τ is asymptotically normal:
√
n(β̂τ − βτ ) L→ N (0, τ(1− τ)D−1

τ ΩxD−1
τ ),

where
Dτ = E

[
fε(0)XXT] and Ωx = E

[
XTX

]
.

hence, the asymptotic variance of β̂ is

V̂ar
[
β̂τ
]

= τ(1− τ)
[f̂ε(0)]2

(
1
n

n∑
i=1

xT
i xi

)−1

where f̂ε(0) is estimated using (e.g.) an histogram, as suggested in Powell (1991)
Estimation of monotonic regression models under quantile restrictions, since

Dτ = lim
h↓0

E
(

1(|ε| ≤ h)
2h XXT

)
∼ 1

2nh

n∑
i=1

1(|εi| ≤ h)xixT
i = D̂τ .
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Quantile Regression Estimators

There is no first order condition, in the sense ∂Vn(β, τ)/∂β = 0 where

Vn(β, τ) =
n∑
i=1
Rq
τ (yi − xT

i β)

There is an asymptotic first order condition,

1√
n

n∑
i=1

xiψτ (yi − xT
i β) = O(1), as n→∞,

where ψτ (·) = 1(· < 0)− τ , see Huber (1967) The behavior of maximum likelihood
estimates under nonstandard conditions.

One can also define a Wald test, a Likelihood Ratio test, etc.
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Quantile Regression Estimators

Then the confidence interval of level 1− α is then[
β̂τ ± z1−α/2

√
V̂ar

[
β̂τ
]]

An alternative is to use a boostrap strategy (see #2)

• generate a sample (y(b)
i ,x

(b)
i ) from (yi,xi)

• estimate β(b)
τ by

β̂
(b)
τ = argmin

{
Rq
τ

(
y

(b)
i − x

(b)T
i β

)}
• set V̂ar?

[
β̂τ
]

= 1
B

B∑
b=1

(
β̂

(b)
τ − β̂τ

)2

For confidence intervals, we can either use Gaussian-type confidence intervals, or
empirical quantiles from bootstrap estimates.
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Quantile Regression Estimators

If τ = (τ1, · · · , τm), one can prove that

√
n(β̂τ − βτ ) L→ N (0,Στ ),

where Στ is a block matrix, with

Στi,τj = (min{τi, τj} − τiτj)D−1
τi ΩxD−1

τj

see Kocherginsky et al. (2005) Practical Confidence Intervals for Regression
Quantiles for more details.
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Quantile Regression: Transformations

Scale equivariance

For any a > 0 and τ ∈ [0, 1]

β̂τ (aY,X) = aβ̂τ (Y,X) and β̂τ (−aY,X) = −aβ̂1−τ (Y,X)

Equivariance to reparameterization of design

Let A be any p× p nonsingular matrix and τ ∈ [0, 1]

β̂τ (Y,XA) = A−1β̂τ (Y,X)
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Visualization, τ 7→ β̂τ

See Abreveya (2001) The effects of demographics and maternal behavior...
1 > base=read. table ("http:// freakonometrics .free.fr/ natality2005 .txt")
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Visualization, τ 7→ β̂τ

1 > base=read. table ("http:// freakonometrics .free.fr/ natality2005 .txt",

header =TRUE ,sep=";")

2 > u=seq (.05 ,.95 , by =.01)

3 > library ( quantreg )

4 > coefstd = function (u) summary (rq( WEIGHT ~SEX+ SMOKER + WEIGHTGAIN +

BIRTHRECORD +AGE+ BLACKM + BLACKF +COLLEGE ,data=sbase ,tau=u))$

coefficients [ ,2]

5 > coefest = function (u) summary (rq( WEIGHT ~SEX+ SMOKER + WEIGHTGAIN +

BIRTHRECORD +AGE+ BLACKM + BLACKF +COLLEGE ,data=sbase ,tau=u))$

coefficients [ ,1]

6 CS= Vectorize ( coefstd )(u)

7 CE= Vectorize ( coefest )(u)
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Visualization, τ 7→ β̂τ

See Abreveya (2001) The effects of demographics and maternal behavior on the
distribution of birth outcomes
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Visualization, τ 7→ β̂τ

See Abreveya (2001) The effects of demographics and maternal behavior...
1 > base=read. table ("http:// freakonometrics .free.fr/ BWeight .csv")
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Quantile Regression, with Non-Linear Effects

Rents in Munich, as a function of the area, from Fahrmeir et al. (2013)
Regression: Models, Methods and Applications

1 > base=read. table ("http:// freakonometrics .free.fr/ rent98 _00. txt")
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Quantile Regression, with Non-Linear Effects

Rents in Munich, as a function of the year of construction, from Fahrmeir et al.
(2013) Regression: Models, Methods and Applications
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Quantile Regression, with Non-Linear Effects

BMI as a function of the age, in New-Zealand, from Yee (2015) Vector Generalized
Linear and Additive Models, for Women and Men

1 > library ( VGAMdata ); data(xs.nz)
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Quantile Regression, with Non-Linear Effects

BMI as a function of the age, in New-Zealand, from Yee (2015) Vector Generalized
Linear and Additive Models, for Women and Men
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Quantile Regression, with Non-Linear Effects

One can consider some local polynomial quantile regression, e.g.

min
{

n∑
i=1

ωi(x)Rq
τ

(
yi − β0 − (xi − x)Tβ1

)}

for some weights ωi(x) = H−1K(H−1(xi − x)), see Fan, Hu & Truong (1994)
Robust Non-Parametric Function Estimation.
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Asymmetric Maximum Likelihood Estimation

Introduced by Efron (1991) Regression percentiles using asymmetric squared error
loss. Consider a linear model, yi = xT

i β + εi. Let

S(β) =
n∑
i=1

Qω(yi − xT
i β), where Qω(ε) =

 ε2 if ε ≤ 0
wε2 if ε > 0

where w = ω

1− ω

One might consider ωα = 1 + zα
ϕ(zα) + (1− α)zα

where zα = Φ−1(α).

Efron (1992) Poisson overdispersion estimates based on the method of asymmetric
maximum likelihood introduced asymmetric maximum likelihood (AML)
estimation, considering

S(β) =
n∑
i=1

Qω(yi − xT
i β), where Qω(ε) =

 D(yi,xT
i β) if yi ≤ xT

i β

wD(yi,xT
i β) if yi > xT

i β

where D(·, ·) is the deviance. Estimation is based on Newton-Raphson (gradient
descent).
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Noncrossing Solutions

See Bondell et al. (2010) Non-crossing quantile regression curve estimation.

Consider probabilities τ = (τ1, · · · , τq) with 0 < τ1 < · · · < τq < 1.

Use parallelism : add constraints in the optimization problem, such that

xT
i β̂τj ≥ x

T
i β̂τj−1 ∀i ∈ {1, · · · , n}, j ∈ {2, · · · , q}.
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Quantile Regression on Panel Data

In the context of panel data, consider some fixed effect, αi so that

yi,t = xT
i,tβτ + αi + εi,t where Qτ (εi,t|Xi) = 0

Canay (2011) A simple approach to quantile regression for panel data suggests an
estimator in two steps,

• use a standard OLS fixed-effect model yi,t = xT
i,tβ + αi + ui,t, i.e. consider a

within transformation, and derive the fixed effect estimate β̂

(yi,t − yi) =
(
xi,t − xi,t

)T
β + (ui,t − ui)

• estimate fixed effects as α̂i = 1
T

T∑
t=1

(
yi,t − xT

i,tβ̂
)

• finally, run a standard quantile regression of yi,t − α̂i on xi,t’s.

See rqpd package.
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Quantile Regression with Fixed Effects (QRFE)

In a panel linear regression model, yi,t = xT
i,tβ + ui + εi,t,

where u is an unobserved individual specific effect.

In a fixed effects models, u is treated as a parameter. Quantile Regression is

min
β,u

∑
i,t

Rq
α(yi,t − [xT

i,tβ + ui])


Consider Penalized QRFE, as in Koenker & Bilias (2001) Quantile regression for
duration data,

min
β1,··· ,βκ,u

∑
k,i,t

ωkRq
αk

(yi,t − [xT
i,tβk + ui]) + λ

∑
i

|ui|


where ωk is a relative weight associated with quantile of level αk.
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Quantile Regression with Random Effects (QRRE)

Assume here that yi,t = xT
i,tβ + ui + εi,t︸ ︷︷ ︸

=ηi,t

.

Quantile Regression Random Effect (QRRE) yields solving

min
β

∑
i,t

Rq
α(yi,t − xT

i,tβ)


which is a weighted asymmetric least square deviation estimator.

Let Σ = [σs,t(α)] denote the matrix

σts(α) =

 α(1− α) if t = s

E[1{εit(α) < 0, εis(α) < 0}]− α2 if t 6= s

If (nT )−1XT{In⊗ΣT×T (α)}X → D0 as n→∞ and (nT )−1XTΩfX = D1, then
√
nT
(
β̂
Q

(α)− βQ(α)
)
L−→ N

(
0,D−1

1 D0D−1
1

)
.
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Quantile Treatment Effects

Doksum (1974) Empirical Probability Plots and Statistical Inference for Nonlinear
Models introduced QTE - Quantile Treatement Effect - when a person might have
two Y ’s : either Y0 (without treatment, D = 0) or Y1 (with treatement, D = 1),

δτ = QY1(τ)−QY0(τ)

which can be studied on the context of covariates.

Run a quantile regression of y on (d,x),

y = β0 + δd+ xT
i β + εi : shifting effect

y = β0 + xT
i

[
β + δd

]
+ εi : scaling effect
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Quantile Regression for Time Series

Consider some GARCH(1,1) financial time series,

yt = σtεt where σt = α0 + α1 · |yt−1|+ β1σt−1.

The quantile function conditional on the past - Ft−1 = Y t−1 - is

Qy|Ft−1(τ) = α0F
−1
ε (τ)︸ ︷︷ ︸
α̃0

+α1F
−1
ε (τ)︸ ︷︷ ︸
α̃1

·|yt−1|+ β1Qy|Ft−2(τ)

i.e. the conditional quantile has a GARCH(1,1) form, see Conditional
Autoregressive Value-at-Risk, see Manganelli & Engle (2004) CAViaR: Conditional
Autoregressive Value at Risk by Regression Quantiles
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Quantile Regression for Spatial Data
1 > library ( McSpatial )

2 > data( cookdata )

3 > fit <- qregcpar ( LNFAR ~DCBD , nonpar =~ LATITUDE +LONGITUDE , taumat =c

(.10 ,.90) , kern="bisq", window =.30 , distance =" LATLONG ", data=

cookdata )
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Expectile Regression

Quantile regression vs. Expectile regression, on the same dataset (cars)

20 40 60 80

2
3

4
5

6

probability level (%)

S
lo

pe
 (

qu
an

til
e 

re
gr

es
si

on
)

20 40 60 80
2

3
4

5
6

probability level (%)

S
lo

pe
 (

ex
pe

ct
ile

 r
eg

re
ss

io
n)

see Koenker (2014) Living Beyond our Means for a comparison quantiles-expectiles
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Expectile Regression

Solve here min
β

{
n∑
i=1
Re
τ (yi − xT

i β)
}

where Re
τ (u) = u2 ·

(
τ − 1(u < 0)

)
“this estimator can be interpreted as a maximum likelihood estimator when the
disturbances arise from a normal distribution with unequal weight placed on
positive and negative disturbances” Aigner, Amemiya & Poirier (1976)
Formulation and Estimation of Stochastic Frontier Production Function Models.

See Holzmann & Klar (2016) Expectile Asymptotics for statistical properties.

Expectiles can (also) be related to Breckling & Chambers (1988) M -Quantiles.

Comparison quantile regression and expectile regression, see Schulze-Waltrup et
al. (2014) Expectile and quantile regression - David and Goliath?
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Expectile Regression, with Linear Effects

Zhang (1994) Nonparametric regression expectiles
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Expectile Regression, with Non-Linear Effects

See Zhang (1994) Nonparametric regression expectiles
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Expectile Regression, with Linear Effects
1 > library ( expectreg )

2 > coefstd = function (u) summary ( expectreg .ls( WEIGHT ~SEX+ SMOKER +

WEIGHTGAIN + BIRTHRECORD +AGE+ BLACKM + BLACKF +COLLEGE ,data=sbase ,

expectiles =u,ci = TRUE))[ ,2]

3 > coefest = function (u) summary ( expectreg .ls( WEIGHT ~SEX+ SMOKER +

WEIGHTGAIN + BIRTHRECORD +AGE+ BLACKM + BLACKF +COLLEGE ,data=sbase ,

expectiles =u,ci = TRUE))[ ,1]

4 > CS= Vectorize ( coefstd )(u)

5 > CE= Vectorize ( coefest )(u)
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Expectile Regression, with Random Effects (ERRE)

Quantile Regression Random Effect (QRRE) yields solving

min
β

∑
i,t

Re
α(yi,t − xT

i,tβ)


One can prove that

β̂
e
(τ) =

( n∑
i=1

T∑
t=1

ω̂i,t(τ)xitxT
it

)−1( n∑
i=1

T∑
t=1

ω̂i,t(τ)xityit
)
,

where ω̂it(τ) =
∣∣τ − 1(yit < xT

itβ̂
e
(τ))

∣∣.
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Expectile Regression with Random Effects (ERRE)

If W = diag(ω11(τ), . . . ωnT (τ)), set

W = E(W ), H = XTWX and Σ = XTE(WεεTW )X.

and then √
nT
{
β̂

e
(τ)− βe(τ)

} L−→ N (0, H−1ΣH−1),

see Barry et al. (2016) Quantile and Expectile Regression for random effects model.

See, for expectile regressions, with R,
1 > library ( expectreg )

2 > fit <- expectreg .ls(rent_euro ~ area , data=munich , expectiles =.75)

3 > fit <- expectreg .ls(rent_euro ~ rb(area ," pspline "), data=munich ,

expectiles =.75)
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Application to Real Data
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Extensions

The mean of Y is ν(FY ) =
∫ +∞

−∞
ydFY (y)

The quantile of level τ for Y is ντ (FY ) = F−1
Y (τ)

More generaly, consider some functional ν(F ) (Gini or Theil index, entropy, etc),
see Foresi & Peracchi (1995) The Conditional Distribution of Excess Returns

Can we estimate ν(FY |x) ?

Firpo et al. (2009) Unconditional Quantile Regressions suggested to use influence
function regression

Machado & Mata (2005) Counterfactual decomposition of changes in wage
distributions and Chernozhukov et al. (2013) Inference on counterfactual
distributions suggested indirect distribution function.

Influence function of index ν(F ) at y is

IF (y, ν, F ) = lim
ε↓0

ν((1− ε)F + εδy)− ν(F )
ε
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