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Agenda: Small & Big Data

Actuaries (should) have a strong background on econometric models and GLMs.

What can be done on small data?

use of expertise {y1, -+ ,yn} with n small. See also (extremely) rare event

inference, Bayesian Models
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Agenda: Small & Big Data
What can be done on big data?

Massive data, {(y1,x1), -, (Yn, T,)} where & € R¥.

1. the sample size n can be large (asymptotic theory, n — o)

2. the number of explanatory variables k can be large: “the more the merrier”,
There are 2° — 1 models and submodels (hard to test all of them, k& = 30, 1
billion models) and typically requires estimation of the inverse of variance
matrices (complexity O(k?))

3. explanatory variables can be correlated

Note that massive data usually means missing values (sparcity). Answers are
deletetion (delete raws containing missingness), central imputation (mode,

median, mean) or model based imputation.

What can we learn from Machine Learning theory and related techniques?
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Part 1.
Small Data and Bayesian Philosophy

¥ @freakonometrics 5
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“it’s time to adopt modern Bayesian data analysis as standard procedure in our

scientific practice and in our educational curriculum. Three reasons:

1. Scientific disciplines from astronomy to zoology are moving to Bayesian analysis.

We should be leaders of the move, not followers.

. Modern Bayesian methods provide richer information, with greater flexibility and
broader applicability than 20th century methods. Bayesian methods are

intellectually coherent and intuitive.

Bayesian analyses are readily computed with modern software and hardware.

. Null-hypothesis significance testing (NHST), with its reliance on p values, has

many problems.

There is little reason to persist with NHST now that Bayesian methods are accessible

to everyone.

My conclusion from those points is that we should do whatever we can to encourage the

move to Bayesian data analysis.” John Kruschke,

(quoted in Meyers & Guszcza (2013))

¥ ©freakonometrics 6
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Bayes vs. Frequentist, inference on heads/tails

Consider some Bernoulli sample @ = {z1, s, -+ ,x,}, where z; € {0, 1}.
X,’s are i.i.d. B(p) variables, fx(z) = p*[1 —p|'~%, x € {0,1}.
Standard frequentist approach

D= sz = argmln{ ﬁ (x; }

pe(0,1) ~ ;4

L(p;x)

From the central limit theorem
Vn——
vr(l—p)

we can derive an approximated 95% confidence interval

1.96
pi—\/p 1—p

P

5 N(0,1) as n — oo




ARTHUR CHARPENTIER - DATA SCIENCE (FOR ACTUARIES): FROM SMALL TO BIG DATA

Bayes vs. Frequentist, inference on heads/tails

Example out of 1,047 contracts, 159 claimed a loss

—— (True) Binomial Distribution
—— Poisson Approximation
—— Gaussian Approximation

2
Qo
©
Q
o
=
o

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Number of Insured Claiming a Loss
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Small Data and Black Swans

Example |[Operational risk] What if our sample
is = {0,0,0,0,0} ?
How would we derive a confidence interval for p ?

“INA’s chief executive officer, dressed as Santa Claus, how baves’ ccked

asked an unthinkable estion: Could anyone pre-
) AP R AR P ’k;g‘)the enigma code,
dict the probability of two planes colliding in midair?
hunted down russian

Cook, to make a prediction based on no experience submarines & emerQEd
at all. There had never been a serious midair collision triumphant from two )&ﬂ/\

of commercial planes. Without any past experience or centuries of co ntroversy

repetitive experimentation, any orthodox statistician

Santa was asking his chief actuary, L. H. Longley-

had to answer Santa’s question with a resounding no.”

¥ ©freakonometrics 9
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Bayes, the theory that would not die

Liu et al. (1996) claim that “ Statistical methods
with a Bayesian flavor [...] have long been used the theory

in the insurance industry”. that would
not die

History of Bayesian statistics, the theory that would how bayes’ rule cracked
the enigma code,
hunted down russian
submarines, & emerged
triumphant from two
centuries of controversy

not die by Sharon Bertsch McGrayne

“[Arthur] Bailey spent his first year in New York [in
1918] trying to prove to himself that ‘all of the fancy
actuarial [Bayesian| procedures of the casualty busi-
ness were mathematically unsound.” After a year of in-
tense mental struggle, however, realized to his conster-

nation that actuarial sledgehammering worked” |...]

¥ ©freakonometrics 10
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Bayes, the theory that would not die

[...] “ He even preferred it to the elegance of frequen-
tism. He positively liked formulae that described
‘actual data . . . I realized that the hard-shelled un-
derwriters were recognizing certain facts of life ne-
glected by the statistical theorists” He wanted to
give more weight to a large volume of data than
to the frequentists small sample; doing so felt sur-
prisingly ‘logical and reasonable’. He concluded that
only a ‘suicidal’ actuary would use Fishers method
of maximum likelihood, which assigned a zero prob-
ability to nonevents. Since many businesses file no
insurance claims at all, Fishers method would pro-

duce premiums too low to cover future losses.”

¥ ©freakonometrics

arthur bailey

After the Second World War the first public challenge to the anti-Bayesian
status quo came not from the military or university mathematicians and stat-
isticians but from a Bible-quoting business executive named Arthur L. Bailey.

Bailey was an insurance actuary whose father had been fired and black-
balled by every bank in Boston for telling his employers they should not be
lending large sums of money to local politicians. So ostracized was the family
that even Arthur’s schoolmates stopped inviting him and his sister to par-
ties. Turning his back on the New England establishment, Bailey enrolled at
the University of Michigan in Ann Arbor. There he studied statistics in the
mathematics department’s actuarial program, earned a bachelor of science
degree in 1928, and met his wife, Helen, who became an actuary for John
Hancock Mutual Life before their children were born.!

Bailey’s first job was, he liked to say, “in bananas,” that is, in the statistics
department of the United Fruit Company headquarters in Boston. When the
department was eliminated during the Depression, Bailey wound up driving
a fruit truck and chasing escaped tarantulas down Boston streets. He was
lucky to have the job, and his family never lacked for bananas and oranges.

In 1937, after nine years in bananas, Bailey got a job in an unrelated field
in New York City. There he was in charge of setting premium rates to cover
risks involving automobiles, aircraft, manufacturing, burglary, and theft for
the American Mutual Alliance, a consortium of mutual insurance companies.

Preferring church and community connections to the fair-weather
friends of his youth, Bailey hid his growing professional success by living

quietly in unpretentious New York suburbs. He relaxed by gardening, hiking

11
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Bayes’s theorem

Consider some hypothesis H and some evidence E, then

Py (H) = P(H|E) = Mﬁi]?f) B MH)IPJ(I;()E )

Bayes rule,

prior probability P(H )

versus posterior probability after receiving evidence F, Pg(H)

In Bayesian (parametric) statistics, H = {6 € ©} and F = {X = x}.

Bayes’ Theorem,

f(x) [ f(x]|0)m(0)do
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Small Data and Black Swans

Consider sample & = {0,0,0,0,0}.
Here the likelihood is

(:]0) = 6%i[1 — )1~
f(a|f) = 6= (1 - g —="1

and we need a priori distribution 7(-) e.g.
a beta distribution

_ 01— 0)°
~ B(a, B)

ea—l—mTl [1 - Q]B-l-n—mTl

7(6)

m(0lz) = Bla+x™l,0+n—aT1)




ARTHUR CHARPENTIER - DATA SCIENCE (FOR ACTUARIES): FROM SMALL TO BIG DATA

On Bayesian Philosophy, Confidence vs. Credibility

for frequentists, a probability is a measure of the the frequency of repeated events
— parameters are fixed (but unknown), and data are random
for Bayesians, a probability is a measure of the degree of certainty about values

— parameters are random and data are fixed

“Bayesians : Given our observed data, there is a 95% probability that the true value of

0 falls within the credible region

vs. Frequentists : There is a 95% probability that when I compute a confidence interval

from data of this sort, the true value of 6 will fall within it.” in Vanderplas (2014)

Example see Jaynes (1976), e.g. the truncated exponential
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is a 95% confidence interval
of a proportion ? Here * = 159 and n = 1047.

1. draw sets (%1, ,Zn)x wWith X; ~ B(Z/n)

2. compute for each set of values confidence

intervals

. determine the fraction of these confidence

interval that contain x

— the parameter is fixed, and we guarantee
that 95% of the confidence intervals will con-

tain it.
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is 95% credible region of a pro-
portion 7 Here T = 159 and n = 1047.

1. draw random parameters p;p with from the

posterior distribution, 7 (-|x)
2. sample sets (Z1,--- ,Tp)x With X; x ~ B(pg)
3. compute for each set of values means xy

4. look at the proportion of those Ty

that are within this credible region

T-1(.025|x); T (.975| )]

— the credible region is fixed, and we guarantee
that 95% of possible values of T will fall within it
it.

16
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Difficult concepts 7 Difficult computations 7

We have a sample * = {x1, - ,x4) i.i.d. from distribution fy(-).

In predictive modeling, we need E(g(X)|x) = [ 2 fpjo(x)dx where

Fora(@) = flz]z) = / F(x19) - 7 (0)x)d6

How can we derive w(0|x) ?

Can we sample from 7(0|x) (use monte carlo technique to approximate the
integral) ?

Computations not that simple... until the 90’s : MCMC
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Markov Chain

Stochastic process, (X¢):en,, on some discrete space ()
P(Xey1 =yl Xe =2, Xy =z, ) =P(Xey1 = y| Xy =) = P(z,y)

where P is a transition probability, that can be stored in a transition matrix,
P =[P,,] = [P(z,y)].

Observe that P(Xy), = y|X¢ = z) = Pi(z,y) where P* = [P,(z,)].

Under some condition, lim P" = A = [AT],
n—oo

Problem given a distribution A, is it possible to generate a Markov Chain that

converges to this distribution ?
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Bonus Malus and Markov Chains

Ex no-claim bonus, see Lemaire (1995).

HONG KONG
Table B-9. Hong Kong System

Class Premium Class After

]
Claims

Starting class: 6.

Assume that the number of claims is
N ~ P(21.7%), so that P(N = 0) =
80%.
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Hastings-Metropolis
Back to our problem, we want to sample from 7(6|x)
i.e. generate 61, ---,0,,--- from w(0|x).

Hastings-Metropolis sampler will generate a Markov Chain (6;) as follows,

e generate 0
e generate 6* and U ~ U([0,1]),
(60"
W(Qt‘

if U < R set (9t+1 — 0*

compute R =

z) P(6:10%)
ZU) P<9*|9t_1)

if U Z R set 9t+1 — Ht

R is the acceptance ratio, we accept the new state 6* with probability min{1, R}.
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Hastings-Metropolis

Observe that
m(0*) - f(x|0%) P(0:]0%)

N = 6 (@) PO )

In a more general case, we can have a Markov process, not a Markov chain.

E.g. P(6*]6,) ~ N(6;,1)
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Using MCMUC to generate Gaussian values

> metropl <- function(n=1000,eps=0.5){
+ vec <- vector("numeric", n)

+ x=0

+ vec[l] <- x

+ for (i in 2:n) {

+ innov <- runif(1,-eps,eps)

+ mov <- x-+innov

+ aprob <- min(1,dnorm(mov)/dnorm(x))
+ u <- runif(1)

+ if (u < aprob)

+ X <- mov

+ vec|i] <- x

+

+ return(vec)}
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Using MCMC to generate Gaussian values

Histogram of mcmc.out

> plot.mcmc <- function(mcmc.out) {

+ op <- par(mfrow=c(2,2))

+ plot(ts(mcmc.out),col="red")

+ hist(mcmc.out,30,probability=TRUE,

+ col="light blue")

+ lines(seq(-4,4,by=.01),dnorm(seq(-4,4,

+ by=.01)),col="red")

+ qgnorm(mcmc.out)

+ abline(a=mean(mcmc.out),b=sd(mcmc.out))
+ acf(mecmc.out,col="blue",lag.max=100)

+ par(op) }

Normal Q-Q Plot

> metrop.out<-metrop1(10000,1)
> plot.mcmc(metrop.out)

¥ ©freakonometrics 23
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Heuristics on Hastings-Metropolis

In standard Monte Carlo, generate 6;’s i.i.d., then
1 mn
- 29(91) — Elg(0)]
i=1

(strong law of large numbers).

Well-behaved Markov Chains (P aperiodic, irreducible, positive recurrent) can
satisfy some ergodic property, similar to that LLN. More precisely,

e P has a unique stationary distribution A, i.e. A=A X P

e crgodic theorem

R FTONGL.

even if 6;’s are not independent.
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Heuristics on Hastings-Metropolis

Remark The conditions mentioned above are

e aperiodic, the chain does not regularly return to any state in multiples of

some k.

e irreducible, the state can go from any state to any other state in some finite

number of steps

e positively recurrent, the chain will return to any particular state with

probability 1, and finite expected return time
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MCMC and Loss Models

Example A Tweedie model, E(X) = ;4 and Var(X) = ¢ - uP. Here assume that ¢

and p are given, and u is the unknown parameter.
— need a predictive distribution for p given .

Consider the following transition kernel (a Gamma distribution)

/L’,LLt ~ g (ﬂaa)
Q

with E(u|p:) = pe and CV(u) =

Use some a priori distribution, e.g. G («q, Bo)-
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MCMC and Loss Models

e generate iy

e at step t : generate u* ~ G (oz_l,ut,oz) and U ~ U(|0,1]),

m(p*) - fe|p”) Po(pe|0”)
() - f(|0:) Po(0*|0p—1)

if U < R set 6’t+1 — 0

compute R =

if U Z R set Ht—l—l = (975

where
n

f(@lp) = L(uw) = [ | Fl@iln,p,0),

i=1
f(x - |u, p,¢) being the density of the Tweedie distribution, dtweedie function (x, p,
mu, phi) from library(tweedie).
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> p=2; phi=2/5

> set.seed(1) ; X <- rtweedie(50,p,10,phi) Hisogram of meme ot
> metrop2 <- function(n=10000,a0=10, - |
+ b0=1,alpha=1){

+ vec <- vector("numeric", n)

+ mu <- rgamma(1,a0,b0)

+ vec[l] <- mu

+ for (i in 2:n) {

+ mustar <- rgamma(1,vec|i-1]/alpha,alpha)

+ R=prod(dtweedie(X,p,mustar,phi) /dtweedie
+ (X,p,vec[i-1],phi))*dgamma(mustar,a0,b0) / Normal 0- Pl
+ dgamma(vec[i-1],a0,b0)* dgamma(vec[i-1],
+ mustar/alpha,alpha)/dgamma(mustar,

+ vec|[i-1] /alpha,alpha)

+ aprob <- min(1,R)

+ u <- runif(1)

+ ifelse(u < aprob,vec|i]<-mustar,

+ vecli]<-vec[i-1]) }

+ return(vec)}

> metrop.output<-metrop2(10000,alpha=1)

¥ ©freakonometrics 28
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Gibbs Sampler

For a multivariate problem, it is possible to use Gibbs sampler.

Example Assume that the loss ratio of a company has a lognormal distribution,

LN(N: 02)7 -€.8
> LR <- ¢(0.958, 0.614, 0.977, 0.921, 0.756)

Example Assume that we have a sample x from a N (i, 0?). We want the
posterior distribution of @ = (i, 0?) given x . Observe here that if priors are

Gaussian N (pg,72) and the inverse Gamma distribution IG(a,b), them

i

52 2 5272
0
o2 + nr2 02 +n72 " 02 4+ nr2

(o’ w~N( to + T

n

1
-2 2
,u,a:NIG<2+aQE (x; — ] +b>

1=1

\

More generally, we need the conditional distribution of 8|0 _, x, for all k.

> x <- log(LR)
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Gibbs Sampler

Histogram of mcmc.out

> xbar <- mean(x)

> mu <- sigma2=rep(0,10000)

> sigma2[1] <- 1/rgamma(1l,shape=1,rate=1)
> Z <- sigma2[1]/(sigma2[1l]+n*1)

> mu[l] <- rnorm(1,m=Z*0+(1-Z)*xbar,
+ sd=sqrt(1*Z2))

> for (i in 2:10000){

+ Z <- sigma2[i-1]/(sigma2[i-1]+n*1)

+ muli] <- rnorm(1,m=2Z*0+(1-Z)*xbar,
+ sd=sqrt(1*Z))

+ sigma2[i] <- 1/rgamma(l,shape=n/2+1,
+ rate <- (1/2)*(sum((x-muli])"2))+1)

+

Normal Q-Q Plot

¥ Ofreakonometrics 30
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Gibbs Sampler

Example Consider some vector X = (Xq,---, Xy) with indépendent

components, X; ~ £(A;). We sample to sample from X given X 1 > s for some
threshold s > 0.

e start with some starting point @y such that /1 > s

e pick up (randomly) ¢ € {1,--- ,d}

X; given X; > s — az(T_ y1 has an Exponential distribution E(Ai)

1

draw Y ~ E(\;) and set x; =y + (s — w-(r_i)]_)_|_ until €1+ > s

E.g. losses and allocated expenses
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Gibbs Sampler

> sim <- NULL

> lambda <- ¢(1,2)

> X <-¢(3,3)

>s <-5

> for(k in 1:1000){

+ i <- sample(1:2,1)

+ X|[i] <- rexp(1,lambdali])+
+ max(0,s-sum(X[-i]))

+ while(sum(X)<s){

+ X[i] <- rexp(1,lambdali])+
+ max(0,s-sum(X[-i])) }

+ sim <- rbind(sim,X) }
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JAGS and STAN

Martyn Plummer developed JAGS Just another Gibbs sampler in 2007 (stable
since 2013) in library(runjags). It is an open-source, enhanced, cross-platform

version of an earlier engine BUGS (Bayesian inference Using Gibbs Sampling).

STAN library(Rstan) is a newer tool that uses the Hamiltonian Monte Carlo
(HMC) sampler.

HMC uses information about the derivative of the posterior probability density
to improve the algorithm. These derivatives are supplied by algorithm
differentiation in C/C++ codes.
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JAGS on the N (u,o0?) distribution

> library(runjags)

> jags.model <- "

+ model {

+ mu ~ dnorm(mu0, 1/(sigma0”2))
+ g ~ dgamma(kO, theta0)
+sigma<-1/g

+ for (i in 1:n) {

+ logLR[i] ~ dnorm(mu, g"2)

¥ ©freakonometrics

> jags.data <- list(n=length(LR),
+ logLR=log(LR), mu0=-.2, sigma0=0.02,
+ k0=1, theta0=1)

> jags.init <- list(list(mu=log(1.2),
+ g=1/0.5"2),

+ list(mu=log(.8)

+ g=1/.2""2))

> model.out <- autorun.jags(jags.model,
+ data=jags.data, inits=jags.init,

+ monitor=c("mu", "sigma"), n.chains=2)
> traceplot(model.out$mcmc)

> summary(model.out)

34
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STAN on the N (u,0?) distribution

> library(rstan)

> stan.model <- "

+ data {

+ int<lower=0> n;

+ vector[n] LR;

+ real mu0;

+ real<lower=0> sigmaO0;
+ real<lower=0> kO;

+ real<lower=0> theta0;
+ }

+ parameters {

+ real mu;

+ real<lower=0> sigma;
+ }

+ model {

+ mu ~ normal(mu0, sigma0);

+ sigma ~ inv_gamma(k0, theta0);
+ for (i in 1:n)

+ log(LR[i]) ~ normal(mu, sigma);
+ }"

> stan.data <- list(n=length(LR), r=LR, muO=mu0,
+ sigmaO=sigma0, k0=k0, thetaO=theta0)

> stan.out <- stan(model__code=stan.model,

+ data=stan.data, seed=2)

> traceplot(stan.out)

> print(stan.out, digits_summary=2)

¥ Ofreakonometrics 35
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MCMC and Loss Models

Example Consider some simple time series of Loss Ratios,

LRy ~ N(Mta 02) where iy = Qui—1 + &4

E.g. in JAGS we can define the vector p = (1, -+ , ) recursively

+ model {

+ mu[1] ~ dnorm(mu0, 1/(sigma0”2))

- gor (tin 2:T) { mu[t] ~ dnorm(mu[t-1], 1/(sigma0”2)) }
_|_
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MCMC and Claims Reserving

Consider the following (cumulated) triangle, {C; ;},

0 1 2 3 4 D
4372 4411 4428 4435 4456
4659 4696 4720 4730 | 47524
5345 5398 5420 | 5430.1 5455.8
0917 6020 | 6046.1 6057.4 6086.1
6794 | 6871.7 6901.5 6914.3 6947.1

7204.3 7286.7 7318.3 73319 7366.7

1.3809 1.0114  1.0043 1.0018 1.0047
o 0.7248 0.3203 0.04587 0.02570 0.02570

(from Markus Gesmann ’ library(ChainLadder)).
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A Bayesian version of Chain Ladder

1 2 3 4 D
1.362418 1.008920 1.003854 1.001581 1.004735
1.383724 1.007942 1.005111 1.002119
1.380780 1.009916 1.004076
1.395848 1.017407
1.378373

Aj 1.3809 1.0114 1.0043 1.0018 1.0047
o 0.7248 0.3203 0.04587 0.02570 0.02570

Assume that A; j ~ N (,uj, ij )
,J

We can use Gibbs sampler to get the distribution of the transition factors, as well

as a distribution for the reserves,
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> source("http://freakonometrics.free.fr/
triangleCL.R") pstotam of e
> source("http://freakonometrics.free.fr/ ‘
bayesCL.R")

> mcmcCL<-bayesian.triangle(PAID)
plot. mcmc(memcCL$Lambdal,1])
plot.mcmc(mcmcCL$Lambdal[,2])
plot.mcmc(memcCLS$reserves|,6])
plot.mcmc(mcmcCLS$reserves[,7])

>
>
>
>

> library(ChainLadder) Normal 0-0 i
> MCL<-MackChainLadder(PAID)

> m<-sum(MCL$FullTriangle[,6]-

+ diag(MCLS$FullTriangle[,6:1]))

> stdev<-MCL$Total.Mack.S.E

> hist(mcmcCL$reserves[,7],probability=TRUE,
> breaks=20,col="light blue")

> x=seq(2000,3000,by=10)

> y=dnorm(x,m,stdev)

> lines(x,y,col="red")

¥ Ofreakonometrics 39
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A Bayesian analysis of the Poisson Regression Model

In a Poisson regression model, we have a sample (x,y) = {(x;,v;)},

yi ~ P(u;) with log u; = Bo + Br;.

In the Bayesian framework, 3y and 57 are random variables.
Example: for instance library(arm), (see also library(INLA))

The code is very simple : from

> reg<-glm(dist~speed,data=cars,family=poisson)

get used to

> regb <- bayesglm(dist~speed,data=cars,family=poisson)
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A Bayesian analysis of the Poisson Regression Model

> newd <- data.frame(speed=0:30)
> predreg <- predict(reg,newdata=
+ newd,type="response")

> plot(cars,axes)

> lines(newd$speed,predreg,lwd=2)

> library(arm)
betaOl<-coef(sim(regb))

for(i in 1:100){
lines(newd$speed,exp(betaO1[i, 1]+
beta01[i,2]*newd$speed))}

plot.mcmc(beta01[,1])
plot.mcmc(beta01[,2])
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Other alternatives to classical statistics

Consider a regression problem, u(x) = E(Y|X = z), and assume that smoothed

splines are used,

k
p(@) = > Bihi (@)

Let H be the n x k matrix, H = [h;(z;)] = |h(x;)], then B = (H'H)"'H'y,
and
Se(fi(x)) = [h(z)"(H H) 'h(z))75

With a Gaussian assumption on the residuals, we can derive (approximated)

confidence bands for predictions ji(x).
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Smoothed regression with splines

> dtf <- read.table(
+ "http://freakonometrics.free.fr/

theftinsurance.txt",sep=";",
+ header=TRUE)
> names(dtf)<_c(uxu’uy..)

> library(splines)
> reg=Im(y~bs(x,df=4),data=dtf)

> yp=predict(reg,type="response",
+ nerata:neW,interVa|:"COnﬁdence")
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Bayesian interpretation of the regression problem
Assume here that 8 ~ N (0,7X) as the priori distribution for 3.

Then, if (x,y) = {(z;,y;),i = 1,--- ,n}, the posterior distribution of u(x) will be
Gaussian, with

E(u(z)|z,y) = h(z)T (HTH + “—22—1) B H'y

T

T

cov(p(x), p(z|z,y) = h(z)' (HTH + G—E_1> _ h(z')o?

Example X =1
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Bayesian interpretation of the regression problem

> tau <- 100

> sigma <- summary(reg)$sigma

> H=cbind(rep(1,nrow(dtf)),matrix(bs(b$x,

+ df=4),nrow=nrow(dtf)))

> h=cbind(rep(1,nrow(new)),matrix(bs(new$x,
+ df=4),nrow=nrow(new)))

> E=h%*%solve(t(H)%*%H + sigma”2/tau*
+ diag(1,ncol(H)))%*%t(H)%*%dtf$y

> V=h%*%solve(t(H)%*%H + sigma”2/tau*
+ diag(1,ncol(H)))%*% t(h) * sigma”2

> z=E+t(chol(V))%*%rnorm(length(E))

¥ Ofreakonometrics 45



ARTHUR CHARPENTIER - DATA SCIENCE (FOR ACTUARIES): FROM SMALL TO BIG DATA

Bootstrap strategy

Assume that Y = pu(x) + €, and based on the estimated model, generate pseudo

observations, y = u(x;) + €.

Based on (x,y*) = {(x;,y7),t = 1,--- ,n}, derive the estimator u*(*)

(and repeat)
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Bootstrap strategy

> for(b in 1:1000) {

+ i=sample(1:nrow(dtf),size=nrow(dtf),
+ replace=TRUE)

+ regb=Im(y~bs(x,df=4),data=dtf[i,])
+ ypbl[,b]=predict(regb,type="response",
+ newdata=new))

+

Observe that the bootstrap is the Bayesian

case, when 7 — oc.
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Some additional references (on Bayesian Modeling)

Texts in Statistical Science
John K. Kruschke

ﬁmm,,wm.‘ i Bayesian
e : Data Analysis (- n

A Practical Approach | 7 \
to/Computational- 4| Wasviaciam SECOND EDITION A\'e,\
Bayesiam Statistics & Fall'l 1, 4

Doing Bayesian
Data Analysis

Andrew Gelman, John B. Carlin, -~
Hal S. Stern and Donald B. Rubin ¥ ‘@ A Tutorial with R and BUGS
e

g 5 ! " * CHAPMAN & HALL/CRC m \\

Bayesiar Saismics i1 Pyt

the theory ,g\

E o < that would
Christian P. Robert 2 o Eric A. Suess - Bruce E. Trumbo .
George Casella not die 7

The mn hovx{ bayes’ u cracked
Clmke

*=<. the enigma code,
hunted down russian

submarines & emerged
triumphant from two &~
centuries of controversy

4 yum spoyzay ope) auoyy upnponu)

Afteny B, Eorimey
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Part 2.
Big Data and Statistical/Machine Learning
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Econometric Based Models in Actuarial Science

Consider an i.i.d. sample {y1,--- ,yn} with y; € {0,1},

P(Y; = y;) = 7% [1 — 7]'¥, with y; € {0,1}.
where m € [0,1], so that P(Y; = 1) =7 and P(Y; =0) =1 — 7.
The likelihood is

L(m;y) =
and the log-likelihood is
log L(m

The first order condition is

Olog L(m;y




ARTHUR CHARPENTIER - DATA SCIENCE (FOR ACTUARIES): FROM SMALL TO BIG DATA

Econometric Based Models in Actuarial Science
Assume that P(Y; = 1) = 7,

logit(m;) = X8, where logit(m;) = log (1 il ) :

or
exp[X; ]
1 +exp[X, 8]

= logit™ (X}8) =

The log-likelihood is

log £(B) = > _ yilog(m:)+(1—y;) log(1—m;) Zyzlog mi(B))+(1—y;) log(1—mi(B))

and the first order conditions are solved numerically

dlog L(B n
(;gﬂk;( | B z_:Xk’z[yz —mi(B)] = 0.
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Predictive Classification

Let m(x) = E(Y|X = x). With a logistic regression, we can get a prediction

exp|z T B]

m(x) =

P

et exp[x' (]

> fit_glm <- glm(Y X, family=binomial, data=df)
> m_glm <- function(x) {
+ predict( fit_glm,newdata=data.frame(X=x),type="response’) }

Is that the ‘best’ model we can get from the data?
What if n and/or k are very large?

Can’t we use machine learning algorithms? What can statistical learning teach

us?
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Using Information for Predictions

Suppose that the true model is
Yi=X1:8,+X2:8y + €4,
but we estimate the model on X7 (only)

Yi = X101 + 7.

(XX,
(XX,

xly
_1XI[X1,@31 + X908y + €]

)
)
(X1 X1) ' X[ X168, + (X1 X1) ' X[ X8, + (X, X1) ' X e
By (X\X1) IXT X8, + (XTX)) XTe,

VO TV
B12 Vi

Note that if X1 X» =0 (X1 L X5), E(by) = ;.
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On Model Selection

Yi=X1,8, + X285 + &,
Yi = X1,ib1 + ;.

Here Var(e) < Var(n), so R(21 %) = R%l) and log L1 2) > log L 1).
For variable selection, we need to penalize. A standard technique is to penalize a

criteria.

on 9 1 ~ 19
= —5log(2m) +loglo”]] — 5— |Y —VXﬁHJ

SSE

log £(B,52)

in the context of Linear Regression,

B
AIC =nlog o5 + 2dim(X)
n

BIC =nlog S5 F + log[n]dim(X)
n

But it is also possible to derive a penalized estimator...
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Modeling and Predicting

Consider predictions obtained from a linear model and a nonlinear model, either

on the training sample, or on a validation sample,

Training Sample Training Sample Validation Sample Validation Sample
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Risk and Loss Function in Statistical Learning

AN

Consider some loss function, L(6,0) , e.g. a quadratic loss function (/o

regression).

In the frequentist approach, the risk function is given by

AN

R(6,0) = Eq (L(H,H(X))) LL(@,@(X) Py ().

In a Bayesian approach, the expectation is calculated using the posterior

distribution 7* of the parameter 6

R(0,0) = /@ L(0.8)dr* (6).
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Risk and Loss Function in Statistical Learning

Consider here the risk of a model m,,(-).

The true risk is

R, =E(L) ([L(Y, Mn(X)))

The empirical risk is

Can we say something about R,?

1 n
lim — » L(y;, mn(®;)) =7
nggon; (Yis M (24))

\ 7
~~

Ry




ARTHUR CHARPENTIER - DATA SCIENCE (FOR ACTUARIES): FROM SMALL TO BIG DATA

Validation Sample

00 02 O 06 08 0
N .
00 02 O 06 08 0

Vapnik and Consistency

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Here the true model is a standard logistic

> U <- data.frame(X1=runif(n),X2=runif(n))

> USY <- rbinom(n,size=1,prob=(U[,1]4U[,2])/2)
> reg <- glm(Y~X1+X2,data=U,family=binomial)
> pd <- function(x1,x2){

+ predict(reg,newdata=data.frame(X1=x1,X2=x2),
+ type="response")>.5 }

> MissClassU <- mean(abs(pd(U$X1,U$X2)-U$Y))
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Vapnik and Overfitting

We fit some polynomial logistic regression
> reg <- glm(Y poly(X1,s)+poly(X2,s),
+ data=U, family=binomial)

Error Rate

n \/ VCllog(2n/d) + 1] — log[ar/4]

n

with probability 1 — «, where VC denotes the

Vapnik-Chervonenkis dimension.
Here VC = 2(s + 1).

Error Rate

2
=]

01 02 03 04 05

Training Sample Validation Sample

00 02 04 06 08 10 00 02 04 06 0B 10

T T
20 30 40

Vapnik-Chervonenkis Dimension (complexity)

Vapnik—Chervonenkis Dimension (complexity)
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Penalization and Mean Square Error
Consider the quadratic loss function, L(6,0) = (6 — )2, the risk function

becomes the mean squared error of the estimate,

0 —E(0)) +E(E[0] - )

A\ . \ .

WV WV
bias? variance

Get back to the intial example, y; € —0,1", with p =P(Y = 1).

Consider the estimate that minimizes the mse, that can be writen p = (1 — a)y
then

)2p(1 o p)

mse(p) = a’p” + (
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Penalization and Support Vector Machines

SVMs were developed in the 90’s based on previous work, from Vapnik & Lerner
(1963), see also Vailant (1984).

Assume that points are linearly separable, i.e. there is w
and b such that

+lifwlze+b>0

1ifw'z+b<0

Problem: infinite number of solutions, need a good one,

that separate the data, (somehow) far from the data.

maximize the distance s.t. H,, ; separates =1 points, i.e.

" S.1. Yi(wT:Bi +0b0) > 1, Vi.




ARTHUR CHARPENTIER - DATA SCIENCE (FOR ACTUARIES): FROM SMALL TO BIG DATA

Penalization and Support Vector Machines

Define support vectors as observations such that

wla; +b =1

The margin is the distance between hyperplanes defined by

00 02 04 06 08 1.0

support vectors. The distance from support vectors to H,,

is [l ™

Now, what about the non-separable case?

Here, we cannot have y;(w'x; +b) > 1 Vi.
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Penalization and Support Vector Machines

v introduce slack variables,

wle; +b> 41— & when y; = +1

wle, +b< —1+¢&; when y; = —1

where & > 0 Vi. There is a classification error when &; > 1.

The idea is then to solve

e
i
@
o
©
o
<
o
N
o
Q
o

1 1
min —inw -+ ClT1§>1 ", instead of min —inw !

> library(kernlab)
> fit <- ksvm(Y ~ . , data=df)
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Penalization and GLM’s

The logistic regression is based on empirical risk, when y € —0,1"

_% 3" (yiz! B — log[1 + exp(z] B)))
1=1

or,ifye - —1,+1",
1 n
~ > log [1+exp(yiz; B)]

i=1
A regularized version with the £1 norm is the LASSO*logistic regression

% Z log [1 4 exp(yimZ-T,B)] + AIBI1

1=1

or more generaly, with smoothing functions

1 n
- Z log [1 + exp(yig(x:))] + Allgl|
i=1

Least Absolute Shrinkage and Selection Operator.
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Penalization and GLM’s
We should solve

_ 1 .
g = argmin —- > “log[1 + exp(yig(x:))] + Allgl|
9¢ i=1

(o) =i (T mray ~ 1)

Nothing new here.... Machine Learning is simply a “ loose confederation of
themes in statistical inference (and decision-making)”; according to Michael

Jordan, with a focus on prediction.
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Using Bayes Rule on Classification

Consider the (symmetric) missclassification loss function L(y,y) = 1(y # ¥),

where y = m(x)

The (theoritical) risk function

R(m) = E[L(Y, m(X))] = / L(y, m(@))dP(y, ) = B(Y # m(X))

The best classifier would be m* such that
m* = argmin, —E[L(Y, m(X))]” = argmin, —P(Y # m(X))”
which is Bayes (naive) classifier

144

m”(z) = argmin,~PlY = y[X = x|” = argmin, - | P[Xf’i . yl

(where P| X = x| is the density in the continuous case).
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Using Bayes Rule on Classification

In the case where y takes two values,

1
Lif E(Y|X =) > o

0 otherwise

and the set

1
Ds= @ E(Y|X =a)=_"

is called the decision boundary.

P by
1 if r% < 7“(2) + 2log + log —:20:
1

0 otherwise

2 ST 2 _ Ty—1
where 7, is the Manalahobis distance, 7, = [X —p, | 3 7 [X —p,].
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Using Bayes Rule on Classification

1 1
5y(33> — D) log ‘Zy‘ T 9

the decision boundary of this classifier is

(X —p, "2 X — ] +1ogP(Y =)

—x such that dp(x) = 01(x)”

which is quadratic in .

this is the quadratic discriminant analysis.

If 20 = 21, then

5 (@) = 2 S ] — [, ]S ]+ og BY =)

which is linear in x.

this is the quadratic discriminant analysis.
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The difference between LDA and QDA

> fitL <- Ida(y ~ x1 + x2, data=df) > fitQ <- qda(y ~ x1 + x2, data=df)
> pL <- function(u,v) predict(fitL, > pL <- function(u,v) predict(fitQ,

+ newdata=data.frame(x1=u,x2=v) + newdata=data.frame(x1=u,x2=v)
+ )$posterior[,"1"]) + )$posterior[,"1"])

[3) ¢
Q 4 A
o /o/ g & g) 5 o
° SB00 REL L g
of g 6;7,»_,&5&‘50 /e
o "0 ofen g °
o g0
o o 0.0  ©
3 )
0 2% o °

)
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In sample, out of sample, and cross-validation

The training-validation paradigm is well know in statistics, see kernel density

estimation and optimal bandwidth.

The mean squared error for mp(x) is E [(ﬁzh(m) — m(x))*|, for some

meta-parameter h.

The mean integrated squared error is [ mse[my, (x)]dP(x) can be approximated

using its empirical version

ste ZVar X ;)] + bias®[mn (X;)].

—_—

The optimal A would be h* = argmin—mise|my]”
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In sample, out of sample, and cross-validation

Usual bias-variance tradeoff, or Goldilock principle:

h should be neither too small, nor too large
e undersmoothed: bias too large, variance too small

e oversmoothed: variance too large, bias too small

Problem my,(-) is unknown, and my(X;)’s are not independent.

In the Leave-one-out Cross Validation, we use instead my(_;)(X;)’s. We solve

* 1 - ~
h™ = — Z[YZ — mh(_z)(Xz)]Q

n
1=1
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Trees, Forests and Boosting

Create a partition of X = R¥ —Cy,--- ,C,”, and define

1 ,
m§ — argmax TveN Z 1(Y; = v)

J wz'ECj

so that

m(xz) = Zm;ua; c Cy)

Here we seek the optimal partition —Cf, - --

CART algorithm is based on a simple (and fast) technique, for some impurity

index, e.g. Gini index.
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Trees, Forests and Boosting

Gini(P)=— ) PlzeP] PY =0z € P]-P[Y = 1|z € P

Pe-AB,C” 7 R
weight impurity

05
n=50

V < 0.62
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Trees

> gini <- function(y,classe){
+ T=table(y,classe)

+ nx=apply(T,2,sum)

+ n=sum(T)

+ pxy=T /matrix(rep(nx,each

+ =2),nrow=2)

4+
omega=matrix(rep(nx,each
+ =2), nrow=2)/n

+ g=-sum(omega*pxy*

+ (1-pxy))
+ return(g)}
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Bagging : Bootstrap Aggregation

> library(randomForest)
> reg <- randomForest(y~x1+x2,data=df)

B
For classes, m(x) =

For probabliities

Z (b)
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Nonlinearities: Gradient Boosting vs. Splines

A regression problem can be formulated as

m* = argmin -E (L(Y, m(X))) ”
meM

With a parametric model, solve

0* = argmin —E (L(Y,mg(X))) ”
0cOCRK

usually using numerical algorithms...
Consider here an incremental form, 8* = 05 + 07 + - - - + 67.

Standard algorithm is the (steepest) gradient descent, based on the empirical risk.
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Nonlinearities: Gradient Boosting vs. Splines

Start from 0. At step j, 0Y)* = 0% + 6% + - + 6%, then compute

*i1=—VR,(8Y)*) where VR, (0) = [

OR,
00;

and then update 9V TD* = gl)* 4 0%, ,. Finally, 6" = oM)*

In a more general setting, we can do the same to get m*(x). Start from mj(x).
At step 7, mU*(x) = mi(x) + mi(x) + - + m’(x), then compute
m’, () = =V R, (m*(x)) (or sort of).

Here optimization is in a function space. Assume that —VR,,(m)*(0)) is

expressed in a parametric family of bases learner functions, h(-, 8),

0 = argmin -E (L (Y, mU*(x) + h(x, 9))) ”
0cOCRF

Then update mUTH*(z) = m*(x) + h(x, 07).
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Nonlinearities: Gradient Boosting vs. Splines

For the /5 loss function, it is simply based on residual (re)fitting since

[gﬁ:] = zn:wz'[Yz —mU*(X5)]

1=1

In practice, learning should be weak, e.g. tree based learners h(-, 0).

But it is also possible to consider splines smoothers to obtain also good model.
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Nonlinearities

> library(dismo)
> reg <- gbm.step(data=db,gbm.x=1,gbm.y=2,

+ family="gaussian" tree.complexity=>5,

+ learning.rate=0.01,bag.fraction=0.5)

v for linear splines, consider

Yi = Bo+ 51X + B2(X; — s1)4 + B3(Xi — s2)+ + &

> library(splines)
> reg <- Im(y~bs(x),data=df)
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Nonlinearities

> library(dismo)
> reg <- gbm.step(data=db,gbm.x=1,gbm.y=2,

+ family="gaussian" tree.complexity=>5,

+ learning.rate=0.01,bag.fraction=0.5)

v for linear splines, consider

Yi = Bo+ 51X + B2(X; — s1)4 + B3(Xi — s2)+ + &

> library(splines)
> reg <- Im(y~bs(x),data=df)
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Comparing Various Models

Consider simulated data, based on the following
m(xy1,xs) function
> m <- function(x1, x2) { sin(x1+x2)/(x14x2) }

with some additional Gaussian noise

> df <- data.frame(x1=(runif(n, min=1, max=6)),
+ x2=(runif(n, min=1, max=6)))

> df$m=m(df$x1, df$x2)

> df$y=df$m+rnorm(n,sd=.07)
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Comparing Various Models

A standard regression model is not good
> reg <- Im(y~x14x2,data=df)
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Comparing Various Models

... but neither is a regression tree
> reg <- rpart(y~x1+4x2,data=df,method="anova")
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Comparing Various Models

but random forests are nice
> library(randomForest)
> reg <- randomForest(y~x1+x2,data=df)
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Comparing Various Models

and gradient boosting algorithms too

> library(dismo)
> reg <- gbm.step(data=df, gbm.x = 1:2, gbm.y = 4,
+ family = "gaussian", tree.complexity = 5,

+ learning.rate = 0.01, bag.fraction = 0.5)
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Comparing Various Models

But one can also get a nice model with a simple o.o—iﬂ

k-nearest neighbour




ARTHUR CHARPENTIER - DATA SCIENCE (FOR ACTUARIES): FROM SMALL TO BIG DATA

Comparing Various Models

. or using bivariate splines

> library(mgcv)
> reg <- gam(y~s(x1,x2),data=df)
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Comparing Various Models

Econometric models also perform well on a valida-

tion sample (and not only on the training sample). ©
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Some additional references (on Statistical Learning)

Foundations of
Machine Learning UNDERSTANDING

Trevor Hastie

}w@@ = ¢
i S e MACHINE
The Elements of : 3 LEARNING

Statistical Learning

Second Edition

Machine Learning
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Take-Away Conclusion

“People rarely succeed unless they have fun in what they are doing ” D. Carnegie

e on very small datasets, it is possible to use Bayesian tech-
nique to derive robust predictions,

e on extremely large datasets, it is possible to use ideas de-
veloped in machine learning, on regression models (e.g.

boostraping and aggregating)

e all those techniques require computational skills

“the numbers have no way of speaking for themselves. We
speak for them. ... Before we demand more of our data, we

need to demand more of ourselves ” N. Silver, in Silver (2012).
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