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“Great plot.

77

Now need to find the theory that explains it
Deville (2017) http://twitter.com



https://twitter.com/DevilleSy/status/837707126835408897
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Preliminary Results: Numerical Optimization

Problem : x* € argmin{ f(x); = € R4}

Gradient descent : ®py1 = ®r — NV f(xk) starting from some xg
Problem : * € argmin{f(z); = € X C R?}

Projected descent : xry1 = Iy (mk — an(a:k)) starting from some xg

A constrained problem is said to be convex if

with f convex

with g; linear

with h; convex

Lagrangian : L(x, A, 1) ) + Z Nigi(x) + Z tihi(x) where & are primal

variables and (A, i) are dual varlables.

Remark £ is an affine function in (A, p)
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Preliminary Results: Numerical Optimization

Karush—Kuhn—Tucker conditions : a convex problem has a solution x* if and
only if there are (A*, u*) such that the following condition hold

e stationarity : VoL (x, A\, u) = 0 at (x*, X", u*)
e primal admissibility : g;(x*) = 0 and h;(x*) <0, Vi

e dual admissibility : pu* > 0

Let L denote the associated dual function L(A, p) = min{L(x, \, )}

L is a convex function in (A, p) and the dual problem is ng\lax{L()\, w}.
Y7
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Preambule

Assume that y = m(x) + ¢, where € is some idosyncatic impredictible noise.

The error E[(y — m(x))?] is the sum of three terms
e variance of the estimator : E[(y — 7/7\1(513))2]
e bias® of the estimator : (m(x) — m(x)]?

e variance of the noise : E[(y — m(w))Q]

(the latter exists, even with a ‘perfect’ model).
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Preambule

Consider a parametric model, with true (unkown) parameter 6, then

o) =3[0 7] =5 [0 507] % i -0

7 7
~~ ~"

variance bias?2

Let 6 denote an unbiased estimator of 8. Then

2 ~ ~ 0 ~
j_ 0 _ G_F_ mse(@)N.e
62 + mse(6) 62 + mse(6)

7

N~

penalty

~

satisfies mse() < mse(h).
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Bayes vs. Frequentist, inference on heads/tails

Consider some Bernoulli sample © = {z1,z3, - ,x,}, where z; € {0, 1}.
X,’s are i.i.d. B(p) variables, fx(x) = p*[1 —p|'7%, x € {0,1}.
Standard frequentist approach

D= Z T; = argman{

From the central limit theorem
p—p

p
f\/p(l—p

we can derive an approximated 95% confidence interval

1.96
pi—\/p 1-p

£>/\/'((),1) as m — 00
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Bayes vs. Frequentist, inference on heads/tails

Example out of 1,047 contracts, 159 claimed a loss

—— (True) Binomial Distribution
— Poisson Approximation
—— Gaussian Approximation

>
£
=
©
Qo
]
=
o

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Number of Insured Claiming a Loss
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Bayes’s theorem

Consider some hypothesis H and some evidence E, then

Bayes rule,

prior probability P(H )

versus posterior probability after receiving evidence F, Pg(H)

In Bayesian (parametric) statistics, H = {6 € ©} and F = {X = x}.

Bayes’ Theorem,

f(x) [ f(x]|0)m(0)do
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Small Data and Black Swans

Consider sample & = {0,0,0,0,0}.
Here the likelihood is

f(xi0) = 0%[1 — )~
f(x|0) = 6= 1[1 — g1

and we need a priori distribution 7(-) e.g.

a beta distribution

041 —0)°
~ B(a,B)

eoz—l—ach [1 . H]B—I—n—mTl

7 (6)

m(0lz) = Bla+x™l,0+n—aTl)
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On Bayesian Philosophy, Confidence vs. Credibility
for frequentists, a probability is a measure of the the frequency of repeated events

— parameters are fixed (but unknown), and data are random

for Bayesians, a probability is a measure of the degree of certainty about values

— parameters are random and data are fixed

“Bayesians : Given our observed data, there is a 95% probability that the true value of 6

falls within the credible region

vs. Frequentists : There is a 95% probability that when I compute a confidence interval

from data of this sort, the true value of 0 will fall within it.” in Vanderplas (2014)

Example see Jaynes (1976), e.g. the truncated exponential



https://orbi.uliege.be/bitstream/2268/103440/1/PIIS0022030212001075.pdf
https://bayes.wustl.edu/etj/articles/confidence.pdf
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is a 95% confidence interval
of a proportion ? Here * = 159 and n = 1047.

1. draw sets (Z1,:-- ,Z,)x with X; ~ B(Z/n)

2. compute for each set of values confidence

intervals

. determine the fraction of these confidence

interval that contain x

— the parameter is fixed, and we guarantee

that 95% of the confidence intervals will con-

tain it.
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is 95% credible region of a pro-
portion 7 Here * = 159 and n = 1047.

1. draw random parameters p; with from the

posterior distribution, 7(-|x)
2. sample sets (Z1,--- ,Zp)r With X; x ~ B(pg)
3. compute for each set of values means .

4. look at the proportion of those Ty
that are within this credible region
[II-1(.025|x); I~ 1(.975| )]

— the credible region is fixed, and we guarantee
that 95% of possible values of T will fall within it
it.

14
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Occam’s Razor

The “law of parsimony”, “pluralitas non est ponenda sine necessitate”

CORE PRINCIPLES IN RESEARCH

OCCAM'S RAZOR OCCAM'S PROFESSOR

"WHEN FACED WITH TWo POSSELE "WHEN FACED WITH TWO POSSELE WAYS OF
EXPLANATIONS, THE SIMPLER OF DoiNE SOMETHING, THE MORE COMPLICATED
THE TWO 1S THE ONE MOST ONE 1S THE ONE YOUR PROFESSOR WILL
LIKELY TO BE TRUE." MOST LIKELY Ask You TO Do.”

WW PHDCOMICS, COM

Penalize too complex models

¥ ©freakonometrics 15
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James & Stein Estimator

Let X ~ N (u,0%I). We want to estimate pu.

_ — o’
Fmle = Xn ~ N (l’l'a ;H> y

From James & Stein (1961) Estimation with quadratic loss

figs = (1 - (d_Q)UQ)ﬂ

nlyl?

where || - || is the Euclidean norm.

One can prove that if d > 3,
E[(fiys — )] < E[(Bante — 8)]

Samworth (2015) Stein's paradox, “one should use the price of tea in China to

obtain a better estimate of the chance of rain in Melbourne”.



http://www.stat.yale.edu/~hz68/619/Stein-1961.pdf
http://www.statslab.cam.ac.uk/~rjs57/SteinParadox.pdf
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James & Stein Estimator

Heuristics : consider a biased estimator, to decrease the variance.

e L
[GRAND AVERAGE)

CAMPANERIS
RODAIGUER
PETROCELLI
15COTT
WILLIARKMS
UNSEH

N SWD!DDA
KESSINGEHR
SPENCER

BERRY
JOHNSTOME
RCBINSON
CLEMENTE

MLINSLN
SANTO

: l_r_l
COBSERVED
AVERALES

JAMES ETEIN ESTIHATE}HS

See Efron (2010) Large-Scale Inference



http://statweb.stanford.edu/~ckirby/brad/LSI/monograph_All.pdf
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Motivation: Avoiding Overfit

Generalization : the model should perform well on new data (and not only on the

training ones).
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Reducing Dimension with PCA

Use principal components to reduce dimension (on centered and scaled variables):

we want d vectors zq1,---,z4 such that

First Compoment is 21 = Xw; where

wq = argmax { || X - w||”} = argmax {wTXTXw}

lewll=1 lewll=1

Second Compoment is zo = Xwsy where

—~(1
Wy = argmax ||X( ) - wl|?

lewl|=1

1
():X—me]

N——

Z1

with X
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Reducing Dimension with PCA

A regression on (the d) principal components, y = z'3 + 1 could be an
interesting idea, unfortunatley, principal components have no reason to be

correlated with y. First compoment was z1 = Xw; where

wq = argmax { || X - w||”} = argmax {wTXTXw}

Jwll=1 Jewl]=1

It is a non-supervised technique.

Instead, use partial least squares, introduced in Wold (1966) Estimation of
Principal Components and Related Models by lterative Least squares. First

compoment is z1 = Xw; where

wi = argmax {(y, X - w)} = argmax {wTXTnyXw}

Jewll=1 lewl|=1



http://www.citeulike.org/user/konradkryba/article/8609111
http://www.citeulike.org/user/konradkryba/article/8609111
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Terminology

Consider a dataset {y;,x;}, assumed to be generated from Y, X, from an

unknown distribution P.
Let mg(-) be the “true” model. Assume that y; = mg(x;) + €;.

In a regression context (quadratic loss function function), the risk associated to

m 1S

R(m) = Es[(Y —m(X))]

An optimal model m* within a class M satisfies

R(m*) = inf {R(m)}

Such a model m™* is usually called oracle.

Observe that m*(x) = E[Y|X = ] is the solution of

R(m™) = injf\/l {R(m)} where M is the set of measurable functions
me




ARTHUR CHARPENTIER, ADVANCED ECONOMETRICS GRADUATE COURSE

The empirical risk is
mn

For instance, m can be a linear predictor, m(x) = By + '3, where 8 = (8o, B)
should estimated (trained).

E|R,(m)| = E[(Mm(X) —Y)?| can be expressed as

E[(m(X) — E[m(X)|X])?] variance of m

+ E[(E[m(X)|X]—E[Y|X])?] bias of i
mo (X))

+ E[(Y —E[Y|X])?] variance of the noise
N—_——
m()(X)

The third term is the risk of the “optimal” estimator m, that cannot be
decreased.
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Mallows Penalty and Model Complexity
Consider a linear predictor (see #1), i.e. y = m(x) = Ay.
Assume that y = mqg(x) + €, with E[e] = 0 and Var[e| = o°I.

Let || - || denote the Fuclidean norm

Empirical risk : ﬁn(m) = Ly — m(z)

Vapnik’s risk : E[R,(m)] = EHmo(w —m(x)|* + EE(Hy — mo(x||®) with

2
= |

mo(x =E|Y|X = x].
Observe that

nE[R,(m)] = E(lly — m(x)]*) = |1 - A)mo|* + o*|1 - A|?



https://freakonometrics.hypotheses.org/50175
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Mallows Penalty and Model Complexity

One can obtain
2

E[R, ()] = E[R, ()] + Q%trace(A).

If trace(A) > 0 the empirical risk underestimate the true risk of the estimator.

The number of degrees of freedom of the (linear) predictor is related to trace(A)

0.2

2—trace(A) is called Mallow’s penalty C'.
n

If A is a projection matrix, trace(A) is the dimension of the projection space, p,

0.2

then we obtain Mallow’s C'p, 2—np.
n

Remark : Mallows (1973) Some Comments on €, introduced this penalty while

focusing on the R?.



http://www.stat.washington.edu/courses/stat527/s14/readings/technometrics1973.pdf
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Penalty and Likelihood
C'p is associated to a quadratic risk

an alternative is to use a distance on the (conditional) distribution of Y, namely
Kullback-Leibler distance

discrete case: Dk (P||Q) = ZP ) log Z;
(¢

continuous case :
O

Dk, (P||Q) :/_ p(z) log qE ;d:UDKL(PHQ) = p(z)log pgg}g dx

Let f denote the true (unknown) density, and fy some parametric distribution,

Dia(Flfo) = [~ fa)os >daz [ t@oglsta)) do— [ £ 10glfo(a)) d

7

TV
relative information

Hence
minimize { Dxr,(f||fg)} +— maximize {E[log[fg(X)H }
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Penalty and Likelihood

Akaike (1974) A new look at the statistical model identification observe that for n

large enough

AN

E[log[fo(X)]] ~ log[£(6)] — dim(¢)

Thus

AN

AIC = —2log L(0) + 2dim(0)

Example : in a (Gaussian) linear model, y; = Sy + x; 8 + &;

AIC =nlog (Tll Z@) + 2[dim(8) + 2]
i=1



http://link.springer.com/chapter/10.1007%2F978-1-4612-1694-0_16
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Penalty and Likelihood
Remark : this is valid for large sample (rule of thumb n/dim(6) > 40),

otherwise use a corrected AIC

2%k (k + 1)

p—k;—l

7

AlICc = AIC + where k = dim(0)

bias correction

see Sugiura (1978) Further analysis of the data by Akaike's information criterion and

the finite corrections second order AIC.

Using a Bayesian interpretation, Schwarz (1978) Estimating the dimension of a

model obtained

AN

BIC = —2log L(0) + log(n)dim(0).

Observe that the criteria considered is

AN

criteria = —function (E(H)) + penality (Complexity)



http://www.tandfonline.com/doi/abs/10.1080/03610927808827599
http://www.tandfonline.com/doi/abs/10.1080/03610927808827599
https://projecteuclid.org/euclid.aos/1176344136
https://projecteuclid.org/euclid.aos/1176344136
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Estimation of the Risk

Consider a naive bootstrap procedure, based on a bootstrap sample
Sy ={(”z")}.

The plug-in estimator of the empirical risk is

n

1

Ro(m®) = =3 (g — ()’

n -
1=1

and then
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Estimation of the Risk

One might improve this estimate using a out-of-bag procedure

:_Z#B Z — 0 Z))z

beb;

where B; is the set of all boostrap sample that contain (y;, x;).

1 n
Remark: P ((y;, ;) ¢ Sp) = (1 — —) ~e 1 =36,78%.

n
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Linear Regression Shortcoming

Least Squares Estimator 8 = (X' X) !X "y

AN

Unbiased Estimator E[3] = B
Variance Var[8] = 02(X " X) ™!
which can be (extremely) large when det[(X ' X)] ~ 0.

then X' X = while X' X 41 =

eigenvalues : {10,6,0}
Ad-hoc strategy: use X' X + Al
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Linear Regression Shortcoming

Evolution of (81, 82) — Z — (B121,; + Baza)]?
1=1

when cor(Xi, X2) =r € [0, 1], on top.

Below, Ridge regression

(B1, B2) — Z — (B1m14 + Baza)|P+HA(BT + 37)

where \ € [O, oo), below,
when cor(X;, X5) ~ 1 (colinearity).

¥ ©freakonometrics
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Normalization : Euclidean /5 vs. Mahalonobis

We want to penalize complicated models :

if 0. is “too small”, we prefer to have 8, = 0.

[ /
[ [
| |
| |
( \
\ \

\

\
\
|

/

Instead of d(x,y) 3 W X )
N

SN

use ds(x,y) =

|
(| |
\
“\
\
[

-1.0 5 1.0

05 (
\
=
0.0
betal
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Ridge Regression
... like the least square, but it shrinks estimated coeflicients towards 0.

n

p
~ridge .
By =argming > (i —x/B)*+ 1) B
j=1

=1
)
y— X3, + N8I,
S \ﬁ/—/

~—
\ —criteria —=penalty J

~ridge .
B, = argmin < ‘

A

A > 0 is a tuning parameter.

The constant is usually unpenalized. The true equation is
(

By = argmin{ ||y — (8o + XB)|[, + N8|,
N ~ Y N——

=criteria =penalty
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Ridge Regression

~ridge

By = argmin{Hy— (Bo ‘|‘X6)HZ +)‘HBHZ}

can be seen as a constrained optimization problem

~ridge

B, = argmin {Hy—(ﬁ(ﬁ_xﬁ)ui}
IBIIZ, <hA

Explicit solution
By=(XTX + D)Xy

~ridge ~ols
If )\ — O, /BO — ,8

~ridge

fA— o0, B = 0.

oo
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Ridge Regression
This penalty can be seen as rather unfair if compo-

nents of x are not expressed on the same scale

e center: T; =0, then fy =7

e scale: w]T-:Bj =1

Then compute

~ridge .
B, =argmin? |ly — XB|I7, + AIBII%,

A
~~ N——

\ =loss =penalty )
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Ridge Regression

Observe that if ;, L x;,, then

~ridge ~ols

By =[1+X78,

which explain relationship with shrinkage.

But generally, it is not the case...

~ridge ~ols

Theorem There exists A\ such that mse[3, ~ | < mse[S3) ]
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Ridge Regression

p
yi —Bo—x B’ + A 57
j=1

1=1

0LA(B)

— 92X Ty +2(XTX + I
K Y + 2( + A3

9°LA(B)
0898"

where X' X is a semi-positive definite matrix, and Al is a positive definite

= 2(XTX + )

matrix, and

Br=(XTX + X)Xy
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The Bayesian Interpretation

From a Bayesian perspective,

PO|y] «x Ply|8] -P[O] ie. logPB|y] = logP|y|0] + logP|0]
—_—— —— =~ N L2

~~

posterior likelihood prior log likelihood penalty

If B has a prior A (0, 72I) distribution, then its posterior distribution has mean

2 —1
E[8|y, X] = (XTX + O—H) XTy.

72
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Properties of the Ridge Estimator
By=(XTX + ) 'XTy

AN

E[B,]=X"X\+ X'X)"!B.

Le. E[//B\)\] #* B.
Observe that E[gA] — 0 as A — oo.

Assume that X is an orthogonal design matrix, i.e. X TX =1, then

~ ~o0ls

By=01+XN"'8
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Properties of the Ridge Estimator
Set W = (I+ A[X"X]~1)~1. One can prove that

~ /\OIS

Var[8,] = W Var[8 ™ |W

Var[B,] = c2(XTX + AI) ' XTX[(XTX + D).

Observe that

~ols ~

Var[8 | — Var[B,] = o?WL2A(X ' X)) 2+ \3( X" X)W > 0.
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Properties of the Ridge Estimator

Hence, the confidence ellipsoid of ridge estimator is
indeed smaller than the OLS,

If X is an orthogonal design matrix,

Var[B,] = o2(1 + \) 2L

mse[B,] = o2trace(W (X' X)"'"W 1) + 8T (W, — )T (W, — ).

If X is an orthogonal design matrix,

- 2 )\2
mse|3,] = (1]1‘)\)2 + it )\)QﬂTﬂ
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Properties of the Ridge Estimator

~ 0'2
mselB,] = ; =

1+ A)

is minimal for

P A~ /\OIS

Note that there exists A > 0 such that mse|3,] < mse|8,] = mse[8 ].




ARTHUR CHARPENTIER, ADVANCED ECONOMETRICS GRADUATE COURSE

SVD decomposition

For any matrix A, m X n, there are orthogonal matrices U (m x m), V (n x n)
and a "diagonal" matrix ¥ (m x n) such that A =UXVT, or AV =UX.

Hence, there exists a special orthonormal set of vectors (i.e. the columns of V),
that is mapped by the matrix A into an orthonormal set of vectors (i.e. the

columns of U).

Let r = rank(A), then A = Z o;u;v, (called the dyadic decomposition of A).

i=1
Observe that it can be used to compute (e.g.) the Frobenius norm of A,
[All =22 a5 = \Joi + - +oy

min{m,n}"

Further ATA = VXTSVT while AAT = USXTUT.
29

Hence, 0?’s are related to eigenvalues of AT A and AAT, and wu;, v; are associated

eigenvectors.

Golub & Reinsh (1970) Singular Value Decomposition and Least Squares Solutions



http://people.duke.edu/~hpgavin/SystemID/References/Golub+Reinsch-NM-1970.pdf
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SVD decomposition
Consider the singular value decomposition of X, X = U DV’
Then

~ol

3" =V D 2DU y

Br=V (D’ +A)"'DU'y

\

-~

Observe that

D}z
" Di;+A

hence, the ridge penality shrinks singular values.

Set now R =UD (n x n matrix), so that X = RV,

B,=V((R'R+\)"'Ry
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Hat matrix and Degrees of Freedom

Recall that Y = HY with
H — X(X-rx)—lx_r

Similarly

Hy,=XX"X+) X'

p d2

trace| H )] = Z ﬁ — 0, as A — o0.
j=1 7. ™
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Sparsity Issues

In severall applications, k can be (very) large, but a lot of features are just noise:
B; = 0 for many j’s. Let s denote the number of relevent features, with s << k,
cf Hastie, Tibshirani & Wainwright (2015) Statistical Learning with Sparsity,

s = card{S} where & = {j; 3, # 0}

The model is now y = X 5B + €, where X & X s is a full rank matrix.



https://www.crcpress.com/Statistical-Learning-with-Sparsity-The-Lasso-and-Generalizations/Hastie-Tibshirani-Wainwright/9781498712163
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Going further on sparcity issues
The Ridge regression problem was to solve
B= argmin {|Y - X'B[7}
Be{llBlley<s}
Define ||al/s, = > 1(]a;| > 0).

Here dim(8) = k but ||8||¢, = s-
We wish we could solve

B= argmin {||Y - X8|}
BelIBlle=s}

Problem: it is usually not possible to describe all possible constraints, since

(Z) coefficients should be chosen here (with & (very) large).
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Going further on sparcity issues

In a convex problem, solve the dual problem,

e.g. in the Ridge regression : primal problem

min Y — XTB 2
ﬁE{IIBIIeQSS}{H 17, }

and the dual problem

min {11817, }

BE{IlY —XTBle, <t}

48

¥ ©freakonometrics
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Going further on sparcity issues

Idea: solve the dual problem

B=  argmin  {||Blle}

BE{IIY =X B[y <h}

where we might convexify the ¢y norm, || - ||e,-
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Going further on sparcity issues
On [—1,+1]%, the convex hull of ||B||¢, is [|B]|¢,
On [—a, +al”, the convex hull of ||B]|¢, is a™1||8]le,

Hence, why not solve

B = argmin {|Y — X785}
IB;HB”El <s

which is equivalent (Kuhn-Tucker theorem) to the Lagragian optimization

problem

B = argmin{||Y — X B[7,+\| |, }
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LASSO Least Absolute Shrinkage and Selection Operator

B € argmin{||Y — X7 B8(7, 48], }

is a convex problem (several algorithms*), but not strictly convex (no unicity of

the minimum). Nevertheless, predictions y = ZBTE are unique.

* MM, minimize majorization, coordinate descent Hunter & Lange (2003) A
Tutorial on MM Algorithms.



http://sites.stat.psu.edu/~dhunter/papers/mmtutorial.pdf
http://sites.stat.psu.edu/~dhunter/papers/mmtutorial.pdf
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LASSO Regression

No explicit solution...
~lasso ~ols
If )\ — 0, /BO — /B

~lasso

fAN—=o00,8, =0
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LASSO Regression

~lasso

For some A, there are k’s such that 8, , = 0.

~lasso
Further, A — B, , is piecewise linear
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LASSO Regression

In the orthogonal case, X TX = I,

B sign(B2") (|3Z'S\ - —)

i.e. the LASSO estimate is related to the soft

threshold function...
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Optimal LASSO Penalty
Use cross validation, e.g. K-fold,

//B\(—k)()‘) = argmin Z [yi — =] B2+ M|Bl«,

1Z Ly,

then compute the sum of the squared errors,

Qr(A) =

and finally solve

Note that this might overfit, so Hastie, Tibshiriani & Friedman (2009) Elements
of Statistical Learning suggest the largest A such that

Q(N\) < Q(\*) + se[A\*] with se[\ Z Qr (X



http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
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LASSO and Ridge, with R

library (glmnet)

chicago=read.table("http://freakonometrics.free.fr/
chicago.txt" ,header=TRUE, sep=";")

standardize <- function(x) {(x-mean(x))/sd(x)}

z0 <- standardize(chicagol[, 1])

z1 <- standardize(chicagol[, 3])

z2 <- standardize(chicagol[, 4])

ridge <-glmnet(cbind(zl, z2), z0, alpha=0, intercept=
FALSE, lambda=1)

lasso <-glmnet(cbind(zl, z2), z0, alpha=1, intercept=
FALSE, lambda=1)

elastic <-glmnet(cbind(zl, z2), z0, alpha=.5,

intercept=FALSE, lambda=1)

Elastic net, A1]|8||,, + >\2||5H%2
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LASSO Regression, Smoothing and Overfit

LASSO can be used to avoid overfit.
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Going further, /¢y, /1 and /5 penalty
Define

d d d 1/2
lalle, = 3" 1(ai #0). lalle, =3 lai| and |a|eg<2@?> for a € B
1=1 =1 =1

constrained penalized

optimization optimization
)

( n ( n
argmin { > L(y;, fo + & B) ¢ argmin{ Y (yi, fo + 2" B) + B,
BillBlleg<s | j=1 ) BA Li=1 J

( n ( n
argmin < Y l(y;, Bo+x'B) p argmind » L(y;, Bo+a'B) + A|Blle,
,83||,8||£1§5 Li=1 B,A

/ \’I',Zl
4

argmin < Z€<yi7 Bo + fBTﬁ) argmin < Zg(yz’: Bo + iBTB) T )\HIBHEQ

IB;HIBHEQSS Li=1 ) B,A Li=1

S

Z
5

Vs

Assume that ¢ is the quadratic norm.
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Going further, ¢y, /1 and /5 penalty

The two problems (£2) are equivalent : V(8*, s*) solution of the left problem, I\*
such that (8%, \*) is solution of the right problem. And conversely.

The two problems (¢1) are equivalent : V(8, s*) solution of the left problem, I\*
such that (8%, \*) is solution of the right problem. And conversely. Nevertheless,
if there is a theoretical equivalence, there might be numerical issues since there is
not necessarily unicity of the solution.

The two problems (£0) are not equivalent : if (8%, \*) is solution of the right
problem, Js* such that 8” is a solution of the left problem. But the converse is

not true.
More generally, consider a ¢, norm,
e sparsity is obtained when p <1

e convexity is obtained when p > 1
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Going further, 7y, /1 and /5 penalty

Foster& George (1994) the risk inflation criterion for multiple regression tried to

solve directly the penalized problem of (£0).

But it is a complex combinatorial problem in high dimension (Natarajan (1995)
sparse approximate solutions to linear systems proved that it was a NP-hard

problem)

One can prove that if A\ ~ o2 log(p), alors

E([z78 —2"B,)%) < E(fes"Bs — 2" Bo]*) -(4logp +2 +o(1)).

7

—02#S

In that case

~sub 0 Sij ¢ S)\(,B)
N,j — ~ols

,Bj sl g € SA(,B),

where Sy (8) is the set of non-null values in solutions of (£0).



https://projecteuclid.org/euclid.aos/1176325766
https://pdfs.semanticscholar.org/f629/5fd69d76d606f66cc15f58767a8161d60335.pdf
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If ¢ is no longer the quadratic norm but ¢1, problem (¢1) is not alway strictly
convex, and optimum is not always unique (e.g. if X "X is singular).

But in the quadratic case, ¢ is strictly convex, and at least X 3 is unique.

Further, note that solutions are necessarily coherent (signs of coefficients) : it is

not possible to have B\j < 0 for one solution and B\j > (O for another one.

In many cases, problem (1) yields a corner-type solution, which can be seen as a
"best subset" solution - like in (£0).

Y
/]
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Going further, /¢y, /1 and /5 penalty

Consider a simple regression y; = x; 8 + ¢, with £;-penality and a #5-loss fuction.
(1) becomes

min {yTy —2y'xB + Bx'xp + 2)\‘5‘}

First order condition can be written

—y'x + ZwTwEiD\ = 0.

(the sign in + being the sign of E) Assume that least-square estimate (A = 0) is

(strictely) positive, i.e. yTa > 0. If X is not too large 3 and B\O'S have the same
sign, and
—2y'x 42z Tz + 2\ =0.

with solution

Dlasso
X —
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Going further, /y, /1 and /5 penalty
Increase A so that B\ x = 0.

Increase slightly more, B\ A cannot become negative, because the sign of the first

order condition will change, and we should solve
—2y'x + ZwT:cB\ — 22 =0.

T+ )\
and solution would be B'fsso _yxT

—— But that solution is positive (we
'z

assumed that y'x > 0), to we should have B A < 0.

Thus, at some point B\ » = 0, which is a corner solution.

In higher dimension, see Tibshirani & Wasserman (2016) a closer look at sparse
regression or Candes & Plan (2009) Near-ideal model selection by /1 minimization.,

With some additional technical assumption, that LASSO estimator is
~lasso

"sparsistent” in the sense that the support of 3,  is the same as S,

Thus, LASSO can be used for variable selection (see Hastie et al. (2001) The

¥ Ofreakonometrics 63


http://bit.ly/2FrGQ32
http://bit.ly/2FrGQ32
https://arxiv.org/pdf/0801.0345.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Elements of Statistical Learning).
Generally, /\lfsso is a biased estimator but its variance can be small enough to
have a smaller least squared error than the OLS estimate.

With orthonormal covariance, one can prove that

ﬁ;?ls

Mlasso . 7ols 7ols
14+ )\ et 5)\,j — Slgne[ﬁjl ] ) (‘le | _ >‘)—|-

2sub ol orid
sub — folsq Bridee —

I >0



https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Optimization Heuristics

First idea: given some initial guess By, 8| ~ |B(0)| + (5 5(0))

2\[3( )|
LASSO estimate can probably be derived from iterated Ridge estimates

]2

A 1
ly = XBesn 7, + MBerrylle ~ XBeyllz, +5 D B0l By, (k1)
) J>

which is a weighted ridge penalty function

Thus,
—1
By = (X' X +2An) X'y

~lasso

where Ay = diag[|B; x)|™']. Then By — B, as k — oo.
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Properties of LASSO Estimate
From this iterative technique

~lasso

By ~(XTX+2a) Xy

~lasso

~lasso
where A = diag[|8,, |7']if B, # 0, 0 otherwise.

Thus,

~lasso

EB, |~ (XTX+2A)'XTXp3

and
~lasso

Var[B, |~o?(XTX+2A) X'XTX(XTX +2A) X'
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Optimization Heuristics

1
Consider here a simplified problem, miﬁ{ 5(@ —b)* + Aa| } with A > 0.
ac

7

Ve

g(a)
Observe that ¢’(0) = —b + A. Then

o if |b| < A, then a* =0

o ifb> )\, thena*=0b0— )\ /

o ifb< —\ thena* =0+ A\

1
o = argmin{i(a b2 4 )\\a|} — S\ (b) = sign(b) - (|b] — A),
a€ER

also called soft-thresholding operator.
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Optimization Heuristics

Definition for any convex function h, define the proximal operator operator of h,

1
proximal, (y) = argmin{§||a: —yll7, + h(a:)}

xrcR4

Note that

1
proxilr]aal)\H.H?2 (y) = T )\a: shrinkage operator

proximaly ., (¥) = Sx(y) = sign(y) - (ly| — M)+
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Optimization Heuristics

We want to solve here

~ 1
0 c argmin{ —|ly — meg(x))||7, + X - penalty(6) }
ocre L L ~
9(0)

£(0)
where f is convex and smooth, and ¢ is convex, but not smooth...

1. Focus on f : descent lemma, V@, 6’
t
f(0) < f(6') +(VF(6),0 —6") + ]| — ',

Consider a gradient descent sequence 0y, i.e. Q11 = 0 — t_1Vf(0k), then

©(0): 0r1=argmin{yp(0)}

N\

£(8) < F(81) + (VF(61).0 — 0) + . 16— 64,
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Optimization Heuristics

2. Add function g

¥(0)

~

§ t
F(0)+9(0) < f(Or) + (V[(0k), 0 —Ox) + 0 — 0kllZ,+9(0)
And one can proof that

011 = argmin{w(ﬁ)} = proximal (Hk - t_1Vf(0k))
OcR4

so called proximal gradient descent algorithm, since

2

Lt 9(9)}

argmin {¢(0)} = argmin {%HO — (0x — t—1Vf(9k:))
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Coordinate-wise minimization
Consider some convex differentiable f : R* — R function.

Consider £* € R* obtained by minimizing along each coordinate axis, i.e.

f(x){ax;—laxivx:—i—b T 7567]::) > f(xi(aaj:—lvx:vx;—i—b T 737;;)

for all 7. Is & a global minimizer? i.e.
f(x) > f(@*), Vo € RF.
Yes. If f is convex and differentiable.

o) . o)) g

(9:13k;

Vi), = ( o

There might be problem if f is not differentiable (except in each axis direction).

If f(x)=g(x)+ Zle h;(x;) with g convex and differentiable, yes, since
flz) = f(z*) > Vg(z*)" (z —a*) + Z[hz‘(ﬂfz‘) — hi(z7)]
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Coordinate-wise minimization

f () >Z i9(

Thus, for functions f(x) = g(x) + Zle h;(z;) we can use coordinate descent to

find a minimizer, i.e. at step j

— i—1 i—1
(J) (4 ) éj )’_”x](g ))

€ argminf(x1, x5
X1

(.7) (4) (1—-1) l’;ij_l))

€ argminf(xy’, x2,xy 7,
2

(J) (7) ..(7) . -:c,gj_l))

€ argminf(zy’, 3", T3,
3

Tseng (2001) Convergence of Block Coordinate Descent Method: if f is continuous,

then x°° is a minimizer of f.



http://www.mit.edu/~dimitrib/PTseng/papers/archive/bcr_jota.pdf
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Application in Linear Regression

Let f(x) = %Hy — Azx||?, with y € R” and A € M, «x;. Let A =[Aq, -, Ag].

Let us minimize in direction i. Let &_; denote the vector in R*~! without z;.

Here
0= 6’g(w) = AZ-T [Ax — y] = AiT Az, + A_jx_; — y
Xy

thus, the optimal value is here

. A[Az —y
A A,

1
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Application to LASSO

Let f(x) = 3|y — Az||®> + A||z||s,, so that the non-differentiable part is
. k

separable, since ||z|l,, =D . |%il.

Let us minimize in direction i. Let &_; denote the vector in R*~! without z;.

Here

0= agg(j ) = A;F[Aﬂ?@ + A_Z-ac_z- — y] + >\Sz

where s; € d|z;|. Thus, solution is obtained by soft-thresholding

* A;r [A—im—i — y]
T3 = On/) Al ( A
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Convergence rate for LASSO
Let f(x) = g(x) + A||x||,, with

e g convex, Vg Lipschitz with constant L > 0, and Id — Vg/L monotone
inscreasing in each component

e there exists z such that, componentwise, either z > S)(z — Vg(z)) or
z < Sx(z — Vy(2))

Saka & Tewari (2010), On the finite time convergence of cyclic coordinate descent

methods proved that a coordinate descent starting from z satisfies

L||z — z*|*
<

f@P) - f(z*) <

27



https://arxiv.org/abs/1005.2146
https://arxiv.org/abs/1005.2146
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Lasso for Autoregressive Time Series

Consider some AR(p) autoregressive time series,
Xe =01 X4 1+ P2 Xy o+ -+ Op_1 Xe—pr1 + OpXi—p + €4,

for some white noise (g;), with a causal type representation. Write y = &' ¢ + «.

The LASSO estimator 25 is a minimizer of

1 p
Ay =Tl + 2 Nilenl
=1

for some tuning parameters (A, A1, -+, Ap).

See Nardi & Rinaldo (2011).



https://www.sciencedirect.com/science/article/pii/S0047259X10002186
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Graphical Lasso and Covariance Estimation

We want to estimate an (unknown) covariance matrix 3, or 271

An estimate for 7! is ®* solution of

X'X
© € argmin {—log[det(®)] + trace[SO] + \||O]|¢,} where S =
OcMipxk n

and where ||®|,, = > [0, |

See van Wieringen (2016) Undirected network reconstruction from high-dimensional

data and https://github.com /kaizhang/glasso



http://www.few.vu.nl/~wvanwie/Courses/HighdimensionalDataAnalysis/WNvanWieringen_HDDA_Lecture6_PenalizedCovarianceEstimation_20162017.pdf
http://www.few.vu.nl/~wvanwie/Courses/HighdimensionalDataAnalysis/WNvanWieringen_HDDA_Lecture6_PenalizedCovarianceEstimation_20162017.pdf
https://github.com/kaizhang/glasso
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Application to Network Simplification

Can be applied on networks, to spot ‘significant’
connexions...
Source: http://khughitt.github.io/graphical-lasso/

R
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http://khughitt.github.io/slidify-graphical-lasso/
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Extention of Penalization Techniques

In a more general context, we want to solve

. 1 —
0 1 —_ ,g ?:7 'L )\' lt 0
€ argmin - E (yi,me(x;)) + A - penalty(0)

OcR? i=1

The quadratic loss function was related to the Gaussian case, but much more

alternatives can be considered...
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Linear models, nonlinear modes and GLMs

linear model

e (Y|X =x)~N(0gz,0°)

e EY| X =x|=0,=x'p

1 > fit <- 1m(y ~ x, data = df)
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Linear models, nonlinear modes and GLMs

Nonlinear models

o YV|X =x) ~N(0y,0?)

e EY|X =x| =0, =m(x)

1 > fit <- 1Im(y ~ poly(x, k), data = df)
2 > fit <- 1Im(y ~ bs(x), data = df)
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Linear models, nonlinear modes and GLMs

Generalized Linear Models

o Y[X =)~ L(bz,9)

o EY|X =z =h"'(0,) = h 1 (z"B)

1 > fit <- glm(y ~ x, data = df,

2 + family = poisson(link = "log")
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The exponential Family

Consider distributions with parameter 6 (and ¢) with density (with respect to

the appropriate measure, on N or on R)

0 — b(6)
a(p)

where a(-), b(:) and ¢(-) are functions, where 6 is called canonical paramer.

+ c(y, 90)),

f(yl0, ) = exp (y

0 is the quantity of interest, while ¢ is a nuisance parameter.




ARTHUR CHARPENTIER, ADVANCED ECONOMETRICS GRADUATE COURSE

The Exponential Family

Example The Gaussian distribution with mean g and variance 0%, N'(u, 0?)
belongs to that family 0 = u, ¢ = 02, a(p) = ¢, b(0) = 6?/2 and

1

2
Y
c(y, ) = 5 (; + 10%(27702)> , ¥y ER,

Example Bernoulli distribution, with mean 7, B(m) is obtained with

0 =log{p/(1 —p)}, alp) =1, b(0) = log(1 +exp(#)), ¢ = 1 and c(y, p) = 0.
Example The binomiale distribution with mean nm, B(n, ) is obtained with
9 = log{p/(1 - p)}, alg) = 1, b(8) = nlog(1 + exp(0)), ¢ = 1 and

c(y, ¢) = log (Z)

Example The Poisson distribution with mean A, P(\) belongs to that family

)\y
fylA) = eXp(—A)? = exp (y log A — A\ — logy!), y € N,

with 0 =log A\, p =1, a(p) =1, b(f) = expf = X and c(y, p) = — logy!.
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The Exponential Family

Example La loi Negative Binomiale distribution with parameters r and p,

F(kfr,p) (y e 1)(1 _ )Y, yeN.

can be written, equivalently

+r—1
f(k|r,p) = exp (ylogp+ rlog(1l — p) + log (y ; ))

i.e. 6 =logp, b(0) = —rlogp and a(p) =1
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The Exponential Family

Example The Gamma distribution, with mean p and variance v—1,

1% o 1%
flylp,v) = — " exp (—;y> , yeRy,

(v) \u

1
is also in the Exponential family 6 = ——, a(p) = ¢, b(9)
v

c(y, ) = (é —~ 1) log(y) — log (r (&

and
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Mean and Variance

Let Y be a random variable in the Exponential family
b'(#) and Var(Y) = b"(0)p,
i.e. the variance of Y is the product of two quantities

e 0"(0) is a function 6 (only) and is called the variance function,

e a function of .

Observe that u = E(Y'), hence parameter 6 is related to mean u. Hence, the

variance function is function of i , and can be denote

V) =0"([']7H ().

Example In the Gaussian case, V(i) = 1, while for the Poisson distribution,

V() = p and for the Gamma one V() = p?.
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From the Exponential Family to GLMs
Consider independent random variables Y7, Ys,...,Y,, suchthat

yit; — b(0;)
a(p)

f(yil0;, 0) = exp {

+ C(:yia 90)}
so that the likelihood can be written

" {2?1 yifi — S0, b(6;)

L0, ¢ly) = || f(yil6i,0) = exp

1=1

g £(8) = 3 U0

(up to an additive constant...)
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