Advanced Econometrics \#1 : Nonlinear Transformations
A. Charpentier (Université de Rennes 1)

Université de Rennes 1
Graduate Course, 2018.

Econometrics and 'Regression’ ?

Regression towards Mediocrity in Hereditary Stature. By Francis Galton, F.R.S., \&c.

Galton (1870, Heriditary Genius, 1886, Regression towards mediocrity in hereditary stature) and Pearson \& Lee (1896, On Telegony in Man, 1903 On the Laws of Inheritance in Man) studied genetic transmission of characterisitcs, e.g. the heigth.

On average the child of tall parents is taller than other children, but less than his parents.
"I have called this peculiarity by the name of regression", Francis Galton, 1886.

Econometrics and 'Regression’ ?

```
> library(HistData)
> attach(Galton)
> Galton$count <- 1
> df <- aggregate(Galton, by=list(parent,
    child), FUN=sum) [,c(1, 2,5)]
> plot(df[,1:2],cex=sqrt(df[,3]/3))
> abline(a=0,b=1,lty=2)
> abline(lm(child~parent,data=Galton))
> coefficients(lm(child~parent,data=Galton)
        ) [2]
9 parent
0.6462906
```


height of the mid-parent

It is more an autoregression issue here :
if $Y_{t}=\phi Y_{t-1}+\varepsilon_{t}$, then $\operatorname{cor}\left[Y_{t}, Y_{t+h}\right]=\phi^{h} \rightarrow 0$ as $h \rightarrow \infty$.

Econometrics and 'Regression’ ?

Regression is a correlation problem.
Overall, children are not smaller than parents

Overview

- Linear Regression Model: $y_{i}=\beta_{0}+\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\varepsilon_{i}$
- Nonlinear Transformations : smoothing techniques

$$
\begin{aligned}
& h\left(y_{i}\right)=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\varepsilon_{i} \\
& y_{i}=\beta_{0}+\beta_{1} x_{1, i}+h\left(x_{2, i}\right)+\varepsilon_{i}
\end{aligned}
$$

- Asymptotics vs. Finite Distance : boostrap techniques
- Penalization : Parcimony, Complexity and Overfit
- From least squares to other regressions : quantiles, expectiles, etc.

References

Motivation
Kopczuk, W. Tax bases, tax rates and the elasticity of reported income. JPE.
income. I experiment with 10 -piece splines in logarithms of both the $t-1$ income and the "transitory" component to allow for potential nonlinear effects. Nonlinearity in the permanent component allows me to account for trends in income varying across different income classes. In principle, the transitory component can be controlled for in a linear

References

Eubank, R.L. (1999) Nonparametric Regression and Spline Smoothing, CRC Press.
Fan, J. \& Gijbels, I. (1996) Local Polynomial Modelling and Its Applications CRC Press.

Hastie, T.J. \& Tibshirani, R.J. (1990) Generalized Additive Models. CRC Press
Wand, M.P \& Jones, M.C. (1994) Kernel Smoothing. CRC Press

Deterministic or Parametric Transformations

Consider child mortality rate (y) as a function of GDP per capita (x).

Deterministic or Parametric Transformations

Logartihmic transformation, $\log (y)$ as a function of $\log (x)$

Deterministic or Parametric Transformations

Reverse transformation

Box-Cox transformation
See Box \& Cox (1964) An Analysis of Transformations,

$$
h(y, \lambda)=\left\{\begin{array}{l}
\frac{y^{\lambda}-1}{\lambda} \text { if } \lambda \neq 0 \\
\log (y) \text { if } \lambda=0
\end{array}\right.
$$

or

$$
h(y, \lambda, \mu)=\left\{\begin{array}{l}
\frac{[y+\mu]^{\lambda}-1}{\lambda} \text { if } \lambda \neq 0 \\
\log ([y+\mu]) \text { if } \lambda=0
\end{array}\right.
$$

Profile Likelihood

In a statistical context, suppose that unknown parameter can be partitioned $\boldsymbol{\theta}=(\lambda, \boldsymbol{\beta})$ where λ is the parameter of interest, and $\boldsymbol{\beta}$ is a nuisance parameter.

Consider $\left\{y_{1}, \cdots, y_{n}\right\}$, a sample from distribution $F_{\boldsymbol{\theta}}$, so that the log-likelihood is

$$
\log \mathcal{L}(\boldsymbol{\theta})=\sum_{i=1}^{n} \log f_{\boldsymbol{\theta}}\left(y_{i}\right)
$$

$\widehat{\boldsymbol{\theta}}^{M L E}$ is defined as $\widehat{\boldsymbol{\theta}}^{M L E}=\operatorname{argmax}\{\log \mathcal{L}(\boldsymbol{\theta})\}$
Rewrite the \log-likelihood as $\log \mathcal{L}(\boldsymbol{\theta})=\log \mathcal{L}_{\lambda}(\boldsymbol{\beta})$. Define

$$
\widehat{\boldsymbol{\beta}}_{\lambda}^{p M L E}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}}\left\{\log \mathcal{L}_{\lambda}(\boldsymbol{\beta})\right\}
$$

and then $\widehat{\lambda}^{p M L E}=\underset{\lambda}{\operatorname{argmax}}\left\{\log \mathcal{L}_{\lambda}\left(\widehat{\boldsymbol{\beta}}_{\lambda}^{p M L E}\right)\right\}$. Observe that

$$
\sqrt{n}\left(\widehat{\lambda}^{p M L E}-\lambda\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0,\left[\mathbb{I}_{\lambda, \lambda}-\mathbb{I}_{\lambda, \boldsymbol{\beta}} \mathbb{I}_{\boldsymbol{\beta}, \boldsymbol{\beta}}^{-1} \mathbb{I}_{\boldsymbol{\beta}, \lambda}\right]^{-1}\right)
$$

Profile Likelihood and Likelihood Ratio Test

The (profile) likelihood ratio test is based on

$$
2\left(\max \{\mathcal{L}(\lambda, \boldsymbol{\beta})\}-\max \left\{\mathcal{L}\left(\lambda_{0}, \boldsymbol{\beta}\right)\right\}\right)
$$

If $\left(\lambda_{0}, \boldsymbol{\beta}_{0}\right)$ are the true value, this difference can be written

$$
2\left(\max \{\mathcal{L}(\lambda, \boldsymbol{\beta})\}-\max \left\{\mathcal{L}\left(\lambda_{0}, \boldsymbol{\beta}_{0}\right)\right\}\right)-2\left(\max \left\{\mathcal{L}\left(\lambda_{0}, \boldsymbol{\beta}\right)\right\}-\max \left\{\mathcal{L}\left(\lambda_{0}, \boldsymbol{\beta}_{0}\right)\right\}\right)
$$

Using Taylor's expension

$$
\left.\left.\frac{\partial \mathcal{L}(\lambda, \boldsymbol{\beta})}{\partial \lambda}\right|_{\left(\lambda_{0}, \widehat{\boldsymbol{\beta}}_{\lambda_{0}}\right)} \sim \frac{\partial \mathcal{L}(\lambda, \boldsymbol{\beta})}{\partial \lambda}\right|_{\left(\lambda_{0}, \boldsymbol{\beta}_{0}\right)}-\left.\mathbb{I}_{\boldsymbol{\beta}_{0} \lambda_{0}} \mathbb{I}_{\boldsymbol{\beta}_{0} \boldsymbol{\beta}_{0}}^{-1} \frac{\partial \mathcal{L}\left(\lambda_{0}, \boldsymbol{\beta}\right)}{\partial \boldsymbol{\beta}}\right|_{\left(\lambda_{0}, \boldsymbol{\beta}_{0}\right)}
$$

Thus,

$$
\left.\frac{1}{\sqrt{n}} \frac{\partial \mathcal{L}(\lambda, \boldsymbol{\beta})}{\partial \lambda}\right|_{\left(\lambda_{0}, \widehat{\boldsymbol{\beta}}_{\lambda_{0}}\right)} \stackrel{\mathcal{L}}{\rightarrow} \mathcal{N}\left(0, \mathbb{I}_{\lambda_{0} \lambda_{0}}\right)-\mathbb{I}_{\lambda_{0}} \boldsymbol{\beta}_{0} \mathbb{I}_{\boldsymbol{\beta}_{0} \boldsymbol{\beta}_{0}}^{-1} \mathbb{I}_{\boldsymbol{\beta}_{0} \lambda_{0}}
$$

and $2\left(\mathcal{L}(\widehat{\lambda}, \widehat{\boldsymbol{\beta}})-\mathcal{L}\left(\lambda_{0}, \widehat{\boldsymbol{\beta}}_{\lambda_{0}}\right)\right) \xrightarrow{\mathcal{L}} \chi^{2}(\operatorname{dim}(\lambda))$.

Profile Likelihood and Likelihood Ratio Test

Consider some lognormal sample, and fit a Gamma distribution,

$$
f(x ; \alpha, \beta)=\frac{x^{\alpha-1} \beta^{\alpha} e^{-\beta x}}{\Gamma(\alpha)} \text { with } x>0 \text { and } \boldsymbol{\theta}=(\alpha, \beta) .
$$

> $x=\exp ($ rnorm (100))
Maximum-likelihood, $\widehat{\boldsymbol{\theta}}=\operatorname{argmax}\{\log \mathcal{L}(\boldsymbol{\theta})\}$.
> library (MASS)
> (F=fitdistr(x,"gamma"))
shape rate
$1.4214497 \quad 0.8619969$
(0.1822570) (0.1320717)
s > F\$estimate[1] $\mathrm{c}(-1,1) * 1.96 * \mathrm{~F}$ \$sd[1]
[1] $1.064226 \quad 1.778673$

Profile Likelihood and Likelihood Ratio Test

See also
1 > log_lik=function (theta) \{
$2+a=t h e t a[1]$
$3+b=t h e t a[2]$
$+\operatorname{logL}=\operatorname{sum}(\log (\operatorname{dgamma}(x, a, b)))$
return (-logL)
$+3$
> optim(c(1,1), log_lik)
\& par
[1] $1.4214116 \quad 0.8620311$
We can also use profile likelihood,

$$
\widehat{\alpha}=\operatorname{argmax}\left\{\max _{\beta}\{\log \mathcal{L}(\alpha, \beta)\}\right\}=\operatorname{argmax}\left\{\log \mathcal{L}\left(\alpha, \widehat{\beta}_{\alpha}\right)\right\}
$$

Profile Likelihood and Likelihood Ratio Test

```
> prof_log_lik=function(a){
    b=(optim(1,function(z) - sum(log(dgamma(x,a,z))))) $par
    return(-sum(log(dgamma(x,a,b))))
+ }
> vx=seq(.5,3,length=101)
> vl=-Vectorize(prof_log_lik)(vx)
> plot(vx,vl,type="l")
> optim(1,prof_log_lik)
$par
[1] 1.421094
```

We can use the likelihood ratio test

$$
2\left(\log \mathcal{L}_{p}(\widehat{\alpha})-\log \mathcal{L}_{p}(\alpha)\right) \sim \chi^{2}(1)
$$

Profile Likelihood and Likelihood Ratio Test

The implied 95% confidence interval is
1 (b1=uniroot(function(z) Vectorize (prof_log_lik)(z) +borne, c (.5,1.5)) \$root)
2 [1] 1.095726
3 > (b2=uniroot (function(z) Vectorize (prof_log_lik) (z) +borne, c (1.25,2.5))\$root)

4 [1] 1.811809

Box-Cox

1 > boxcox(lm(dist~speed, data=cars))
Here $h^{*} \sim 0.5$

Heuristally, $y_{i}^{1 / 2} \sim \beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$
why not consider a quadratic regression...?

Uncertainty: Parameters vs. Prediction

Uncertainty on regression parameters $\left(\beta_{0}, \beta_{1}\right)$

From the output of the regression we can derive confidence intervals for β_{0} and β_{1}, usually

$$
\beta_{k} \in\left[\widehat{\beta}_{k} \pm u_{1-\alpha / 2} \hat{\mathrm{~S}}\left[\widehat{\beta}_{k}\right]\right]
$$

Uncertainty: Parameters vs. Prediction

Uncertainty on a prediction, $y=m(\boldsymbol{x})$. Usually

$$
m(\boldsymbol{x}) \in\left[\widehat{m}(\boldsymbol{x}) \pm u_{1-\alpha / 2} \widehat{\operatorname{se}}[m(\boldsymbol{x})]\right]
$$

hence, for a linear model

$$
\left[\boldsymbol{x}^{\top} \widehat{\boldsymbol{\beta}} \pm u_{1-\alpha / 2} \widehat{\sigma} \sqrt{\boldsymbol{x}^{\top}\left[\boldsymbol{X}^{\top} \boldsymbol{X}\right]^{-1} \boldsymbol{x}}\right]
$$

i.e. (with one covariate)

$$
\begin{gathered}
\mathrm{se}^{2}[m(x)]^{2}=\operatorname{Var}\left[\widehat{\beta}_{0}+\widehat{\beta}_{1} x\right] \\
\mathrm{se}^{2}\left[\widehat{\beta}_{0}\right]+\operatorname{cov}\left[\widehat{\beta}_{0}, \widehat{\beta}_{1}\right] x+\operatorname{se}^{2}\left[\widehat{\beta}_{1}\right] x^{2}
\end{gathered}
$$

1 > predict(lm(dist~speed,data=cars), newdata=data.frame(speed=x), interval="confidence")

Least Squares and Expected Value (Orthogonal Projection Theorem)
Let $\boldsymbol{y} \in \mathbb{R}^{d}, \bar{y}=\underset{m \in \mathbb{R}}{\operatorname{argmin}}\{\sum_{i=1}^{n} \frac{1}{n}[\underbrace{y_{i}-m}_{\varepsilon_{i}}]^{2}\}$. It is the empirical version of

$$
\mathbb{E}[Y]=\underset{m \in \mathbb{R}}{\operatorname{argmin}}\{\int[\underbrace{y-m}_{\varepsilon}]^{2} d F(y)\}=\underset{m \in \mathbb{R}}{\operatorname{argmin}}\{\mathbb{E}[(\underbrace{Y-m}_{\varepsilon})^{2}]\}
$$

where Y is a ℓ_{1} random variable.
Thus, $\underset{m(\cdot): \mathbb{R}^{k} \rightarrow \mathbb{R}}{\operatorname{argmin}}\{\sum_{i=1}^{n} \frac{1}{n}[\underbrace{y_{i}-m\left(\boldsymbol{x}_{i}\right)}_{\varepsilon_{i}}]^{2}\}$ is the empirical version of $\mathbb{E}[Y \mid \boldsymbol{X}=\boldsymbol{x}]$.

The Histogram and the Regressogram

Connections between the estimation of $f(y)$ and $\mathbb{E}[Y \mid \boldsymbol{X}=\boldsymbol{x}]$.
Assume that $y_{i} \in\left[a_{1}, a_{k+1}\right)$, divided in k classes $\left[a_{j}, a_{j+1}\right)$. The histogram is

$$
\hat{f}_{\boldsymbol{a}}(y)=\sum_{j=1}^{k} \frac{\mathbf{1}\left(t \in\left[a_{j}, a_{j+1}\right)\right)}{a_{j+1}-a_{j}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(y_{i} \in\left[a_{j}, a_{j+1}\right)\right)
$$

Assume that $a_{j+1}-a_{j}=h_{n}$ and $h_{n} \rightarrow 0$ as $n \rightarrow \infty$ with $n h_{n} \rightarrow \infty$ then

$$
\mathbb{E}\left[\left(\hat{f}_{\boldsymbol{a}}(y)-f(y)\right)^{2}\right] \sim O\left(n^{-2 / 3}\right)
$$

(for an optimal choice of h_{n}).
> hist (height)

The Histogram and the Regressogram

Then a moving histogram was considered,
$\hat{f}(y)=\frac{1}{2 n h_{n}} \sum_{i=1}^{n} \mathbf{1}\left(y_{i} \in\left[y \pm h_{n}\right)\right) \quad=\frac{1}{n h_{n}} \sum_{i=1}^{n} k\left(\frac{y_{i}-y}{h_{n}}\right)$

with $k(x)=\frac{1}{2} \mathbf{1}(x \in[-1,1))$, which a (flat) kernel estimator.
> density(height, kernel = "rectangular")

The Histogram and the Regressogram

From Tukey (1961) Curves as parameters, and touch estimation, the regressogram is defined as

$$
\hat{m}_{\boldsymbol{a}}(x)=\frac{\sum_{i=1}^{n} \mathbf{1}\left(x_{i} \in\left[a_{j}, a_{j+1}\right)\right) y_{i}}{\sum_{i=1}^{n} \mathbf{1}\left(x_{i} \in\left[a_{j}, a_{j+1}\right)\right)}
$$

and the moving regressogram is

$$
\hat{m}(x)=\frac{\sum_{i=1}^{n} \mathbf{1}\left(x_{i} \in\left[x \pm h_{n}\right]\right) y_{i}}{\sum_{i=1}^{n} \mathbf{1}\left(x_{i} \in\left[x \pm h_{n}\right]\right)}
$$

Nadaraya-Watson and Kernels

Background: Kernel Density Estimator
Consider sample $\left\{y_{1}, \cdots, y_{n}\right\}, \widehat{F}_{n}$ empirical cumulative distribution function

$$
\widehat{F}_{n}(y)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(y_{i} \leq y\right)
$$

The empirical measure \mathbb{P}_{n} consists in weights $1 / n$ on each observation.
Idea: add (little) continuous noise to smooth \widehat{F}_{n}.
Let Y_{n} denote a random variable with distribution \widehat{F}_{n} and define

$$
\tilde{Y}=Y_{n}+h U \text { where } U \Perp Y_{n}, \text { with cdf } K
$$

The cumulative distribution function of \tilde{Y} is \tilde{F}

$$
\begin{aligned}
\tilde{F}(y) & =\mathbb{P}[\tilde{Y} \leq y]=\mathbb{E}(\mathbf{1}(\tilde{Y} \leq y))=\mathbb{E}\left(\mathbb{E}\left[\mathbf{1}(\tilde{Y} \leq y) \mid Y_{n}\right]\right) \\
\tilde{F}(y) & =\mathbb{E}\left(\left.\mathbf{1}\left(U \leq \frac{y-Y_{n}}{h}\right) \right\rvert\, Y_{n}\right)=\sum_{i=1}^{n} \frac{1}{n} K\left(\frac{y-y_{i}}{h}\right)
\end{aligned}
$$

Nadaraya-Watson and Kernels

If we differentiate

$$
\begin{aligned}
\tilde{f}(y) & =\frac{1}{n h} \sum_{i=1}^{n} k\left(\frac{y-y_{i}}{h}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} k_{h}\left(y-y_{i}\right) \text { with } k_{h}(u)=\frac{1}{h} k\left(\frac{u}{h}\right)
\end{aligned}
$$

\tilde{f} is the kernel density estimator of f, with kernel k and bandwidth h.
Rectangular, $k(u)=\frac{1}{2} \mathbf{1}(|u| \leq 1)$
Epanechnikov, $k(u)=\frac{3}{4} \mathbf{1}(|u| \leq 1)\left(1-u^{2}\right)$
Gaussian, $k(u)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}}$
1 > density(height, kernel = "epanechnikov")

Kernels and Statistical Properties

Consider here an i.id. sample $\left\{Y_{1}, \cdots, Y_{n}\right\}$ with density f
Given y, observe that $\mathbb{E}[\tilde{f}(y)]=\int \frac{1}{h} k\left(\frac{y-t}{h}\right) f(t) d t=\int k(u) f(y-h u) d u$. Use
Taylor expansion around $h=0, f(y-h u) \sim f(y)-f^{\prime}(y) h u+\frac{1}{2} f^{\prime \prime}(y) h^{2} u^{2}$

$$
\begin{aligned}
\mathbb{E}[\tilde{f}(y)] & =\int f(y) k(u) d u-\int f^{\prime}(y) h u k(u) d u+\int \frac{1}{2} f^{\prime \prime}(y+\bar{h} u) h^{2} u^{2} k(u) d u \\
& =f(y)+0+h^{2} \frac{f^{\prime \prime}(y)}{2} \int k(u) u^{2} d u+o\left(h^{2}\right)
\end{aligned}
$$

Thus, if f is twice continuously differentiable with bounded second derivative,

$$
\int k(u) d u=1, \quad \int u k(u) d u=0 \text { and } \int u^{2} k(u) d u<\infty
$$

then $\mathbb{E}[\tilde{f}(y)]=f(y)+h^{2} \frac{f^{\prime \prime}(y)}{2} \int k(u) u^{2} d u+o\left(h^{2}\right)$

Kernels and Statistical Properties

For the heuristics on that bias, consider a flat kernel, and set

$$
f_{h}(y)=\frac{F(y+h)-F(y-h)}{2 h}
$$

then the natural estimate is

$$
\widehat{f}_{h}(y)=\frac{\widehat{F}(y+h)-\widehat{F}(y-h)}{2 h}=\frac{1}{2 n h} \sum_{i=1}^{n} \underbrace{\mathbf{1}\left(y_{i} \in[y \pm h]\right)}_{Z_{i}}
$$

where Z_{i} 's are Bernoulli $\mathcal{B}\left(p_{x}\right)$ i.id. variables with
$p_{x}=\mathbb{P}\left[Y_{i} \in[x \pm h]\right]=2 h \cdot f_{h}(x)$. Thus, $\mathbb{E}\left(\widehat{f_{h}}(y)\right)=f_{h}(y)$, while

$$
f_{h}(y) \sim f(y)+\frac{h^{2}}{6} f^{\prime \prime}(y) \text { as } h \sim 0
$$

Kernels and Statistical Properties

Similarly, as $h \rightarrow 0$ and $n h \rightarrow \infty$

$$
\begin{gathered}
\operatorname{Var}[\tilde{f}(y)]=\frac{1}{n}\left(\mathbb{E}\left[k_{h}(z-Z)^{2}\right]-\left(\mathbb{E}\left[k_{h}(z-Z)\right]\right)^{2}\right) \\
\operatorname{Var}[\tilde{f}(y)]=\frac{f(y)}{n h} \int k(u)^{2} d u+o\left(\frac{1}{n h}\right)
\end{gathered}
$$

Hence

- if $h \rightarrow 0$ the bias goes to 0
- if $n h \rightarrow \infty$ the variance goes to 0

Kernels and Statistical Properties

Extension in Higher Dimension:

$$
\begin{aligned}
& \tilde{f}(\boldsymbol{y})=\frac{1}{n|\boldsymbol{H}|^{1 / 2}} \sum_{i=1}^{n} k\left(\boldsymbol{H}^{-1 / 2}\left(\boldsymbol{y}-\boldsymbol{y}_{i}\right)\right) \\
& \tilde{f}(\boldsymbol{y})=\frac{1}{n h^{d}|\boldsymbol{\Sigma}|^{1 / 2}} \sum_{i=1}^{n} k\left(\boldsymbol{\Sigma}^{-1 / 2} \frac{\left(\boldsymbol{y}-\boldsymbol{y}_{i}\right)}{h}\right)
\end{aligned}
$$

Kernels and Convolution

Given f and g, set
$(f \star g)(x)=\int_{\mathbb{R}} f(x-y) g(y) d y$
Then $\tilde{f}_{h}=\left(\hat{f} \star k_{h}\right)$, where

$$
\hat{f}(y)=\frac{\hat{F}(y)}{d y}=\sum_{i=1}^{n} \delta_{y_{i}}(y)
$$

Hence, \tilde{f} is the distribution of $\widehat{Y}+\varepsilon$ where
\widehat{Y} is uniform over $\left\{y_{1}, \cdots, y_{n}\right\}$ and $\varepsilon \sim k_{h}$ are independent

Nadaraya-Watson and Kernels

Here $\mathbb{E}[Y \mid X=x]=m(x)$. Write m as a function of densities

$$
m(x)=\int y f(y \mid x) d y=\frac{\int y f(y, x) d y}{\int f(y, x) d y}
$$

Consider some bivariate kernel k, such that

$$
\int t k(t, u) d t=0 \text { and } \kappa(u)=\int k(t, u) d t
$$

For the numerator, it can be estimated using

$$
\begin{aligned}
\int y \tilde{f}(y, x) d y & =\frac{1}{n h^{2}} \sum_{i=1}^{n} \int y k\left(\frac{y-y_{i}}{h}, \frac{x-x_{i}}{h}\right) \\
& =\frac{1}{n h} \sum_{i=1}^{n} \int y_{i} k\left(t, \frac{x-x_{i}}{h}\right) d t=\frac{1}{n h} \sum_{i=1}^{n} y_{i} \kappa\left(\frac{x-x_{i}}{h}\right)
\end{aligned}
$$

Nadaraya-Watson and Kernels

and for the denominator

$$
\int f(y, x) d y=\frac{1}{n h^{2}} \sum_{i=1}^{n} \int k\left(\frac{y-y_{i}}{h}, \frac{x-x_{i}}{h}\right)=\frac{1}{n h} \sum_{i=1}^{n} \kappa\left(\frac{x-x_{i}}{h}\right)
$$

Therefore, plugging in the expression for $g(x)$ yields

$$
\tilde{m}(x)=\frac{\sum_{i=1}^{n} y_{i} \kappa_{h}\left(x-x_{i}\right)}{\sum_{i=1}^{n} \kappa_{h}\left(x-x_{i}\right)}
$$

Observe that this regression estimator is a weighted average (see linear predictor section)

$$
\tilde{m}(x)=\sum_{i=1}^{n} \omega_{i}(x) y_{i} \text { with } \omega_{i}(x)=\frac{\kappa_{h}\left(x-x_{i}\right)}{\sum_{i=1}^{n} \kappa_{h}\left(x-x_{i}\right)}
$$

Nadaraya-Watson and Kernels

One can prove that kernel regression bias is given by

$$
\mathbb{E}[\tilde{m}(x)] \sim m(x)+h^{2}\left(\frac{C_{1}}{2} m^{\prime \prime}(x)+C_{2} m^{\prime}(x) \frac{f^{\prime}(x)}{f(x)}\right)
$$

while $\operatorname{Var}[\tilde{m}(x)] \sim \frac{C_{3}}{n h} \frac{\sigma(x)}{f(x)}$. In this univariate case, one can easily get the kernel estimator of derivatives.

Actually, \tilde{m} is a function of bandwidth h.

Note: this can be extended to multivariate \boldsymbol{x}.

Nadaraya-Watson and Kernels in Higher Dimension

Here $\widehat{m}_{\boldsymbol{H}}(\boldsymbol{x})=\frac{\sum_{i=1}^{n} y_{i} k_{\boldsymbol{H}}\left(\boldsymbol{x}_{i}-\boldsymbol{x}\right)}{\sum_{i=1}^{n} k_{\boldsymbol{H}}\left(\boldsymbol{x}_{i}-\boldsymbol{x}\right)}$ for some symmetric positive definite
bandwidth matrix \boldsymbol{H}, and $k_{\boldsymbol{H}}(\boldsymbol{x})=\operatorname{det}[\boldsymbol{H}]^{-1} k\left(\boldsymbol{H}^{-1} \boldsymbol{x}\right)$. Then

$$
\mathbb{E}\left[\widehat{m}_{\boldsymbol{H}}(\boldsymbol{x})\right] \sim m(\boldsymbol{x})+\frac{C_{1}}{2} \operatorname{trace}\left(\boldsymbol{H}^{\top} m^{\prime \prime}(\boldsymbol{x}) \boldsymbol{H}\right)+C_{2} \frac{m^{\prime}(\boldsymbol{x})^{\top} \boldsymbol{H} \boldsymbol{H}^{\top} \nabla f(\boldsymbol{x})}{f(\boldsymbol{x})}
$$

while

$$
\operatorname{Var}\left[\widehat{m}_{\boldsymbol{H}}(\boldsymbol{x})\right] \sim \frac{C_{3}}{n \operatorname{det}(\boldsymbol{H})} \frac{\sigma(\boldsymbol{x})}{f(\boldsymbol{x})}
$$

Hence, if $\boldsymbol{H}=h \mathbb{I}, h^{\star} \sim C n^{-\frac{1}{4+\operatorname{dim}(\boldsymbol{x})}}$.

From kernels to k-nearest neighbours

An alternative is to consider

$$
\tilde{m}_{k}(x)=\frac{1}{n} \sum_{i=1}^{n} \omega_{i, k}(x) y_{i}
$$

where $\omega_{i, k}(x)=\frac{n}{k}$ if $i \in \mathcal{I}_{x}^{k}$ with
$\mathcal{I}_{x}^{k}=\left\{i: x_{i}\right.$ one of the k nearest observations to $\left.x\right\}$

Lai (1977) Large sample properties of K-nearest neighbor procedures if $k \rightarrow \infty$ and $k / n \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\mathbb{E}\left[\tilde{m}_{k}(x)\right] \sim m(x)+\frac{1}{24 f(x)^{3}}\left[\left(m^{\prime \prime} f+2 m^{\prime} f^{\prime}\right)(x)\right]\left(\frac{k}{n}\right)^{2}
$$

while $\operatorname{Var}\left[\tilde{m}_{k}(x)\right] \sim \frac{\sigma^{2}(x)}{k}$

From kernels to k-nearest neighbours
Remark: Brent \& John (1985) Finding the median requires $2 n$ comparisons considered some median smoothing algorithm, where we consider the median over the k nearest neighbours (see section \#4).

k-Nearest Neighbors and Curse of Dimensionality

The higher the dimension, the larger the distance to the closest neigbbor

$$
\min _{i \in\{1, \cdots, n\}}\left\{d\left(\boldsymbol{a}, \boldsymbol{x}_{i}\right)\right\}, \boldsymbol{x}_{i} \in \mathbb{R}^{d} .
$$

$$
n=10
$$

$n=100$

Bandwidth selection : MISE for Density

$$
\begin{gathered}
M S E[\tilde{f}(y)]=\operatorname{bias}[\tilde{f}(y)]^{2}+\operatorname{Var}[\tilde{f}(y)] \\
M S E[\tilde{f}(y)]=f(y) \frac{1}{n h} \int k(u)^{2} d u+h^{4}\left(\frac{f^{\prime \prime}(y)}{2} \int k(u) u^{2} d u\right)^{2}+o\left(h^{4}+\frac{1}{n h}\right)
\end{gathered}
$$

Bandwidth choice is based on minimization of the asymptotic integrated MSE (over y)

$$
\operatorname{MISE}(\tilde{f})=\int \operatorname{MSE}[\tilde{f}(y)] d y \sim \frac{1}{n h} \int k(u)^{2} d u+h^{4} \int\left(\frac{f^{\prime \prime}(y)}{2} \int k(u) u^{2} d u\right)^{2}
$$

Bandwidth selection : MISE for Density

Thus, the first-order condition yields

$$
-\frac{C_{1}}{n h^{2}}+h^{3} \int f^{\prime \prime}(y)^{2} d y C_{2}=0
$$

with $C_{1}=\int k^{2}(u) d u$ and $C_{2}=\left(\int k(u) u^{2} d u\right)^{2}$, and

$$
h^{\star}=n^{-\frac{1}{5}}\left(\frac{C_{1}}{C_{2} \int f^{\prime \prime}(y) d y}\right)^{\frac{1}{5}}
$$

$h^{\star}=1.06 n^{-\frac{1}{5}} \sqrt{\operatorname{Var}[Y]}$ from Silverman (1986) Density Estimation
${ }_{1}$ > bw.nrd0(cars\$speed)
2 [1] 2.150016
3 > bw.nrd(cars\$speed)
4 [1] 2.532241
with Scott correction, see Scott (1992) Multivariate Density Estimation

Bandwidth selection : MISE for Regression Model

One can prove that

$$
\begin{aligned}
\operatorname{MISE}\left[\widehat{m}_{h}\right] \sim & \overbrace{\frac{h^{4}}{4}\left(\int x^{2} k(x) d x\right)^{2} \int\left[m^{\prime \prime}(x)+2 m^{\prime}(x) \frac{f^{\prime}(x)}{f(x)}\right]^{2} d x}^{\text {bias }^{2}} \\
& +\underbrace{\frac{\sigma^{2}}{n h} \int k^{2}(x) d x \cdot \int \frac{d x}{f(x)}}_{\text {variance }} \text { as } n \rightarrow 0 \text { and } n h \rightarrow \infty .
\end{aligned}
$$

The bias is sensitive to the position of the x_{i} 's.

$$
h^{\star}=n^{-\frac{1}{5}}\left(\frac{C_{1} \int \frac{d x}{f(x)}}{C_{2} \int\left[m^{\prime \prime}(x)+2 m^{\prime}(x) \frac{f^{\prime}(x)}{f(x)}\right] d x}\right)^{\frac{1}{5}}
$$

Problem: depends on unknown $f(x)$ and $m(x)$.

Bandwidth Selection : Cross Validation

Let $R(h)=\mathbb{E}\left[\left(Y-\widehat{m}_{h}(\boldsymbol{X})\right)^{2}\right]$.
Natural idea $\widehat{R}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{m}_{h}\left(\boldsymbol{x}_{i}\right)\right)^{2}$
Instead use leave-one-out cross validation,

$$
\widehat{R}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{m}_{h}^{(i)}\left(\boldsymbol{x}_{i}\right)\right)^{2}
$$

where $\widehat{m}_{h}^{(i)}$ is the estimator obtained by omitting the i th pair $\left(y_{i}, \boldsymbol{x}_{i}\right)$ or k-fold cross validation,

$$
\widehat{R}(h)=\frac{1}{n} \sum_{j=1}^{k} \sum_{i \in \mathcal{I}_{j}}\left(y_{i}-\widehat{m}_{h}^{(j)}\left(\boldsymbol{x}_{i}\right)\right)^{2}
$$

where $\widehat{m}_{h}^{(j)}$ is the estimator obtained by omitting pairs
 $\left(y_{i}, \boldsymbol{x}_{i}\right)$ with $i \in \mathcal{I}_{j}$.

Bandwidth Selection : Cross Validation

Then find (numerically)

$$
h^{\star}=\operatorname{argmin}\{\widehat{R}(h)\}
$$

In the context of density estimation, see Chiu (1991) Bandwidth Selection for Kernel Density Estimation

Usual bias-variance tradeoff, or Goldilock principle:
h should be neither too small, nor too large

- undersmoothed: bias too large, variance too small
- oversmoothed: variance too large, bias too small

Local Linear Regression

Consider $\hat{m}(\boldsymbol{x})$ defined as $\hat{m}(\boldsymbol{x})=\widehat{\beta}_{0}$ where $\left(\widehat{\beta}_{0}, \widehat{\boldsymbol{\beta}}\right)$ is the solution of

$$
\min _{\left(\beta_{0}, \boldsymbol{\beta}\right)}\left\{\sum_{i=1}^{n} \omega_{i}^{(\boldsymbol{x})}\left(y_{i}-\left[\beta_{0}+\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)^{\top} \boldsymbol{\beta}\right]\right)^{2}\right\}
$$

where $\omega_{i}^{(\boldsymbol{x})}=k_{h}\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)$, e.g.
i.e. we seek the constant term in a weighted least squares regression of y_{i} 's on $\boldsymbol{x}-\boldsymbol{x}_{i}$'s. If $\boldsymbol{X}_{\boldsymbol{x}}$ is the matrix $\left[\mathbf{1}(\boldsymbol{x}-\boldsymbol{X})^{\mathrm{T}}\right]$, and if $\boldsymbol{W}_{\boldsymbol{x}}$ is a matrix

$$
\operatorname{diag}\left[k_{h}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right), \cdots, k_{h}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right)\right]
$$

then $\hat{m}(\boldsymbol{x})=\mathbf{1}^{\top}\left(\boldsymbol{X}_{\boldsymbol{x}}^{\top} \boldsymbol{W}_{\boldsymbol{x}} \boldsymbol{X}_{\boldsymbol{x}}\right)^{-1} \boldsymbol{X}_{\boldsymbol{x}}^{\top} \boldsymbol{W}_{\boldsymbol{x}} \boldsymbol{y}$
This estimator is also a linear predictor :

$$
\hat{m}(\boldsymbol{x})=\sum_{i=1}^{n} \frac{a_{i}(\boldsymbol{x})}{\sum a_{i}(\boldsymbol{x})} y_{i}
$$

where

$$
a_{i}(\boldsymbol{x})=\frac{1}{n} k_{h}\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)\left(1-s_{1}(\boldsymbol{x})^{\top} s_{2}(\boldsymbol{x})^{-1} \frac{\boldsymbol{x}-\boldsymbol{x}_{i}}{h}\right)
$$

with

$$
s_{1}(\boldsymbol{x})=\frac{1}{n} \sum_{i=1}^{n} k_{h}\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \frac{\boldsymbol{x}-\boldsymbol{x}_{i}}{h} \text { and } s_{2}(\boldsymbol{x})=\frac{1}{n} \sum_{i=1}^{n} k_{h}\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)\left(\frac{\boldsymbol{x}-\boldsymbol{x}_{i}}{h}\right)\left(\frac{\boldsymbol{x}-\boldsymbol{x}_{i}}{h}\right)
$$

Note that Nadaraya-Watson estimator was simply the solution of

$$
\begin{gathered}
\min _{\beta_{0}}\left\{\sum_{i=1}^{n} \omega_{i}^{(\boldsymbol{x})}\left(y_{i}-\beta_{0}\right)^{2}\right\} \text { where } \omega_{i}^{(\boldsymbol{x})}=k_{h}\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right) \\
\mathbb{E}[\hat{m}(\boldsymbol{x})] \sim m(\boldsymbol{x})+\frac{h^{2}}{2} m^{\prime \prime}(\boldsymbol{x}) \mu_{2} \text { where } \mu_{2}=\int k(u) u^{2} d u . \\
\operatorname{Var}[\hat{m}(\boldsymbol{x})] \sim \frac{1}{n h} \frac{\nu \sigma_{\boldsymbol{x}}^{2}}{f(\boldsymbol{x})}
\end{gathered}
$$

where $\nu=\int k(u)^{2} d u$
Thus, kernel regression MSE is

$$
\frac{h^{2}}{4}\left(g^{\prime \prime}(x)+2 g^{\prime}(x) \frac{f^{\prime}(x)}{f(x)}\right)^{2} \mu_{2}^{2}+\frac{1}{n h} \frac{\nu \sigma_{\boldsymbol{x}}^{2}}{f(\boldsymbol{x})}
$$

1 > loess(dist ~ speed, cars,span=0.75, degree=1)
$2>\operatorname{predict}(R E G, ~ d a t a . f r a m e(s p e e d=\operatorname{seq}(5,25,0.25))$, se =TRUE)

Local polynomials

One might assume that, locally, $m(x) \sim \mu_{x}(u)$ as $u \sim 0$, with

$$
\mu_{x}(u)=\beta_{0}^{(x)}+\beta_{1}^{(x)}+[u-x]+\beta_{2}^{(x)}+\frac{[u-x]^{2}}{2}+\beta_{3}^{(x)}+\frac{[u-x]^{3}}{2}+\cdots
$$

and we estimate $\boldsymbol{\beta}^{(x)}$ by minimizing $\sum_{i=1}^{n} \omega_{i}^{(x)}\left[y_{i}-\mu_{x}\left(x_{i}\right)\right]^{2}$.
If \boldsymbol{X}_{x} is the design matrix $\left[1 x_{i}-x \frac{\left[x_{i}-x\right]^{2}}{2} \frac{\left[x_{i}-x\right]^{3}}{3} \cdots\right]$, then

$$
\widehat{\boldsymbol{\beta}}^{(x)}=\left(\boldsymbol{X}_{x}^{\top} \boldsymbol{W}_{x} \boldsymbol{X}_{x}\right)^{-1} \boldsymbol{X}_{x}^{\top} \boldsymbol{W}_{x} \boldsymbol{y}
$$

(weighted least squares estimators).
> library (locfit)
2 > locfit(dist~speed,data=cars)

Series Regression

Recall that $\mathbb{E}[Y \mid X=x]=m(x)$.
Why not approximate m by a linear combination of approximating functions $h_{1}(x), \cdots, h_{k}(x)$.
Set $\boldsymbol{h}(x)=\left(h_{1}(x), \cdots, h_{k}(x)\right)$, and consider the regression
 of y_{i} 's on $\boldsymbol{h}\left(x_{i}\right)$'s,

$$
y_{i}=\boldsymbol{h}\left(x_{i}\right)^{\top} \boldsymbol{\beta}+\varepsilon_{i}
$$

Then $\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{H}^{\top} \boldsymbol{H}\right)^{-1} \boldsymbol{H}^{\top} \boldsymbol{y}$

Series Regression : polynomials

Even if $m(x)=\mathbb{E}(Y \mid X=x)$ is not a polynomial function, a polynomial can still be a good approximation.

From Stone-Weierstrass theorem, if $m(\cdot)$ is continuous on some interval, then there is a uniform approximation of $m(\cdot)$ by polynomial functions.
$>$ reg <- $\operatorname{lm}(y \sim x, d a t a=d b)$

Series Regression : polynomials

Assume that $m(x)=\mathbb{E}(Y \mid X=x)=\sum_{i=0}^{k} \alpha_{i} x^{i}$, where pa-
 rameters $\alpha_{0}, \cdots, \alpha_{k}$ will be estimated (but not k).

1 > reg <- lm(y~poly $(x, 5)$, data=db)
$2>$ reg <- lm(y~poly $(x, 25), d a t a=d b)$

Series Regression : (Linear) Splines

Consider $m+1$ knots on $\mathcal{X}, \min \left\{x_{i}\right\} \leq t_{0} \leq t_{1} \leq \cdots \leq t_{m} \leq \max \left\{x_{n}\right\}$, then define linear (degree $=1$) splines positive function,

$$
b_{j, 1}(x)=\left(x-t_{j}\right)_{+}=\left\{\begin{array}{l}
x-t_{j} \text { if } x>t_{j} \\
0 \text { otherwise }
\end{array}\right.
$$

for linear splines, consider

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2}\left(X_{i}-s\right)_{+}+\varepsilon_{i}
$$

$1>$ positive_part $<-$ function (x) ifelse $(x>0, x, 0)$
2 > reg <- lm $(Y \sim X+$ positive_part $(X-s)$, data=db)

Series Regression : (Linear) Splines

for linear splines, consider

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2}\left(X_{i}-s_{1}\right)_{+}+\beta_{3}\left(X_{i}-s_{2}\right)_{+}+\varepsilon_{i}
$$

1 > reg <- lm(Y~X+positive_part(X-s1)+ positive_part (X-s2), data=db)
3 > library(bsplines)
A spline is a function defined by piecewise polynomials. b-splines are defined recursively

b-Splines (in Practice)

> reg1 <- lm(dist~speed+positive_part(speed-15),
data=cars)
$2>\operatorname{reg} 2<-\operatorname{lm}(d i s t \sim b s(s p e e d, d f=2$, degree=1), data= cars)

Consider $m+1$ knots on $[0,1], 0 \leq t_{0} \leq t_{1} \leq \cdots \leq t_{m} \leq 1$, then define recursively b-splines as

$$
\begin{aligned}
b_{j, 0}(t) & =\left\{\begin{array}{l}
1 \text { if } \quad t_{j} \leq t<t_{j+1} \\
0 \text { otherwise, and }
\end{array}\right. \\
b_{j, n}(t) & =\frac{t-t_{j}}{t_{j+n}-t_{j}} b_{j, n-1}(t) \\
& +\frac{t_{j+n+1}-t}{t_{j+n+1}-t_{j+1}} b_{j+1, n-1}(t)
\end{aligned}
$$

b-Splines (in Practice)

> summary (reg1)
2
Coefficients:
Estimate Std Error t value $\operatorname{Pr}(>|t|)$
5 (Intercept)-7.6519 $10.6254 \quad-0.720 \quad 0.475$
6 speed
3.0186
$0.8627 \quad 3.499 \quad 0.001$ **
7 (speed-15)
1.7562
1.4551
$1.207 \quad 0.233$
$9>$ summary (reg2)
10
Coefficients:
Estimate Std Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{lrrrrl}\text { (Intercept) } & 4.423 & 7.343 & 0.602 & 0.5493 & \\ \text { bs (speed) } 1 & 33.205 & 9.489 & 3.499 & 0.0012 & * * \\ \text { bs (speed) } 2 & 80.954 & 8.788 & 9.211 & 4.2 e-12 & * * *\end{array}$

b and p-Splines

Note that those spline function define an orthonormal basis.

O'Sullivan (1986) A statistical perspective on ill-posed in-
 verse problems suggested a penalty on the second derivative of the fitted curve (see \#3).

$$
m(x)=\operatorname{argmin}\left\{\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{b}\left(x_{i}\right)^{\top} \boldsymbol{\beta}\right)^{2}+\lambda \int_{\mathbb{R}} \boldsymbol{b}^{\prime \prime}\left(x_{i}\right)^{\top} \boldsymbol{\beta}\right\}
$$

Adding Constraints: Convex Regression

Assume that $y_{i}=m\left(\boldsymbol{x}_{i}\right)+\varepsilon_{i}$ where $m: \mathbb{R}^{d} \rightarrow \infty \mathbb{R}$ is some convex function.
m is convex if and only if $\forall \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{R}^{d}, \forall t \in[0,1]$,

$$
m\left(t \boldsymbol{x}_{1}+[1-t] \boldsymbol{x}_{2}\right) \leq t m\left(\boldsymbol{x}_{1}\right)+[1-t] m\left(\boldsymbol{x}_{2}\right)
$$

Proposition (Hidreth (1954) Point Estimates of Ordinates of Concave Functions)

$$
m^{\star}=\underset{m \text { convex }}{\operatorname{argmin}}\left\{\sum_{i=1}^{n}\left(y_{i}-m\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right)^{2}\right\}
$$

Then $\boldsymbol{\theta}^{\star}=\left(m^{\star}\left(\boldsymbol{x}_{\mathbf{1}}\right), \cdots, m^{\star}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)\right)$ is unique.
Let $\boldsymbol{y}=\boldsymbol{\theta}+\boldsymbol{\varepsilon}$, then

$$
\left.\boldsymbol{\theta}^{\star}=\underset{\boldsymbol{\theta} \in \mathcal{K}}{\operatorname{argmin}}\left\{\sum_{i=1}^{n}\left(y_{i}-\theta_{i}\right)\right)^{2}\right\}
$$

where $\mathcal{K}=\left\{\boldsymbol{\theta} \in \mathbb{R}^{n}: \exists m\right.$ convex , $\left.m\left(\boldsymbol{x}_{i}\right)=\theta_{i}\right\}$. I.e. $\boldsymbol{\theta}^{\star}$ is the projection of \boldsymbol{y} onto the (closed) convex cone \mathcal{K}. The projection theorem gives existence and unicity.

Adding Constraints: Convex Regression

In dimension 1: $y_{i}=m\left(x_{i}\right)+\varepsilon_{i}$. Assume that observations are ordered $x_{1}<x_{2}<\cdots<x_{n}$.

Here

$$
\mathcal{K}=\left\{\boldsymbol{\theta} \in \mathbb{R}^{n}: \frac{\theta_{2}-\theta_{1}}{x_{2}-x_{1}} \leq \frac{\theta_{3}-\theta_{2}}{x_{3}-x_{2}} \leq \cdots \leq \frac{\theta_{n}-\theta_{n-1}}{x_{n}-x_{n-1}}\right\}
$$

Hence, quadratic program with $n-2$ linear constraints.
m^{\star} is a piecewise linear function (interpolation of consecutive pairs $\left.\left(x_{i}, \theta_{i}^{\star}\right)\right)$.
If m is differentiable, m is convex if

$$
m(\boldsymbol{x})+\nabla m(\boldsymbol{x}) \cdot[\boldsymbol{y}-\boldsymbol{x}] \leq m(\boldsymbol{y})
$$

Adding Constraints: Convex Regression

More generally: if m is convex, then there exists $\xi_{\boldsymbol{x}} \in \mathbb{R}^{n}$ such that

$$
m(\boldsymbol{x})+\xi_{\boldsymbol{x}} \cdot[\boldsymbol{y}-\boldsymbol{x}] \leq m(\boldsymbol{y})
$$

$\xi_{\boldsymbol{x}}$ is a subgradient of m at \boldsymbol{x}. And then

$$
\partial m(\boldsymbol{x})=\left\{m(\boldsymbol{x})+\xi \cdot[\boldsymbol{y}-\boldsymbol{x}] \leq m(\boldsymbol{y}), \forall \boldsymbol{y} \in \mathbb{R}^{n}\right\}
$$

Hence, $\boldsymbol{\theta}^{\star}$ is solution of

$$
\operatorname{argmin}\left\{\|\boldsymbol{y}-\boldsymbol{\theta}\|^{2}\right\}
$$

subject to $\theta_{i}+\xi_{i}\left[\boldsymbol{x}_{j}-\boldsymbol{x}_{i}\right] \leq \boldsymbol{\theta}_{j}, \forall i, j$
and $\xi_{1}, \cdots, \xi_{n} \in \mathbb{R}^{n}$.

Spatial Smoothing

One can also consider some spatial smoothing, if we want to predict $\mathbb{E}[Y \mid \boldsymbol{X}=\boldsymbol{x}]$ for some coordinate \boldsymbol{x}.
> library (rgeos)
> library (rgdal)
> library (maptools)
> library (cartography)
> download.file("http://bit.ly/2G3KIUG","zonier.RData")
> load("zonier.RData")
> cols=rev (carto.pal (pal1="red.pal", n1=10, pal2="green.pal", n2=10))
> download.file("http://bit.ly/2GSvzGW", "FRA_adm0.rds")
> download.file("http://bit.ly/2FUZOLz","FRA_adm2.rds")
> FR=readRDS ("FRA_adm2.rds")
> donnees_carte=data.frame (FRdata)

Spatial Smoothing

```
> FRO=readRDS("FRA_adm0.rds")
> plot(FRO)
> bk = seq( - 5, 4.5, length=21)
> cuty = cut(simbase$Y,breaks=bk,labels
    =1:20)
5 > points(simbase\$long, simbase\$lat, col=cols
[cuty], pch=19, cex=.5)
```


One can consider a choropleth map (spatial version of the histogram).

1 > A=aggregate($\mathrm{x}=$ simbase $\$ \mathrm{Y}, \mathrm{by}=$ list $($

$$
\text { simbase } \$ \mathrm{dpt}), \text { mean) }
$$

2 > names(A)=c("dpt","y")
$3>d=$ donnees_carte $\$$ CCA_ 2
$4>d[d==" 2 A "]=" 201 "$
5 > d[d=="2B"]="202"
6 > donnees_carte\$dpt=as.numeric(as.
character (d))
7 > donnees_carte=merge (donnees_carte, A, all.

$$
\mathrm{x}=\mathrm{TRUE} \text {) }
$$

8 > donnees_carte=donnees_carte[order (donnees_carte ${ }^{\text {OBJECTID) ,] }}$
$9>b k=\operatorname{seq}(-2.75,2.75$, length=21)
0 > donnees_carte \$cuty=cut (donnees_carte\$y, breaks=bk, labels=1:20)
> plot(FR, col=cols[donnees_carte\$cuty], xlim=c (-5.2, 12))

Spatial Smoothing

Instead of a "continuous" gradient of colors, one can consider only 4 colors (4 levels) for the prediction.
> bk=seq ($-2.75,2.75$, length $=5$)
2 > donnees_carte\$cuty=cut(donnees_carte\$y, breaks=bk, labels=1:4)
3 > plot(FR, col=cols[c(3,8,12,17)][donnees_ carte\$cuty], xlim=c (-5.2,12))

Spatial Smoothing

> P1 = FRO@polygons[[1]]@Polygons[[355]] @coords
> P2 = FRO@polygons[[1]]@Polygons[[27]] @coords
> plot (FRO, border=NA)
> polygon (P1)
> polygon (P2)
6 > grille<-expand.grid(seq(min(simbase\$long), max (simbase $\$$ long), length=101), seq (min (simbase\$lat), max (simbase\$lat), length =101))
> paslong=(max (simbase\$long)-min(simbase\$ long))/100

> paslat=(max (simbase\$lat)-min(simbase\$lat)) / 100

Spatial Smoothing

We need to create a grid (i.e. \mathcal{X}) on which we approximate $\mathbb{E}[Y \mid \boldsymbol{X}=\boldsymbol{x}]$

1 > f=function (i) \{ (point.in. polygon (grille [i, 1]+paslong/2 , grille[i, 2]+paslat/ 2 , P1[, 1], P1[, 2]) >0) + (point.in.polygon (grille[i, 1]+paslong/2 , grille[i, $2]+$ paslat/2 , P2[,1], P2[,2]) >0) \}
2 > indic=unlist(lapply(1:nrow(grille),f))
3 > grille=grille[which(indic==1),]
4 > points(grille[,1]+paslong/2,grille[,2]+ paslat/2)

Spatial Smoothing

Consider here some k-NN, with $k=20$

1 > library (geosphere)
$2>\mathrm{knn}=$ function (i,k=20) \{
$3+d=$ distHaversine (grille [i, 1:2], simbase [, c ("long", "lat")], r=6378.137)
$4+r=r a n k(d)$
$5+$ ind=which ($\mathrm{r}<=\mathrm{k}$)
$6+\operatorname{mean}($ simbase[ind, $" Y "])$
$7+\}$
8 > grille $\$ \mathrm{y}=$ Vectorize (knn) (1: nrow (grille))
$9>\mathrm{bk}=\operatorname{seq}(-2.75,2.75$, length=21)
> grille\$cuty=cut (grille\$y,breaks=bk,
labels=1:20)
> points(grille[,1]+paslong/2,grille[,2]+ paslat/2, col=cols[grille\$cuty], pch=19)

Spatial Smoothing

Again, instead of a "continuous" gradient, we can use 4 levels,
$1>\mathrm{bk}=\operatorname{seq}(-2.75,2.75$, length=5)
$2>$ grille\$cuty=cut(grille\$y, breaks=bk, labels=1:4)
$3>\operatorname{plot}(F R O$, border $=N A)$
$4>$ polygon(P1)
$5>$ polygon(P2)
$6>$ points(grille $[, 1]+$ paslong/2, grille $[, 2]+$ paslat/2, col=cols $[c(3,8,12,17)][g r i l l e \$$ cuty], pch=19)

Testing (Non-)Linearities

In the linear model,

$$
\widehat{\boldsymbol{y}}=\boldsymbol{X} \widehat{\boldsymbol{\beta}}=\underbrace{\boldsymbol{X}\left[\boldsymbol{X}^{\top} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{\top}}_{\boldsymbol{H}} y
$$

$\boldsymbol{H}_{i, i}$ is the leverage of the i th element of this hat matrix.
Write

$$
\widehat{y}_{i}=\sum_{j=1}^{n}\left[\boldsymbol{X}_{i}^{\top}\left[\boldsymbol{X}^{\top} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{\boldsymbol{\top}}\right]_{j} y_{j}=\sum_{j=1}^{n}\left[\mathcal{H}\left(\boldsymbol{X}_{i}\right)\right]_{j} y_{j}
$$

where

$$
\mathcal{H}(\boldsymbol{x})=\boldsymbol{x}^{\top}\left[\boldsymbol{X}^{\top} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{\top}
$$

The prediction is

$$
m(\boldsymbol{x})=\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})=\sum_{j=1}^{n}[\mathcal{H}(\boldsymbol{x})]_{j} y_{j}
$$

Testing (Non-)Linearities

More generally, a predictor m is said to be linear if for all \boldsymbol{x} if there is $\mathcal{S}(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
m(\boldsymbol{x})=\sum_{j=1}^{n} \mathcal{S}(\boldsymbol{x})_{j} y_{j}
$$

Conversely, given $\widehat{y}_{1}, \cdots, \widehat{y}_{n}$, there is a matrix $\boldsymbol{S} n \times n$ such that

$$
\widehat{\boldsymbol{y}}=\boldsymbol{S y}
$$

For the linear model, $\boldsymbol{S}=\boldsymbol{H}$.
$\operatorname{trace}(\boldsymbol{H})=\operatorname{dim}(\boldsymbol{\beta})$: degrees of freedom
$\frac{\boldsymbol{H}_{i, i}}{1-\boldsymbol{H}_{i, i}}$ is related to Cook's distance, from Cook (1977), Detection of Influential Observations in Linear Regression.

Testing (Non-)Linearities
For a kernel regression model, with kernel k and bandwidth h

$$
S_{i, j}^{(k, h)}=\frac{k_{h}\left(x_{i}-x_{j}\right)}{\sum_{k=1}^{n} k_{h}\left(x_{k}-x_{j}\right)}
$$

where $k_{h}(\cdot)=k(\cdot / h)$, while $\mathcal{S}^{(k, h)}(\boldsymbol{x})_{j}=\frac{K_{h}\left(\boldsymbol{x}-x_{j}\right)}{\sum_{k=1}^{n} k_{h}\left(\boldsymbol{x}-x_{k}\right)}$
For a k-nearest neighbor, $S_{i, j}^{(k)}=\frac{1}{k} \mathbf{1}\left(j \in \mathcal{I}_{\boldsymbol{x}_{i}}\right)$ where $\mathcal{I}_{\boldsymbol{x}_{i}}$ are the k nearest
observations to \boldsymbol{x}_{i}, while $\mathcal{S}^{(k)}(\boldsymbol{x})_{j}=\frac{1}{k} \mathbf{1}\left(j \in \mathcal{I}_{\boldsymbol{x}}\right)$.

Testing (Non-)Linearities

Observe that trace (\boldsymbol{S}) is usually seen as a degree of smoothness.
Do we have to smooth? Isn't linear model sufficent?
Define

$$
T=\frac{\|\boldsymbol{S} \boldsymbol{y}-\boldsymbol{H} \boldsymbol{y}\|}{\operatorname{trace}\left([\boldsymbol{S}-\boldsymbol{H}]^{\top}[\boldsymbol{S}-\boldsymbol{H}]\right)}
$$

If the model is linear, then T has a Fisher distribution.
Remark: In the case of a linear predictor, with smoothing matrix \boldsymbol{S}_{h}

$$
\widehat{R}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{m}_{h}^{(-i)}\left(\boldsymbol{x}_{i}\right)\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{Y_{i}-\widehat{m}_{h}\left(\boldsymbol{x}_{i}\right)}{1-\left[\boldsymbol{S}_{h}\right]_{i, i}}\right)^{2}
$$

We do not need to estimate n models. One can also minimize

$$
G C V(h)=\frac{n^{2}}{n^{2}-\operatorname{trace}(\boldsymbol{S})^{2}} \cdot \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{m}_{h}\left(\boldsymbol{x}_{i}\right)\right)^{2} \sim \text { Mallow's } C_{p}
$$

Confidence Intervals

If $\widehat{y}=\widehat{m}_{h}(\boldsymbol{x})=S_{h}(\boldsymbol{x}) \boldsymbol{y}$, let $\widehat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{m}_{h}\left(\boldsymbol{x}_{i}\right)\right)^{2}$ and a confidence interval
is, at $\boldsymbol{x}\left[\widehat{m}_{h}(\boldsymbol{y}) \pm t_{1-\alpha / 2} \widehat{\sigma} \sqrt{S_{h}(\boldsymbol{x}) S_{h}(\boldsymbol{x})^{\top}}\right]$.

Confidence Bands

Confidence Bands
Also called variability bands for functions in Härdle (1990) Applied Nonparametric Regresion.

From Collomb (1979) Condition nécessaires et suffisantes de convergence uniforme d'un estimateur de la régression, with Kernel regression (Nadarayah-Watson)

$$
\begin{gathered}
\sup \left\{\left|m(x)-\widehat{m}_{h}(x)\right|\right\} \sim C_{1} h^{2}+C_{2} \sqrt{\frac{\log n}{n h}} \\
\sup \left\{\left|m(\boldsymbol{x})-\widehat{m}_{h}(\boldsymbol{x})\right|\right\} \sim C_{1} h^{2}+C_{2} \sqrt{\frac{\log n}{n h^{\operatorname{dim}(\boldsymbol{x})}}}
\end{gathered}
$$

Confidence Bands

So far, we have mainly discussed pointwise convergence with

$$
\sqrt{n h}\left(\widehat{m}_{h}(x)-m(x)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(\mu_{x}, \sigma_{x}^{2}\right) .
$$

This asymptotic normality can be used to derive (pointwise) confidence intervals

$$
\mathbb{P}\left(I C^{-}(x) \leq m(x) \leq I C^{+}(x)\right)=1-\alpha \forall x \in \mathcal{X}
$$

But we can also seek uniform convergence properties. We want to derive functions $I C^{ \pm}$such that

$$
\mathbb{P}\left(I C^{-}(x) \leq m(x) \leq I C^{+}(x) \forall x \in \mathcal{X}\right)=1-\alpha
$$

Confidence Bands

- Bonferroni's correction

Use a standard Gaussian (pointwise) confidence interval

$$
I C_{\star}^{ \pm}(x)=\widehat{m}(x) \pm \sqrt{n h} \widehat{\sigma} t_{1-\alpha / 2} .
$$

and take also into accound the regularity of m. Set

$$
V(\eta)=\frac{1}{2}\left(\frac{2 \eta+1}{n}+\frac{1}{n}\right)\left\|m^{\prime}\right\|_{\infty, x}, \text { for some } 0<\eta<1
$$

where $\left\|\varphi^{\prime}\right\|_{\infty, x}$ is on a neighborhood of x. Then consider

$$
I C^{ \pm}(x)=I C_{\star}^{ \pm}(x) \pm V(\eta)
$$

Confidence Bands

- Use of Gaussian processes

Observe that $\sqrt{n h}\left(\widehat{m}_{h}(x)-m(x)\right) \xrightarrow{\mathcal{D}} G_{x}$ for some Gaussian process $\left(G_{x}\right)$.
Confidence bands are derived from quantiles of $\sup \left\{G_{x}, x \in \mathcal{X}\right\}$.
If we use kernel k for smoothing, Johnston (1982) Probabilities of Maximal Deviations for Nonparametric Regression Function Estimates proved that

$$
G_{x}=\int k(x-t) d W_{t}, \text { for some standard }\left(W_{t}\right) \text { Wiener process }
$$

is then a Gaussian process with variance $\int k(x) k(t-x) d t$. And

$$
I C^{ \pm}(x)=\widehat{\varphi}(x) \pm\left(\frac{q_{\alpha}}{\sqrt{2 \log (1 / h)}}+d_{n}\right) \frac{5}{7} \frac{\widehat{\sigma}^{2}}{\sqrt{n h}}
$$

with $d_{n}=\sqrt{2 \log h^{-1}}+\frac{1}{\sqrt{2 \log h^{-1}}} \log \sqrt{\frac{3}{4 \pi^{2}}}$, where $\exp \left(-2 \exp \left(-q_{\alpha}\right)\right)=1-\alpha$.

Confidence Bands

- Bootstrap (see \#2)

Finally, McDonald (1986) Smoothing with Split Linear Fits suggested a bootstrap algorithm to approximate the distribution of $Z_{n}=\sup \{|\widehat{\varphi}(x)-\varphi(x)|, x \in \mathcal{X}\}$.

Confidence Bands

Depending on the smoothing parameter h, we get different corrections

Confidence Bands

Depending on the smoothing parameter h, we get different corrections

Boosting to Capture NonLinear Effects

We want to solve

$$
m^{\star}=\operatorname{argmin}\left\{\mathbb{E}\left[(Y-m(\boldsymbol{X}))^{2}\right]\right\}
$$

The heuristics is simple: we consider an iterative process where we keep modeling the errors.

Fit model for $\boldsymbol{y}, h_{1}(\cdot)$ from \boldsymbol{y} and \boldsymbol{X}, and compute the error, $\boldsymbol{\varepsilon}_{1}=\boldsymbol{y}-h_{1}(\boldsymbol{X})$.
Fit model for $\varepsilon_{1}, h_{2}(\cdot)$ from ε_{1} and \boldsymbol{X}, and compute the error, $\varepsilon_{2}=\varepsilon_{1}-h_{2}(\boldsymbol{X})$, etc. Then set

$$
m_{k}(\cdot)=\underbrace{h_{1}(\cdot)}_{\sim y}+\underbrace{h_{2}(\cdot)}_{\sim \varepsilon_{1}}+\underbrace{h_{3}(\cdot)}_{\sim \varepsilon_{2}}+\cdots+\underbrace{h_{k}(\cdot)}_{\sim \varepsilon_{k-1}}
$$

Hence, we consider an iterative procedure, $m_{k}(\cdot)=m_{k-1}(\cdot)+h_{k}(\cdot)$.

Boosting

$h(\boldsymbol{x})=\boldsymbol{y}-m_{k}(\boldsymbol{x})$, which can be interpreted as a residual. Note that this residual is the gradient of $\frac{1}{2}\left[y-m_{k}(\boldsymbol{x})\right]^{2}$
A gradient descent is based on Taylor expansion

$$
\underbrace{f\left(\boldsymbol{x}_{k}\right)}_{\left\langle f, \boldsymbol{x}_{k}\right\rangle} \sim \underbrace{f\left(\boldsymbol{x}_{k-1}\right)}_{\left\langle f, \boldsymbol{x}_{k-1}\right\rangle}+\underbrace{\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)}_{\alpha} \underbrace{\nabla f\left(\boldsymbol{x}_{k-1}\right)}_{\left\langle\nabla f, \boldsymbol{x}_{k-1}\right\rangle}
$$

But here, it is different. We claim we can write

$$
\underbrace{f_{k}(\boldsymbol{x})}_{\left\langle f_{k}, \boldsymbol{x}\right\rangle} \sim \underbrace{f_{k-1}(\boldsymbol{x})}_{\left\langle f_{k-1}, \boldsymbol{x}\right\rangle}+\underbrace{\left(f_{k}-f_{k-1}\right)}_{\beta} \underbrace{?}_{\left\langle f_{k-1}, \nabla \boldsymbol{x}\right\rangle}
$$

where ? is interpreted as a 'gradient'.

Boosting

Construct iteratively

$$
\begin{aligned}
& m_{k}(\cdot)=m_{k-1}(\cdot)+\underset{h \in \mathcal{H}}{\operatorname{argmin}}\left\{\sum_{i=1}^{n}\left(y_{i}-\left[m_{k-1}\left(\boldsymbol{x}_{i}\right)+h\left(\boldsymbol{x}_{i}\right)\right]\right)^{2}\right\} \\
& \left.m_{k}(\cdot)=m_{k-1}(\cdot)+\underset{h \in \mathcal{H}}{\operatorname{argmin}}\left\{\sum_{i=1}^{n}\left(\left[y_{i}-m_{k-1}\left(\boldsymbol{x}_{i}\right)\right]-h\left(\boldsymbol{x}_{i}\right)\right]\right)^{2}\right\}
\end{aligned}
$$

where $h \in \mathcal{H}$ means that we seek in a class of weak learner functions.
If learner are two strong, the first loop leads to some fixed point, and there is no learning procedure, see linear regression $y=\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{\beta}+\varepsilon$. Since $\varepsilon \perp \boldsymbol{x}$ we cannot learn from the residuals.

In order to make sure that we learn weakly, we can use some shrinkage parameter ν (or collection of parameters ν_{j}).

Boosting with Piecewise Linear Spline \& Stump Functions
Instead of $\varepsilon_{k}=\varepsilon_{k-1}-h_{k}(\boldsymbol{x})$, set $\varepsilon_{k}=\varepsilon_{k-1}-\nu \cdot h_{k}(\boldsymbol{x})$

Remark: bumps are related to regression trees (see 2015 course).

Ruptures

One can use Chow test to test for a rupture. Note that it is simply Fisher test, with two parts,

$$
\boldsymbol{\beta}=\left\{\begin{array} { l }
{ \boldsymbol { \beta } _ { 1 } \text { for } i = 1 , \cdots , i _ { 0 } } \\
{ \boldsymbol { \beta } _ { 2 } \text { for } i = i _ { 0 } + 1 , \cdots , n }
\end{array} \quad \text { and test } \left\{\begin{array}{l}
H_{0}: \boldsymbol{\beta}_{1}=\boldsymbol{\beta}_{2} \\
H_{1}: \boldsymbol{\beta}_{1} \neq \boldsymbol{\beta}_{2}
\end{array}\right.\right.
$$

i_{0} is a point between k and $n-k$ (we need enough observations). Chow (1960) Tests of Equality Between Sets of Coefficients in Two Linear Regressions suggested

$$
F_{i_{0}}=\frac{\widehat{\boldsymbol{\eta}}^{\top} \widehat{\boldsymbol{\eta}}-\widehat{\boldsymbol{\varepsilon}}^{\top} \widehat{\boldsymbol{\varepsilon}}}{\widehat{\boldsymbol{\varepsilon}}^{\top} \widehat{\varepsilon} /(n-2 k)}
$$

where $\widehat{\varepsilon}_{i}=y_{i}-\boldsymbol{x}_{i}^{\boldsymbol{\top}} \widehat{\boldsymbol{\beta}}$, and $\widehat{\eta}_{i}=\left\{\begin{array}{l}Y_{i}-\boldsymbol{x}_{i}^{\boldsymbol{\top}} \widehat{\boldsymbol{\beta}}_{1} \text { for } i=k, \cdots, i_{0} \\ Y_{i}-\boldsymbol{x}_{i}^{\boldsymbol{\top}} \widehat{\boldsymbol{\beta}}_{2} \text { for } i=i_{0}+1, \cdots, n-k\end{array}\right.$

Ruptures

1 > Fstats(dist ~ speed, data=cars,from=7/50)

Ruptures

1 > Fstats (dist ~ speed, data=cars,from=2/50)

Ruptures

If i_{0} is unknown, use CUSUM types of tests, see Ploberger \& Krämer (1992) The Cusum Test with OLS Residuals. For all $t \in[0,1]$, set

$$
W_{t}=\frac{1}{\widehat{\sigma} \sqrt{n}} \sum_{i=1}^{\lfloor n t\rfloor} \widehat{\varepsilon}_{i} .
$$

If α is the confidence level, bounds are generally $\pm \alpha$, even if theoretical bounds should be $\pm \alpha \sqrt{t(1-t)}$.
> cusum <- efp(dist ~ speed, type = "OLS-CUSUM",data=cars)
> plot(cusum,ylim=c(-2,2))
> plot(cusum, alpha = 0.05, alt.boundary = $\operatorname{TRUE}, y \operatorname{lim=c}(-2,2)$)

Ruptures

OLS-based CUSUM test

OLS-based CUSUM test with alternative boundaries

From a Rupture to a Discontinuity

Fig. 3. The plotted line reports the fitted values from a regression of life expectancy on a cubic in latitude using the sample of DSP locations, weighted by the population at each location.

See Imbens \& Lemieux (2008) Regression Discontinuity Designs.

From a Rupture to a Discontinuity

Consider the dataset from Lee (2008) Randomized experiments from non-random selection in U.S. House elections.

1 > library (RDDtools)
$2>\operatorname{data}($ Lee2008)
We want to test if there is a discontinuity in 0.

- with parametric tools
- with nonparametric tools

Testing for a rupture

Use some 4th order polynomial, on each part
$1>\operatorname{idx} 1=($ Lee $2008 \$ \mathrm{x}>0)$
$2>\operatorname{reg} 1=\operatorname{lm}(y \sim \operatorname{poly}(x, 4)$, data=Lee2008[idx1,])
$3>\operatorname{idx} 2=($ Lee $2008 \$ \mathrm{x}<0)$
4 > reg2 $=\operatorname{lm}(y \sim \operatorname{poly}(x, 4)$, data=Lee2008[idx2,])
5 > s1=predict(reg1, newdata=data.frame(x =0))
$6>\operatorname{s2}=$ predict (reg2, newdata=data.frame (x =0))
$7>\operatorname{abs}(\mathrm{s} 1-\mathrm{s} 2)$
8
1

90.07659014

Testing for a rupture

> reg_para <- RDDreg_lm(RDDdataly =
Lee 2008 \$y, $x=$ Lee $2008 \$ x$, cutpoint
$=0$), order $=4$)
$2>r e g _p a r a$
3 \#\#\# RDD regression: parametric \#\#\#
Polynomial order: 4
Slopes: separate
6 Number of obs: 6558 (left: 2740, right: 3818)

Coefficient:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
D $0.0765900 .013239 \quad 5.7851 \quad 7.582 \mathrm{e}-09$

Testing for a rupture

or use a simple local regression, see Imbens \& Kalyanaraman (2012).
> reg1 = ksmooth (Lee2008\$x[idx1],
Lee 2008 \$y[idx1], kernel = "normal", bandwidth = 0.1)
2 > reg2 = ksmooth(Lee2008\$x[idx2],
Lee2008\$y[idx2], kernel = "normal", bandwidth = 0.1)
$3>\mathrm{s} 1=\mathrm{reg} 1 \$ \mathrm{y}[1]$
$4>\mathrm{s} 2=\mathrm{reg} 2 \$ \mathrm{y}[$ length $(\mathrm{reg} 2 \$ \mathrm{y})]$
5 > abs(s1-s2)
6 [1] 0.09883813

Testing for a rupture

> reg_nonpara <- RDDreg_np (RDDobject = Lee2008_ rdd, $b w=.1)$
> print (reg_nonpara)
\#\#\# RDD regression: nonparametric local linear

Bandwidth: 0.1
Number of obs: 1209 (left: 577, right: 632)

Coefficient:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
D $0.059397 \quad 0.014119 \quad 4.2072 .588 \mathrm{e}-05 * * *$

