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“Great plot.
Now need to find the theory that explains it”

Deville (2017) http://twitter.com
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Preliminary Results: Numerical Optimization

Problem : x? ∈ argmin{f(x); x ∈ Rd}

Gradient descent : xk+1 = xk − η∇f(xk) starting from some x0

Problem : x? ∈ argmin{f(x); x ∈ X ⊂ Rd}

Projected descent : xk+1 = ΠX
(
xk − η∇f(xk)

)
starting from some x0

A constrained problem is said to be convex if
min{f(x)} with f convex
s.t. gi(x) = 0, ∀i = 1, · · · , n with gi linear

hi(x) ≤ 0, ∀i = 1, · · · ,m with hi convex

Lagrangian : L(x,λ,µ) = f(x) +
n∑
i=1

λigi(x) +
m∑
i=1

µihi(x) where x are primal

variables and (λ,µ) are dual variables.

Remark L is an affine function in (λ,µ)
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Preliminary Results: Numerical Optimization

Karush–Kuhn–Tucker conditions : a convex problem has a solution x? if and
only if there are (λ?,µ?) such that the following condition hold

• stationarity : ∇xL(x,λ,µ) = 0 at (x?,λ?,µ?)

• primal admissibility : gi(x?) = 0 and hi(x?) ≤ 0, ∀i

• dual admissibility : µ? ≥ 0

Let L denote the associated dual function L(λ,µ) = min
x
{L(x,λ,µ)}

L is a convex function in (λ,µ) and the dual problem is max
λ,µ
{L(λ,µ)}.
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Preambule

Assume that y = m(x) + ε, where ε is some idosyncatic impredictible noise.

The error E[(y −m(x))2] is the sum of three terms

• variance of the estimator : E[(y − m̂(x))2]

• bias2 of the estimator : [m(x)− m̂(x)]2

• variance of the noise : E[(y −m(x))2]

(the latter exists, even with a ‘perfect’ model).
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Preambule

Consider a parametric model, with true (unkown) parameter θ, then

mse(θ̂) = E
[
(θ̂ − θ)2

]
= E

[
(θ̂ − E

[
θ̂
]
)2
]

︸ ︷︷ ︸
variance

+E
[
(E
[
θ̂
]
− θ)2

]
︸ ︷︷ ︸

bias2

Let θ̃ denote an unbiased estimator of θ. Then

θ̂ = θ2

θ2 + mse(θ̃)
· θ̃ = θ̃ − mse(θ̃)

θ2 + mse(θ̃)
· θ̃︸ ︷︷ ︸

penalty

satisfies mse(θ̂) ≤ mse(θ̃).

@freakonometrics 7



Arthur CHARPENTIER, Advanced Econometrics Graduate Course

Bayes vs. Frequentist, inference on heads/tails

Consider some Bernoulli sample x = {x1, x2, · · · , xn}, where xi ∈ {0, 1}.

Xi’s are i.i.d. B(p) variables, fX(x) = px[1− p]1−x, x ∈ {0, 1}.

Standard frequentist approach

p̂ = 1
n

n∑
i=1

xi = argman
{ n∏
i=1

fX(xi)︸ ︷︷ ︸
L(p;x)

}

From the central limit theorem
√
n

p̂− p√
p(1− p)

L→ N (0, 1) as n→∞

we can derive an approximated 95% confidence interval[
p̂± 1.96√

n

√
p̂(1− p̂)

]
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Bayes vs. Frequentist, inference on heads/tails

Example out of 1,047 contracts, 159 claimed a loss

Number of Insured Claiming a Loss
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Bayes’s theorem

Consider some hypothesis H and some evidence E, then

PE(H) = P(H|E) = P(H ∩ E)
P(E) = P(H) · P(E|H)

P(E)

Bayes rule, prior probability P(H)
versus posterior probability after receiving evidence E, PE(H) = P(H|E).

In Bayesian (parametric) statistics, H = {θ ∈ Θ} and E = {X = x}.

Bayes’ Theorem,

π(θ|x) = π(θ) · f(x|θ)
f(x) = π(θ) · f(x|θ)∫

f(x|θ)π(θ)dθ
∝ π(θ) · f(x|θ)
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Small Data and Black Swans

Consider sample x = {0, 0, 0, 0, 0}.
Here the likelihood is f(xi|θ) = θxi [1− θ]1−xi

f(x|θ) = θx
T1[1− θ]n−xT1

and we need a priori distribution π(·) e.g.
a beta distribution

π(θ) = θα[1− θ]β

B(α, β)

π(θ|x) = θα+xT1[1− θ]β+n−xT1

B(α+ xT1, β + n− xT1)
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On Bayesian Philosophy, Confidence vs. Credibility

for frequentists, a probability is a measure of the the frequency of repeated events

→ parameters are fixed (but unknown), and data are random

for Bayesians, a probability is a measure of the degree of certainty about values

→ parameters are random and data are fixed

“Bayesians : Given our observed data, there is a 95% probability that the true value of θ
falls within the credible region

vs. Frequentists : There is a 95% probability that when I compute a confidence interval
from data of this sort, the true value of θ will fall within it.” in Vanderplas (2014)

Example see Jaynes (1976), e.g. the truncated exponential
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is a 95% confidence interval
of a proportion ? Here x = 159 and n = 1047.

1. draw sets (x̃1, · · · , x̃n)k with Xi ∼ B(x/n)

2. compute for each set of values confidence
intervals

3. determine the fraction of these confidence
interval that contain x

→ the parameter is fixed, and we guarantee
that 95% of the confidence intervals will con-
tain it. ●
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On Bayesian Philosophy, Confidence vs. Credibility
Example What is 95% credible region of a pro-
portion ? Here x = 159 and n = 1047.

1. draw random parameters pk with from the
posterior distribution, π(·|x)

2. sample sets (x̃1, · · · , x̃n)k with Xi,k ∼ B(pk)

3. compute for each set of values means xk

4. look at the proportion of those xk

that are within this credible region
[Π−1(.025|x); Π−1(.975|x)]

→ the credible region is fixed, and we guarantee
that 95% of possible values of x will fall within it
it.
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Occam’s Razor

The “law of parsimony”, “pluralitas non est ponenda sine necessitate”

Penalize too complex models
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James & Stein Estimator

Let X ∼ N (µ, σ2I). We want to estimate µ.

µ̂mle = Xn ∼ N
(
µ,
σ2

n
I
)
.

From James & Stein (1961) Estimation with quadratic loss

µ̂JS =
(

1− (d− 2)σ2

n‖y‖2

)
y

where ‖ · ‖ is the Euclidean norm.

One can prove that if d ≥ 3,

E
[(
µ̂JS − µ̂

)2]
< E

[(
µ̂mle − µ̂

)2]
Samworth (2015) Stein’s paradox, “one should use the price of tea in China to
obtain a better estimate of the chance of rain in Melbourne”.
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James & Stein Estimator

Heuristics : consider a biased estimator, to decrease the variance.

See Efron (2010) Large-Scale Inference

@freakonometrics 17
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Motivation: Avoiding Overfit

Generalization : the model should perform well on new data (and not only on the
training ones).
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Reducing Dimension with PCA

Use principal components to reduce dimension (on centered and scaled variables):
we want d vectors z1, · · · , zd such that

First Compoment is z1 = Xω1 where

ω1 = argmax
‖ω‖=1

{
‖X · ω‖2} = argmax

‖ω‖=1

{
ωTXTXω

}
Second Compoment is z2 = Xω2 where

ω2 = argmax
‖ω‖=1

{
‖X̃

(1)
· ω‖2

}
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Reducing Dimension with PCA

A regression on (the d) principal components, y = zTβ + η could be an
interesting idea, unfortunatley, principal components have no reason to be
correlated with y. First compoment was z1 = Xω1 where

ω1 = argmax
‖ω‖=1

{
‖X · ω‖2} = argmax

‖ω‖=1

{
ωTXTXω

}
It is a non-supervised technique.

Instead, use partial least squares, introduced in Wold (1966) Estimation of
Principal Components and Related Models by Iterative Least squares. First
compoment is z1 = Xω1 where

ω1 = argmax
‖ω‖=1

{〈y,X · ω〉} = argmax
‖ω‖=1

{
ωTXTyyTXω

}
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Terminology

Consider a dataset {yi,xi}, assumed to be generated from Y,X, from an
unknown distribution P.

Let m0(·) be the “true” model. Assume that yi = m0(xi) + εi.

In a regression context (quadratic loss function function), the risk associated to
m is

R(m) = EP
[(
Y −m(X)

)2]
An optimal model m? within a classM satisfies

R(m?) = inf
m∈M

{
R(m)

}
Such a model m? is usually called oracle.

Observe that m?(x) = E[Y |X = x] is the solution of

R(m?) = inf
m∈M

{
R(m)

}
whereM is the set of measurable functions
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The empirical risk is

Rn(m) = 1
n

n∑
i=1

(
yi −m(xi)

)2

For instance, m can be a linear predictor, m(x) = β0 + xTβ, where θ = (β0,β)
should estimated (trained).

E
[
Rn(m̂)

]
= E

[
(m̂(X)− Y )2] can be expressed as

E
[
(m̂(X)− E[m̂(X)|X])2] variance of m̂

+ E
[(
E[m̂(X)|X]− E[Y |X]︸ ︷︷ ︸

m0(X)

)2] bias of m̂

+ E
[(
Y − E[Y |X]︸ ︷︷ ︸

m0(X)

)2] variance of the noise

The third term is the risk of the “optimal” estimator m, that cannot be
decreased.
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Mallows Penalty and Model Complexity

Consider a linear predictor (see #1), i.e. ŷ = m̂(x) = Ay.

Assume that y = m0(x) + ε, with E[ε] = 0 and Var[ε] = σ2I.

Let ‖ · ‖ denote the Euclidean norm

Empirical risk : R̂n(m) = 1
n‖y −m(x)‖2

Vapnik’s risk : E[R̂n(m)] = 1
n
‖m0(x−m(x)‖2 + 1

n
E
(
‖y −m0(x‖2) with

m0(x = E[Y |X = x].

Observe that

nE
[
R̂n(m̂)

]
= E

(
‖y − m̂(x)‖2) = ‖(I−A)m0‖2 + σ2‖I−A‖2

while
= E

(
‖m0(x)− m̂(x)‖2) = ‖(I−A)m0‖︸ ︷︷ ︸

bias

2 + σ2‖A‖2︸ ︷︷ ︸
variance

@freakonometrics 23
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Mallows Penalty and Model Complexity

One can obtain
E
[
Rn(m̂)

]
= E

[
R̂n(m̂)

]
+ 2σ

2

n
trace(A).

If trace(A) ≥ 0 the empirical risk underestimate the true risk of the estimator.

The number of degrees of freedom of the (linear) predictor is related to trace(A)

2σ
2

n
trace(A) is called Mallow’s penalty CL.

If A is a projection matrix, trace(A) is the dimension of the projection space, p,

then we obtain Mallow’s CP , 2σ
2

n
p.

Remark : Mallows (1973) Some Comments on Cp introduced this penalty while
focusing on the R2.
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Penalty and Likelihood

CP is associated to a quadratic risk

an alternative is to use a distance on the (conditional) distribution of Y , namely
Kullback-Leibler distance

discrete case: DKL(P‖Q) =
∑
i

P (i) log P (i)
Q(i)

continuous case :
DKL(P‖Q) =

∫ ∞
−∞

p(x) log p(x)
q(x) dxDKL(P‖Q) =

∫∞
−∞ p(x) log p(x)

q(x) dx

Let f denote the true (unknown) density, and fθ some parametric distribution,

DKL(f‖fθ) =
∫ ∞
−∞

f(x) log f(x)
fθ(x) dx=

∫
f(x) log[f(x)] dx−

∫
f(x) log[fθ(x)] dx︸ ︷︷ ︸

relative information

Hence
minimize {DKL(f‖fθ)} ←→ maximize

{
E
[

log[fθ(X)]
]}
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Penalty and Likelihood

Akaike (1974) A new look at the statistical model identification observe that for n
large enough

E
[

log[fθ(X)]
]
∼ log[L(θ̂)]− dim(θ)

Thus
AIC = −2 logL(θ̂) + 2dim(θ)

Example : in a (Gaussian) linear model, yi = β0 + xT
i β + εi

AIC = n log
(

1
n

n∑
i=1

ε̂i

)
+ 2[dim(β) + 2]

@freakonometrics 26
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Penalty and Likelihood

Remark : this is valid for large sample (rule of thumb n/dim(θ) > 40),
otherwise use a corrected AIC

AICc = AIC + 2k(k + 1)
n− k − 1︸ ︷︷ ︸

bias correction

where k = dim(θ)

see Sugiura (1978) Further analysis of the data by Akaike’s information criterion and
the finite corrections second order AIC.

Using a Bayesian interpretation, Schwarz (1978) Estimating the dimension of a
model obtained

BIC = −2 logL(θ̂) + log(n)dim(θ).

Observe that the criteria considered is

criteria = −function
(
L(θ̂)

)
+ penality

(
complexity

)
@freakonometrics 27
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Estimation of the Risk

Consider a naive bootstrap procedure, based on a bootstrap sample
Sb = {(y(b)

i ,x
(b)
i )}.

The plug-in estimator of the empirical risk is

R̂n(m̂(b)) = 1
n

n∑
i=1

(
yi − m̂(b)(xi)

)2

and then

R̂n = 1
B

B∑
b=1
R̂n(m̂(b)) = 1

B

B∑
b=1

1
n

n∑
i=1

(
yi − m̂(b)(xi)

)2
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Estimation of the Risk

One might improve this estimate using a out-of-bag procedure

R̂n = 1
n

n∑
i=1

1
#Bi

∑
b∈Bi

(
yi − m̂(b)(xi)

)2

where Bi is the set of all boostrap sample that contain (yi,xi).

Remark: P ((yi,xi) /∈ Sb) =
(

1− 1
n

)n
∼ e−1 = 36, 78%.
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Linear Regression Shortcoming

Least Squares Estimator β̂ = (XTX)−1XTy

Unbiased Estimator E[β̂] = β

Variance Var[β̂] = σ2(XTX)−1

which can be (extremely) large when det[(XTX)] ∼ 0.

X =


1 −1 2
1 0 1
1 2 −1
1 1 0

 then XTX =


4 2 2
2 6 −4
2 −4 6

 while XTX+I =


5 2 2
2 7 −4
2 −4 7



eigenvalues : {10, 6, 0} {11, 7, 1}

Ad-hoc strategy: use XTX + λI
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Linear Regression Shortcoming

Evolution of (β1, β2) 7→
n∑
i=1

[yi − (β1x1,i + β2x2,i)]2

when cor(X1, X2) = r ∈ [0, 1], on top.
Below, Ridge regression

(β1, β2) 7→
n∑
i=1

[yi − (β1x1,i + β2x2,i)]2+λ(β2
1 + β2

2)

where λ ∈ [0,∞), below,
when cor(X1, X2) ∼ 1 (colinearity).
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Normalization : Euclidean `2 vs. Mahalonobis
We want to penalize complicated models :
if βk is “too small”, we prefer to have βk = 0.
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Instead of d(x,y) = (x− y)T(x− y)

use dΣ(x,y) =
√

(x− y)TΣ−1(x− y)
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Ridge Regression

... like the least square, but it shrinks estimated coefficients towards 0.

β̂
ridge
λ = argmin


n∑
i=1

(yi − xT
i β)2 + λ

p∑
j=1

β2
j


β̂

ridge
λ = argmin

∥∥y −Xβ∥∥2
`2︸ ︷︷ ︸

=criteria

+ λ‖β‖2
`2︸ ︷︷ ︸

=penalty


λ ≥ 0 is a tuning parameter.

The constant is usually unpenalized. The true equation is

β̂
ridge
λ = argmin


∥∥y − (β0 +Xβ)

∥∥2
`2︸ ︷︷ ︸

=criteria

+ λ
∥∥β∥∥2

`2︸ ︷︷ ︸
=penalty
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Ridge Regression

β̂
ridge
λ = argmin

{∥∥y − (β0 +Xβ)
∥∥2
`2

+ λ
∥∥β∥∥2

`2

}
can be seen as a constrained optimization problem

β̂
ridge
λ = argmin

‖β‖2
`2
≤hλ

{∥∥y − (β0 +Xβ)
∥∥2
`2

}
Explicit solution

β̂λ = (XTX + λI)−1XTy

If λ→ 0, β̂
ridge
0 = β̂

ols

If λ→∞, β̂
ridge
∞ = 0.
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Ridge Regression
This penalty can be seen as rather unfair if compo-
nents of x are not expressed on the same scale

• center: xj = 0, then β̂0 = y

• scale: xT
j xj = 1

Then compute

β̂
ridge
λ = argmin

‖y −Xβ‖2
`2︸ ︷︷ ︸

=loss

+ λ‖β‖2
`2︸ ︷︷ ︸

=penalty
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Ridge Regression

Observe that if xj1 ⊥ xj2 , then

β̂
ridge
λ = [1 + λ]−1β̂

ols
λ

which explain relationship with shrinkage.
But generally, it is not the case...

●

●

Theorem There exists λ such that mse[β̂
ridge
λ ] ≤ mse[β̂

ols
λ ]
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Ridge Regression

Lλ(β) =
n∑
i=1

(yi − β0 − xT
i β)2 + λ

p∑
j=1

β2
j

∂Lλ(β)
∂β

= −2XTy + 2(XTX + λI)β

∂2Lλ(β)
∂β∂βT = 2(XTX + λI)

where XTX is a semi-positive definite matrix, and λI is a positive definite
matrix, and

β̂λ = (XTX + λI)−1XTy
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The Bayesian Interpretation

From a Bayesian perspective,

P[θ|y]︸ ︷︷ ︸
posterior

∝ P[y|θ]︸ ︷︷ ︸
likelihood

· P[θ]︸︷︷︸
prior

i.e. logP[θ|y] = logP[y|θ]︸ ︷︷ ︸
log likelihood

+ logP[θ]︸ ︷︷ ︸
penalty

If β has a prior N (0, τ2I) distribution, then its posterior distribution has mean

E[β|y,X] =
(
XTX + σ2

τ2 I
)−1

XTy.
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Properties of the Ridge Estimator

β̂λ = (XTX + λI)−1XTy

E[β̂λ] = XTX(λI +XTX)−1β.

i.e. E[β̂λ] 6= β.

Observe that E[β̂λ]→ 0 as λ→∞.

Assume that X is an orthogonal design matrix, i.e. XTX = I, then

β̂λ = (1 + λ)−1β̂
ols
.
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Properties of the Ridge Estimator

Set W λ = (I + λ[XTX]−1)−1. One can prove that

W λβ̂
ols

= β̂λ.

Thus,
Var[β̂λ] = W λVar[β̂

ols
]W T

λ

and
Var[β̂λ] = σ2(XTX + λI)−1XTX[(XTX + λI)−1]T.

Observe that

Var[β̂
ols

]−Var[β̂λ] = σ2W λ[2λ(XTX)−2 + λ2(XTX)−3]W T
λ ≥ 0.
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Properties of the Ridge Estimator

Hence, the confidence ellipsoid of ridge estimator is
indeed smaller than the OLS,
If X is an orthogonal design matrix,

Var[β̂λ] = σ2(1 + λ)−2I.

mse[β̂λ] = σ2trace(W λ(XTX)−1W T
λ) + βT(W λ − I)T(W λ − I)β.

If X is an orthogonal design matrix,

mse[β̂λ] = pσ2

(1 + λ)2 + λ2

(1 + λ)2β
Tβ
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Properties of the Ridge Estimator

mse[β̂λ] = pσ2

(1 + λ)2 + λ2

(1 + λ)2β
Tβ

is minimal for
λ? = pσ2

βTβ

Note that there exists λ > 0 such that mse[β̂λ] < mse[β̂0] = mse[β̂
ols

].
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SVD decomposition

For any matrix A, m× n, there are orthogonal matrices U (m×m), V (n× n)
and a "diagonal" matrix Σ (m× n) such that A = UΣV T, or AV = UΣ.

Hence, there exists a special orthonormal set of vectors (i.e. the columns of V ),
that is mapped by the matrix A into an orthonormal set of vectors (i.e. the
columns of U).

Let r = rank(A), then A =
r∑
i=1

σiuiv
T
i (called the dyadic decomposition of A).

Observe that it can be used to compute (e.g.) the Frobenius norm of A,
‖A‖ =

∑
a2
i,j =

√
σ2

1 + · · ·+ σ2
min{m,n}.

Further ATA = V ΣTΣV T while AAT = UΣΣTUT.

Hence, σ2
i ’s are related to eigenvalues of ATA and AAT, and ui,vi are associated

eigenvectors.

Golub & Reinsh (1970) Singular Value Decomposition and Least Squares Solutions
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SVD decomposition

Consider the singular value decomposition of X, X = UDV T.

Then
β̂

ols
= V D−2D︸ ︷︷ ︸UTy

β̂λ = V (D2 + λI)−1D︸ ︷︷ ︸UTy

Observe that
D−1
i,i ≥

Di,i

D2
i,i + λ

hence, the ridge penality shrinks singular values.

Set now R = UD (n× n matrix), so that X = RV T,

β̂λ = V (RTR+ λI)−1RTy
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Hat matrix and Degrees of Freedom

Recall that Ŷ = HY with

H = X(XTX)−1XT

Similarly
Hλ = X(XTX + λI)−1XT

trace[Hλ] =
p∑
j=1

d2
j,j

d2
j,j + λ

→ 0, as λ→∞.
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Sparsity Issues

In severall applications, k can be (very) large, but a lot of features are just noise:
βj = 0 for many j’s. Let s denote the number of relevent features, with s << k,
cf Hastie, Tibshirani & Wainwright (2015) Statistical Learning with Sparsity,

s = card{S} where S = {j;βj 6= 0}

The model is now y = XT
SβS + ε, where XT

SXS is a full rank matrix.
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Going further on sparcity issues
The Ridge regression problem was to solve

β̂ = argmin
β∈{‖β‖`2≤s}

{‖Y −XTβ‖2
`2
}

Define ‖a‖`0 =
∑

1(|ai| > 0).
Here dim(β) = k but ‖β‖`0 = s.
We wish we could solve

β̂ = argmin
β∈{‖β‖`0 =s}

{‖Y −XTβ‖2
`2
}

Problem: it is usually not possible to describe all possible constraints, since(
s

k

)
coefficients should be chosen here (with k (very) large).

@freakonometrics 47



Arthur CHARPENTIER, Advanced Econometrics Graduate Course

Going further on sparcity issues

In a convex problem, solve the dual problem,
e.g. in the Ridge regression : primal problem

min
β∈{‖β‖`2≤s}

{‖Y −XTβ‖2
`2
}

and the dual problem

min
β∈{‖Y −XTβ‖`2≤t}

{‖β‖2
`2
}
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Going further on sparcity issues

Idea: solve the dual problem

β̂ = argmin
β∈{‖Y −XTβ‖`2≤h}

{‖β‖`0}

where we might convexify the `0 norm, ‖ · ‖`0 .
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Going further on sparcity issues

On [−1,+1]k, the convex hull of ‖β‖`0 is ‖β‖`1

On [−a,+a]k, the convex hull of ‖β‖`0 is a−1‖β‖`1

Hence, why not solve
β̂ = argmin

β;‖β‖`1≤s̃
{‖Y −XTβ‖`2}

which is equivalent (Kuhn-Tucker theorem) to the Lagragian optimization
problem

β̂ = argmin{‖Y −XTβ‖2
`2

+λ‖β‖`1}
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LASSO Least Absolute Shrinkage and Selection Operator

β̂ ∈ argmin{‖Y −XTβ‖2
`2

+λ‖β‖`1}

is a convex problem (several algorithms?), but not strictly convex (no unicity of
the minimum). Nevertheless, predictions ŷ = xTβ̂ are unique.

? MM, minimize majorization, coordinate descent Hunter & Lange (2003) A
Tutorial on MM Algorithms.
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LASSO Regression

No explicit solution...
If λ→ 0, β̂

lasso
0 = β̂

ols

If λ→∞, β̂
lasso
∞ = 0.
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LASSO Regression

For some λ, there are k’s such that β̂
lasso
k,λ = 0.

Further, λ 7→ β̂
lasso
k,λ is piecewise linear
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LASSO Regression

In the orthogonal case, XTX = I,

β̂
lasso
k,λ = sign(β̂

ols
k )
(
|β̂

ols
k | −

λ

2

)
i.e. the LASSO estimate is related to the soft
threshold function...

●

●
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Optimal LASSO Penalty

Use cross validation, e.g. K-fold,

β̂(−k)(λ) = argmin

∑
i 6∈Ik

[yi − xT
i β]2 + λ‖β‖`1


then compute the sum of the squared errors,

Qk(λ) =
∑
i∈Ik

[yi − xT
i β̂(−k)(λ)]2

and finally solve

λ? = argmin
{
Q(λ) = 1

K

∑
k

Qk(λ)
}

Note that this might overfit, so Hastie, Tibshiriani & Friedman (2009) Elements
of Statistical Learning suggest the largest λ such that

Q(λ) ≤ Q(λ?) + se[λ?] with se[λ]2 = 1
K2

K∑
k=1

[Qk(λ)−Q(λ)]2
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LASSO and Ridge, with R

1 > library ( glmnet )

2 > chicago =read. table ("http:// freakonometrics .free.fr/

chicago .txt",header =TRUE ,sep=";")

3 > standardize <- function (x) {(x-mean(x))/sd(x)}

4 > z0 <- standardize ( chicago [, 1])

5 > z1 <- standardize ( chicago [, 3])

6 > z2 <- standardize ( chicago [, 4])

7 > ridge <-glmnet ( cbind (z1 , z2), z0 , alpha =0, intercept =

FALSE , lambda =1)

8 > lasso <-glmnet ( cbind (z1 , z2), z0 , alpha =1, intercept =

FALSE , lambda =1)

9 > elastic <-glmnet ( cbind (z1 , z2), z0 , alpha =.5 ,

intercept =FALSE , lambda =1)

Elastic net, λ1‖β‖`1 + λ2‖β‖2
`2
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LASSO Regression, Smoothing and Overfit

LASSO can be used to avoid overfit.
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Going further, `0, `1 and `2 penalty

Define

‖a‖`0 =
d∑
i=1

1(ai 6= 0), ‖a‖`1 =
d∑
i=1
|ai| and ‖a‖`2 =

(
d∑
i=1

a2
i

)1/2

, for a ∈ Rd.

constrained penalized
optimization optimization

argmin
β;‖β‖`0≤s

{
n∑
i=1

`(yi, β0 + xTβ)
}

argmin
β,λ

{
n∑
i=1

`(yi, β0 + xTβ) + λ‖β‖`0

}
(`0)

argmin
β;‖β‖`1≤s

{
n∑
i=1

`(yi, β0 + xTβ)
}

argmin
β,λ

{
n∑
i=1

`(yi, β0 + xTβ) + λ‖β‖`1

}
(`1)

argmin
β;‖β‖`2≤s

{
n∑
i=1

`(yi, β0 + xTβ)
}

argmin
β,λ

{
n∑
i=1

`(yi, β0 + xTβ) + λ‖β‖`2

}
(`2)

Assume that ` is the quadratic norm.

@freakonometrics 58



Arthur CHARPENTIER, Advanced Econometrics Graduate Course

Going further, `0, `1 and `2 penalty

The two problems (`2) are equivalent : ∀(β?, s?) solution of the left problem, ∃λ?

such that (β?, λ?) is solution of the right problem. And conversely.

The two problems (`1) are equivalent : ∀(β?, s?) solution of the left problem, ∃λ?

such that (β?, λ?) is solution of the right problem. And conversely. Nevertheless,
if there is a theoretical equivalence, there might be numerical issues since there is
not necessarily unicity of the solution.

The two problems (`0) are not equivalent : if (β?, λ?) is solution of the right
problem, ∃s? such that β? is a solution of the left problem. But the converse is
not true.

More generally, consider a `p norm,

• sparsity is obtained when p ≤ 1

• convexity is obtained when p ≥ 1
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Going further, `0, `1 and `2 penalty

Foster& George (1994) the risk inflation criterion for multiple regression tried to
solve directly the penalized problem of (`0).

But it is a complex combinatorial problem in high dimension (Natarajan (1995)
sparse approximate solutions to linear systems proved that it was a NP-hard
problem)

One can prove that if λ ∼ σ2 log(p), alors

E
(
[xTβ̂ − xTβ0]2

)
≤ E

(
[xSTβ̂S − xTβ0]2

)︸ ︷︷ ︸
=σ2#S

·
(
4 log p+ 2 + o(1)

)
.

In that case

β̂
sub
λ,j =

 0 si j /∈ Sλ(β)

β̂
ols
j si j ∈ Sλ(β),

where Sλ(β) is the set of non-null values in solutions of (`0).
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If ` is no longer the quadratic norm but `1, problem (`1) is not alway strictly
convex, and optimum is not always unique (e.g. if XTX is singular).

But in the quadratic case, ` is strictly convex, and at least Xβ̂ is unique.

Further, note that solutions are necessarily coherent (signs of coefficients) : it is
not possible to have β̂j < 0 for one solution and β̂j > 0 for another one.

In many cases, problem (`1) yields a corner-type solution, which can be seen as a
"best subset" solution - like in (`0).
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Going further, `0, `1 and `2 penalty

Consider a simple regression yi = xiβ + ε, with `1-penality and a `2-loss fuction.
(`1) becomes

min
{
yTy − 2yTxβ + βxTxβ + 2λ|β|

}
First order condition can be written

−2yTx+ 2xTxβ̂±2λ = 0.

(the sign in ± being the sign of β̂). Assume that least-square estimate (λ = 0) is
(strictely) positive, i.e. yTx > 0. If λ is not too large β̂ and β̂ols have the same
sign, and

−2yTx+ 2xTxβ̂ + 2λ = 0.

with solution β̂lasso
λ = yTx− λ

xTx
.
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Going further, `0, `1 and `2 penalty

Increase λ so that β̂λ = 0.

Increase slightly more, β̂λ cannot become negative, because the sign of the first
order condition will change, and we should solve

−2yTx+ 2xTxβ̂ − 2λ = 0.

and solution would be β̂lasso
λ = yTx+ λ

xTx
. But that solution is positive (we

assumed that yTx > 0), to we should have β̂λ < 0.

Thus, at some point β̂λ = 0, which is a corner solution.

In higher dimension, see Tibshirani & Wasserman (2016) a closer look at sparse
regression or Candès & Plan (2009) Near-ideal model selection by `1 minimization.,

With some additional technical assumption, that LASSO estimator is
"sparsistent" in the sense that the support of β̂

lasso
λ is the same as β,

Thus, LASSO can be used for variable selection (see Hastie et al. (2001) The
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Elements of Statistical Learning).

Generally, β̂lasso
λ is a biased estimator but its variance can be small enough to

have a smaller least squared error than the OLS estimate.

With orthonormal covariance, one can prove that

β̂sub
λ,j = β̂ols

j 1|β̂sub
λ,j
|>b, β̂ridge

λ,j =
β̂ols
j

1 + λ
et β̂lasso

λ,j = signe[β̂ols
j ] · (|β̂ols

j | − λ)+.
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Optimization Heuristics

First idea: given some initial guess β(0), |β| ∼ |β(0)|+
1

2|β(0)|
(β2 − β2

(0))

LASSO estimate can probably be derived from iterated Ridge estimates

‖y −Xβ(k+1)‖2
`2

+ λ‖β(k+1)‖`1 ∼Xβ(k+1)‖2
`2

+ λ

2
∑
j

1
|βj,(k)|

[βj,(k+1)]2

which is a weighted ridge penalty function

Thus,
β(k+1) =

(
XTX + λ∆(k)

)−1
XTy

where ∆(k) = diag[|βj,(k)|−1]. Then β(k) → β̂
lasso

, as k →∞.
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Properties of LASSO Estimate

From this iterative technique

β̂
lasso
λ ∼

(
XTX + λ∆

)−1
XTy

where ∆ = diag[|β̂
lasso
j,λ |−1] if β̂

lasso
j,λ 6= 0, 0 otherwise.

Thus,
E[β̂

lasso
λ ] ∼

(
XTX + λ∆

)−1
XTXβ

and
Var[β̂

lasso
λ ] ∼ σ2(XTX + λ∆

)−1
XTXTX

(
XTX + λ∆

)−1
XT
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Optimization Heuristics

Consider here a simplified problem, min
a∈R

{ 1
2(a− b)2 + λ|a|︸ ︷︷ ︸

g(a)

}
with λ > 0.

Observe that g′(0) = −b± λ. Then

• if |b| ≤ λ, then a? = 0

• if b ≥ λ, then a? = b− λ

• if b ≤ −λ, then a? = b+ λ

a? = argmin
a∈R

{1
2(a− b)2 + λ|a|

}
= Sλ(b) = sign(b) · (|b| − λ)+,

also called soft-thresholding operator.
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Optimization Heuristics

Definition for any convex function h, define the proximal operator operator of h,

proximalh(y) = argmin
x∈Rd

{1
2‖x− y‖

2
`2

+ h(x)
}

Note that
proximalλ‖·‖2

`2
(y) = 1

1 + λ
x shrinkage operator

proximalλ‖·‖`1
(y) = Sλ(y) = sign(y) · (|y| − λ)+
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Optimization Heuristics

We want to solve here

θ̂ ∈ argmin
θ∈Rd

{ 1
n
‖y −mθ(x))‖2

`2︸ ︷︷ ︸
f(θ)

+λ · penalty(θ)︸ ︷︷ ︸
g(θ)

}
.

where f is convex and smooth, and g is convex, but not smooth...

1. Focus on f : descent lemma, ∀θ,θ′

f(θ) ≤ f(θ′) + 〈∇f(θ′),θ − θ′〉+ t

2‖θ − θ
′‖2
`2

Consider a gradient descent sequence θk, i.e. θk+1 = θk − t−1∇f(θk), then

f(θ) ≤

ϕ(θ): θk+1=argmin{ϕ(θ)}︷ ︸︸ ︷
f(θk) + 〈∇f(θk),θ − θk〉+ t

2‖θ − θk‖
2
`2
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Optimization Heuristics

2. Add function g

f(θ)+g(θ) ≤

ψ(θ)︷ ︸︸ ︷
f(θk) + 〈∇f(θk),θ − θk〉+ t

2‖θ − θk‖
2
`2

+g(θ)

And one can proof that

θk+1 = argmin
θ∈Rd

{
ψ(θ)

}
= proximalg/t

(
θk − t−1∇f(θk)

)
so called proximal gradient descent algorithm, since

argmin {ψ(θ)} = argmin
{
t

2

∥∥∥θ − (θk − t−1∇f(θk)
) ∥∥∥2

`2
+ g(θ)

}
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Coordinate-wise minimization

Consider some convex differentiable f : Rk → R function.

Consider x? ∈ Rk obtained by minimizing along each coordinate axis, i.e.

f(x?1, x?i−1, xi, x
?
i+1, · · · , x?k) ≥ f(x?1, x?i−1, x

?
i , x

?
i+1, · · · , x?k)

for all i. Is x? a global minimizer? i.e.

f(x) ≥ f(x?), ∀x ∈ Rk.

Yes. If f is convex and differentiable.

∇f(x)|x=x? =
(
∂f(x)
∂x1

, · · · , ∂f(x)
∂xk

)
= 0

There might be problem if f is not differentiable (except in each axis direction).

If f(x) = g(x) +
∑k
i=1 hi(xi) with g convex and differentiable, yes, since

f(x)− f(x?) ≥ ∇g(x?)T(x− x?) +
∑
i

[hi(xi)− hi(x?i )]
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Coordinate-wise minimization

f(x)− f(x?) ≥
∑
i

[∇ig(x?)T(xi − x?i )hi(xi)− hi(x?i )]︸ ︷︷ ︸
≥0

≥ 0

Thus, for functions f(x) = g(x) +
∑k
i=1 hi(xi) we can use coordinate descent to

find a minimizer, i.e. at step j

x
(j)
1 ∈ argmin

x1

f(x1, x
(j−1)
2 , x

(j−1)
3 , · · ·x(j−1)

k )

x
(j)
2 ∈ argmin

x2

f(x(j)
1 , x2, x

(j−1)
3 , · · ·x(j−1)

k )

x
(j)
3 ∈ argmin

x3

f(x(j)
1 , x

(j)
2 , x3, · · ·x(j−1)

k )

Tseng (2001) Convergence of Block Coordinate Descent Method: if f is continuous,
then x∞ is a minimizer of f .
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Application in Linear Regression

Let f(x) = 1
2‖y −Ax‖

2, with y ∈ Rn and A ∈Mn×k. Let A = [A1, · · · ,Ak].

Let us minimize in direction i. Let x−i denote the vector in Rk−1 without xi.
Here

0 = ∂f(x)
∂xi

= AT
i [Ax− y] = AT

i [Aixi +A−ix−i − y]

thus, the optimal value is here

x?i = AT
i [A−ix−i − y]
AT
i Ai
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Application to LASSO

Let f(x) = 1
2‖y −Ax‖

2 + λ‖x‖`1 , so that the non-differentiable part is
separable, since ‖x‖`1 =

∑k
i=1 |xi|.

Let us minimize in direction i. Let x−i denote the vector in Rk−1 without xi.
Here

0 = ∂f(x)
∂xi

= AT
i [Aixi +A−ix−i − y] + λsi

where si ∈ ∂|xi|. Thus, solution is obtained by soft-thresholding

x?i = Sλ/‖Ai‖2

(
AT
i [A−ix−i − y]
AT
i Ai

)
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Convergence rate for LASSO

Let f(x) = g(x) + λ‖x‖`1 with

• g convex, ∇g Lipschitz with constant L > 0, and Id−∇g/L monotone
inscreasing in each component

• there exists z such that, componentwise, either z ≥ Sλ(z −∇g(z)) or
z ≤ Sλ(z −∇g(z))

Saka & Tewari (2010), On the finite time convergence of cyclic coordinate descent
methods proved that a coordinate descent starting from z satisfies

f(x(j))− f(x?) ≤ L‖z − x?‖2

2j
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Lasso for Autoregressive Time Series

Consider some AR(p) autoregressive time series,

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φp−1Xt−p+1 + φpXt−p + εt,

for some white noise (εt), with a causal type representation. Write y = xTφ+ ε.

The LASSO estimator φ̂ is a minimizer of

1
2T ‖y = xTφ‖2 + λ

p∑
i=1

λi|φi|,

for some tuning parameters (λ, λ1, · · · , λp).

See Nardi & Rinaldo (2011).
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Graphical Lasso and Covariance Estimation

We want to estimate an (unknown) covariance matrix Σ, or Σ−1.

An estimate for Σ−1 is Θ? solution of

Θ ∈ argmin
Θ∈Mk×k

{− log[det(Θ)] + trace[SΘ] + λ‖Θ‖`1} where S = XTX

n

and where ‖Θ‖`1 =
∑
|Θi,j |.

See van Wieringen (2016) Undirected network reconstruction from high-dimensional
data and https://github.com/kaizhang/glasso
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Application to Network Simplification

Can be applied on networks, to spot ‘significant’
connexions...
Source: http://khughitt.github.io/graphical-lasso/
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Extention of Penalization Techniques

In a more general context, we want to solve

θ̂ ∈ argmin
θ∈Rd

{
1
n

n∑
i=1

`(yi,mθ(xi)) + λ · penalty(θ)
}
.

The quadratic loss function was related to the Gaussian case, but much more
alternatives can be considered...
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Linear models, nonlinear modes and GLMs

linear model

• (Y |X = x) ∼ N (θx, σ2)

• E[Y |X = x] = θx = xTβ

1 > fit <- lm(y ~ x, data = df)

@freakonometrics 80



Arthur CHARPENTIER, Advanced Econometrics Graduate Course

Linear models, nonlinear modes and GLMs

Nonlinear models

• (Y |X = x) ∼ N (θx, σ2)

• E[Y |X = x] = θx = m(x)

1 > fit <- lm(y ~ poly(x, k), data = df)

2 > fit <- lm(y ~ bs(x), data = df)
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Linear models, nonlinear modes and GLMs

Generalized Linear Models

• (Y |X = x) ∼ L(θx, ϕ)

• E[Y |X = x] = h−1(θx) = h̃−1(xTβ)

1 > fit <- glm(y ~ x, data = df ,

2 + family = poisson (link = "log")
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The exponential Family

Consider distributions with parameter θ (and ϕ) with density (with respect to
the appropriate measure, on N or on R)

f(y|θ, ϕ) = exp
(
yθ − b(θ)
a(ϕ) + c(y, ϕ)

)
,

where a(·), b(·) and c(·) are functions, where θ is called canonical paramer.

θ is the quantity of interest, while ϕ is a nuisance parameter.
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The Exponential Family

Example The Gaussian distribution with mean µ and variance σ2, N (µ, σ2)
belongs to that family θ = µ, ϕ = σ2, a(ϕ) = ϕ, b(θ) = θ2/2 and

c(y, ϕ) = −1
2

(
y2

σ2 + log(2πσ2)
)
, y ∈ R,

Example Bernoulli distribution, with mean π, B(π) is obtained with
θ = log{p/(1− p)}, a(ϕ) = 1, b(θ) = log(1 + exp(θ)), ϕ = 1 and c(y, ϕ) = 0.

Example The binomiale distribution with mean nπ, B(n, π) is obtained with
θ = log{p/(1− p)}, a(ϕ) = 1, b(θ) = n log(1 + exp(θ)), ϕ = 1 and

c(y, ϕ) = log
(
n

y

)
.

Example The Poisson distribution with mean λ, P(λ) belongs to that family

f(y|λ) = exp(−λ)λ
y

y! = exp
(
y log λ− λ− log y!

)
, y ∈ N,

with θ = log λ, ϕ = 1, a(ϕ) = 1, b(θ) = exp θ = λ and c(y, ϕ) = − log y!.
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The Exponential Family

Example La loi Negative Binomiale distribution with parameters r and p,

f(k|r, p) =
(
y + r − 1

y

)
(1− p)rpy, y ∈ N.

can be written, equivalently

f(k|r, p) = exp
(
y log p+ r log(1− p) + log

(
y + r − 1

y

))
i.e. θ = log p, b(θ) = −r log p and a(ϕ) = 1
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The Exponential Family

Example The Gamma distribution, with mean µ and variance ν−1,

f(y|µ, ν) = 1
Γ(ν)

(
ν

µ

)ν
yν−1 exp

(
−ν
µ
y

)
, y ∈ R+,

is also in the Exponential family θ = − 1
µ
, a(ϕ) = ϕ, b(θ) = − log(−θ), ϕ = ν−1

and
c(y, ϕ) =

(
1
ϕ
− 1
)

log(y)− log
(

Γ
(

1
ϕ

))
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Mean and Variance

Let Y be a random variable in the Exponential family

E(Y ) = b′(θ) and Var(Y ) = b′′(θ)ϕ,

i.e. the variance of Y is the product of two quantities

• b′′(θ) is a function θ (only) and is called the variance function,

• a function of ϕ.

Observe that µ = E(Y ), hence parameter θ is related to mean µ. Hence, the
variance function is function of µ , and can be denote

V(µ) = b′′([b′]−1(µ))ϕ.

Example In the Gaussian case, V(µ) = 1, while for the Poisson distribution,
V (µ) = µ and for the Gamma one V (µ) = µ2.
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From the Exponential Family to GLMs

Consider independent random variables Y1, Y2, . . . , Yn suchthat

f(yi|θi, ϕ) = exp
{
yiθi − b(θi)

a(ϕ) + c(yi, ϕ)
}

so that the likelihood can be written

L(θ, ϕ|y) =
n∏
i=1

f(yi|θi, ϕ) = exp
{∑n

i=1 yiθi −
∑n
i=1 b(θi)

a(ϕ) +
n∑
i=1

c(yi, ϕ)
}
.

or

logL(β) =
n∑
i=1

yiθi − b(θi)
a(ϕ)

(up to an additive constant...)
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