#### Data Science (for Actuaries): from Small to Big Data

A. Charpentier (UQAM & Université de Rennes 1)

K.U.Leuven, June 2015.

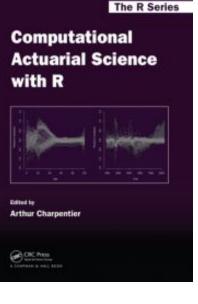
http://freakonometrics.hypotheses.org



#### Data Science (for Actuaries): from Small to Big Data

A. Charpentier (UQAM & Université de Rennes 1)

Professor of Actuarial Sciences, Mathematics Department, UQàM
(previously Economics Department, Univ. Rennes 1 & ENSAE Paristech actuary in Hong Kong, IT & Stats FFSA)
PhD in Statistics (KU Leuven), Fellow Institute of Actuaries
MSc in Financial Mathematics (Paris Dauphine) & ENSAE
Editor of the freakonometrics.hypotheses.org's blog
Editor of Computational Actuarial Science, CRC



## Agenda: Small & Big Data

Actuaries (should) have a strong background on econometric models and GLMs.

#### What can be done on small data?

use of expertise  $\{y_1, \dots, y_n\}$  with *n* small. See also (extremely) rare event inference, Bayesian Models

### Agenda: Small & Big Data

#### What can be done on big data?

Massive data,  $\{(y_1, \boldsymbol{x}_1), \cdots, (y_n, \boldsymbol{x}_n)\}$  where  $\boldsymbol{x} \in \mathbb{R}^k$ .

- 1. the sample size n can be large (asymptotic theory,  $n \to \infty$ )
- 2. the number of explanatory variables k can be large: "the more the merrier". There are  $2^k - 1$  models and submodels (hard to test all of them, k = 30, 1 billion models) and typically requires estimation of the inverse of variance matrices (complexity  $O(k^3)$ )
- 3. explanatory variables can be correlated

Note that massive data usually means missing values (sparcity). Answers are deletetion (delete raws containing missingness), central imputation (mode, median, mean) or model based imputation.

What can we learn from Machine Learning theory and related techniques?

Part 1. Small Data and Bayesian Philosophy "it's time to adopt modern Bayesian data analysis as standard procedure in our scientific practice and in our educational curriculum. Three reasons:

- Scientific disciplines from astronomy to zoology are moving to Bayesian analysis.
   We should be leaders of the move, not followers.
- 2. Modern Bayesian methods provide richer information, with greater flexibility and broader applicability than 20th century methods. Bayesian methods are intellectually coherent and intuitive.

Bayesian analyses are readily computed with modern software and hardware.

3. Null-hypothesis significance testing (NHST), with its reliance on p values, has many problems.

There is little reason to persist with NHST now that Bayesian methods are accessible to everyone.

My conclusion from those points is that we should do whatever we can to encourage the move to Bayesian data analysis." John Kruschke,

(quoted in Meyers & Guszcza (2013))

Bayes vs. Frequentist, inference on heads/tails Consider some Bernoulli sample  $\boldsymbol{x} = \{x_1, x_2, \dots, x_n\}$ , where  $x_i \in \{0, 1\}$ .  $X_i$ 's are i.i.d.  $\mathcal{B}(p)$  variables,  $f_X(x) = p^x [1-p]^{1-x}$ ,  $x \in \{0, 1\}$ . Standard frequentist approach

$$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i = \underset{p \in (0,1)}{\operatorname{argmin}} \left\{ \underbrace{\prod_{i=1}^{n} f_X(x_i)}_{\mathcal{L}(p;\boldsymbol{x})} \right\}$$

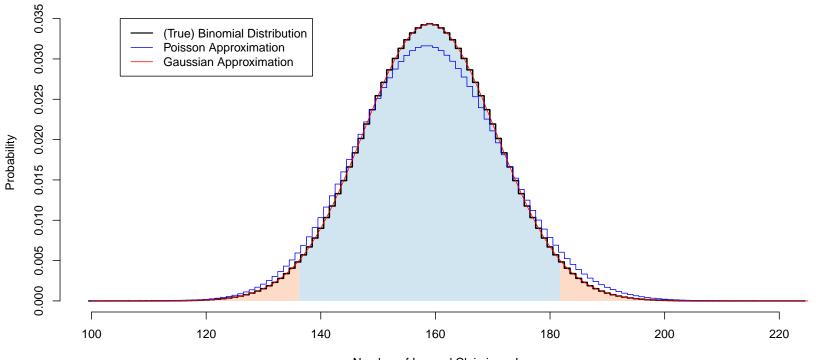
From the central limit theorem

$$\sqrt{n} \frac{\widehat{p} - p}{\sqrt{p(1-p)}} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0,1) \text{ as } n \to \infty$$

we can derive an approximated 95% confidence interval

$$\left[\widehat{p} \pm \frac{1.96}{\sqrt{n}}\sqrt{\widehat{p}(1-\widehat{p})}\right]$$

# Bayes vs. Frequentist, inference on heads/tails Example out of 1,047 contracts, 159 claimed a loss



Number of Insured Claiming a Loss

#### Small Data and Black Swans

**Example** [Operational risk] What if our sample is  $\boldsymbol{x} = \{0, 0, 0, 0, 0\}$ ?

How would we derive a confidence interval for p?

"INA's chief executive officer, dressed as Santa Claus, asked an unthinkable question: Could anyone predict the probability of two planes colliding in midair? Santa was asking his chief actuary, L. H. Longley-Cook, to make a prediction based on no experience at all. There had never been a serious midair collision of commercial planes. Without any past experience or repetitive experimentation, any orthodox statistician had to answer Santa's question with a resounding no."

the theory that would not die 🖉 how bayes' rule cracked the enigma code, hunted down russian submarines & emerged triumphant from two centuries of controversy sharon bertsch mcgrayne

### Bayes, the theory that would not die

Liu et al. (1996) claim that "Statistical methods with a Bayesian flavor [...] have long been used in the insurance industry".

History of Bayesian statistics, the theory that would not die by Sharon Bertsch McGrayne

"[Arthur] Bailey spent his first year in New York [in 1918] trying to prove to himself that 'all of the fancy actuarial [Bayesian] procedures of the casualty business were mathematically unsound.' After a year of intense mental struggle, however, realized to his consternation that actuarial sledgehammering worked" [...]

#### Bayes, the theory that would not die

... "He even preferred it to the elegance of frequentism. He positively liked formulae that described 'actual data . . . I realized that the hard-shelled underwriters were recognizing certain facts of life neglected by the statistical theorists.' He wanted to give more weight to a large volume of data than to the frequentists small sample; doing so felt surprisingly 'logical and reasonable'. He concluded that only a 'suicidal' actuary would use Fishers method of maximum likelihood, which assigned a zero probability to nonevents. Since many businesses file no insurance claims at all, Fishers method would produce premiums too low to cover future losses."

#### **Bayes's theorem**

Consider some hypothesis H and some evidence E, then

$$\mathbb{P}_{E}(H) = \mathbb{P}(H|E) = \frac{\mathbb{P}(H \cap E)}{\mathbb{P}(E)} = \frac{\mathbb{P}(H) \cdot \mathbb{P}(E|H)}{\mathbb{P}(E)}$$

Bayes rule,

prior probability  $\mathbb{P}(H)$ 

versus posterior probability after receiving evidence E,  $\mathbb{P}_E(H) = \mathbb{P}(H|E)$ .

In Bayesian (parametric) statistics,  $H = \{\theta \in \Theta\}$  and  $E = \{X = x\}$ . Bayes' Theorem,

$$\pi(\theta|\boldsymbol{x}) = \frac{\pi(\theta) \cdot f(\boldsymbol{x}|\theta)}{f(\boldsymbol{x})} = \frac{\pi(\theta) \cdot f(\boldsymbol{x}|\theta)}{\int f(\boldsymbol{x}|\theta) \pi(\theta) d\theta} \propto \pi(\theta) \cdot f(\boldsymbol{x}|\theta)$$

#### **Small Data and Black Swans**

Consider sample  $\boldsymbol{x} = \{0, 0, 0, 0, 0\}$ . Here the likelihood is

$$\begin{cases} (x_i|\theta) = \theta^{x_i} [1-\theta]^{1-x_i} \\ f(\boldsymbol{x}|\theta) = \theta^{\boldsymbol{x}^{\mathsf{T}} \mathbf{1}} [1-\theta]^{n-\boldsymbol{x}^{\mathsf{T}} \mathbf{1}} \end{cases}$$

and we need a priori distribution  $\pi(\cdot)$  e.g. a beta distribution

$$\pi(\theta) = \frac{\theta^{\alpha} [1 - \theta]^{\beta}}{B(\alpha, \beta)}$$
$$\pi(\theta | \boldsymbol{x}) = \frac{\theta^{\alpha + \boldsymbol{x}^{\mathsf{T}} \mathbf{1}} [1 - \theta]^{\beta + n - \boldsymbol{x}^{\mathsf{T}} \mathbf{1}}}{B(\alpha + \boldsymbol{x}^{\mathsf{T}} \mathbf{1}, \beta + n - \boldsymbol{x}^{\mathsf{T}} \mathbf{1})}$$

## On Bayesian Philosophy, Confidence vs. Credibility

for frequentists, a probability is a measure of the the frequency of repeated events  $\rightarrow$  parameters are fixed (but unknown), and data are random

for Bayesians, a probability is a measure of the degree of certainty about values  $\rightarrow$  parameters are random and data are fixed

"Bayesians : Given our observed data, there is a 95% probability that the true value of  $\theta$  falls within the credible region

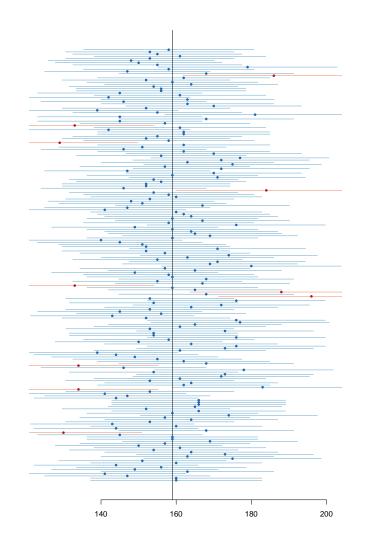
vs. Frequentists : There is a 95% probability that when I compute a confidence interval from data of this sort, the true value of  $\theta$  will fall within it." in Vanderplas (2014)

Example see Jaynes (1976), e.g. the truncated exponential

## On Bayesian Philosophy, Confidence vs. Credibility

**Example** What is a 95% confidence interval of a proportion ? Here  $\overline{x} = 159$  and n = 1047.

- 1. draw sets  $(\tilde{x}_1, \cdots, \tilde{x}_n)_k$  with  $X_i \sim \mathcal{B}(\overline{x}/n)$
- 2. compute for each set of values confidence intervals
- 3. determine the fraction of these confidence interval that contain  $\overline{x}$
- $\rightarrow$  the parameter is fixed, and we guarantee that 95% of the confidence intervals will contain it.



# On Bayesian Philosophy, Confidence vs. Credibility Example What is 95% credible region of a pro-

portion ? Here  $\overline{x} = 159$  and n = 1047.

1. draw random parameters  $p_k$  with from the posterior distribution,  $\pi(\cdot | \boldsymbol{x})$ 

2. sample sets 
$$(\tilde{x}_1, \cdots, \tilde{x}_n)_k$$
 with  $X_{i,k} \sim \mathcal{B}(p_k)$ 

- 3. compute for each set of values means  $\overline{x}_k$
- 4. look at the proportion of those  $\overline{x}_k$ that are within this credible region  $[\Pi^{-1}(.025|\boldsymbol{x});\Pi^{-1}(.975|\boldsymbol{x})]$

 $\rightarrow$  the credible region is fixed, and we guarantee that 95% of possible values of  $\overline{x}$  will fall within it it.

## Difficult concepts ? Difficult computations ?

We have a sample  $\boldsymbol{x} = \{x_1, \dots, x_d\}$  i.i.d. from distribution  $f_{\theta}(\cdot)$ . In predictive modeling, we need  $\mathbb{E}(g(X)|\boldsymbol{x}) = \int x f_{\theta|\boldsymbol{x}}(x) dx$  where

$$f_{\theta|\boldsymbol{x}}(x) = f(x|\boldsymbol{x}) = \int f(x|\theta) \cdot \boldsymbol{\pi}(\theta|\boldsymbol{x}) d\theta$$

How can we derive  $\pi(\theta|\boldsymbol{x})$  ?

Can we sample from  $\pi(\theta|\mathbf{x})$  (use monte carlo technique to approximate the integral) ?

Computations not that simple... until the 90's : MCMC

## Markov Chain

Stochastic process,  $(X_t)_{t\in\mathbb{N}_{\star}}$ , on some discrete space  $\Omega$ 

$$\mathbb{P}(X_{t+1} = y | X_t = x, \underline{X}_{t-1} = \underline{x}_{t-1}) = \mathbb{P}(X_{t+1} = y | X_t = x) = P(x, y)$$

where P is a transition probability, that can be stored in a transition matrix,  $\mathbf{P} = [P_{x,y}] = [P(x,y)].$ 

Observe that  $\mathbb{P}(X_{t+k} = y | X_t = x) = P_k(x, y)$  where  $P^k = [P_k(x, y)].$ 

Under some condition,  $\lim_{n \to \infty} \boldsymbol{P}^n = \boldsymbol{\Lambda} = [\boldsymbol{\lambda}^{\mathsf{T}}],$ 

**Problem** given a distribution  $\lambda$ , is it possible to generate a Markov Chain that converges to this distribution ?

### **Bonus Malus and Markov Chains**

 $\mathbf{Ex}$  no-claim bonus, see Lemaire (1995).

HONG KONG Table B-9. Hong Kong System

| Class | Premium | Class After |             |    |
|-------|---------|-------------|-------------|----|
|       |         | 0           | l<br>Claims | ≥2 |
| 6     | 100     | 5           | 6           | 6  |
| 5     | 80      | 4           | 6           | 6  |
| 4     | 70      | 3           | 6           | 6  |
| 3     | 60      | 2           | 6           | 6  |
| 2     | 50      | 1           | 4           | 6  |
| 1     | 40      | 1           | 3           | 6  |

Starting class: 6.

Assume that the number of claims is  $N \sim \mathcal{P}(21.7\%)$ , so that  $\mathbb{P}(N = 0) = 80\%$ .

## Hastings-Metropolis

Back to our problem, we want to sample from  $\pi(\theta|\boldsymbol{x})$ 

i.e. generate  $\theta_1, \dots, \theta_n, \dots$  from  $\pi(\theta | \boldsymbol{x})$ .

Hastings-Metropolis sampler will generate a Markov Chain  $(\theta_t)$  as follows,

- generate  $\theta_1$
- generate  $\theta^*$  and  $U \sim \mathcal{U}([0,1])$ ,

compute 
$$R = \frac{\pi(\theta^* | \boldsymbol{x})}{\pi(\theta_t | \boldsymbol{x})} \frac{P(\theta_t | \theta^*)}{P(\theta^* | \theta_{t-1})}$$
  
if  $U < R$  set  $\theta_{t+1} = \theta^*$   
if  $U \ge R$  set  $\theta_{t+1} = \theta_t$ 

R is the acceptance ratio, we accept the new state  $\theta^*$  with probability min $\{1, R\}$ .

## **Hastings-Metropolis**

Observe that

$$R = \frac{\pi(\theta^{\star}) \cdot f(\boldsymbol{x}|\theta^{\star})}{\pi(\theta_t) \cdot f(\boldsymbol{x}|\theta_t)} \frac{P(\theta_t|\theta^{\star})}{P(\theta^{\star}|\theta_{t-1})}$$

In a more general case, we can have a Markov process, not a Markov chain. E.g.  $P(\theta^*|\theta_t) \sim \mathcal{N}(\theta_t, 1)$ 

#### Using MCMC to generate Gaussian values

```
> metrop1 <- function(n=1000,eps=0.5){
+ vec <- vector("numeric", n)
+ x = 0
+ vec[1] <- x
+ for (i in 2:n) {
+ innov <- runif(1,-eps,eps)
+ mov <- x+innov
+ aprob <- min(1,dnorm(mov)/dnorm(x))
+ u <- runif(1)
+ if (u < aprob)
+ x < - mov
+ vec[i] <- x
+ \}
+ return(vec)
```

## Using MCMC to generate Gaussian values

- > plot.mcmc <- function(mcmc.out) {
- + op <- par(mfrow=c(2,2))
- + plot(ts(mcmc.out),col="red")
- + hist(mcmc.out,30,probability=TRUE,
- + col="light blue")
- + lines(seq(-4,4,by=.01),dnorm(seq(-4,4,
- + by=.01)),col="red")
- + qqnorm(mcmc.out)
- + abline(a=mean(mcmc.out),b=sd(mcmc.out))
- + acf(mcmc.out,col="blue",lag.max=100)
- + par(op) }
- > metrop.out <-metrop1(10000,1)
- > plot.mcmc(metrop.out)

### **Heuristics on Hastings-Metropolis**

In standard Monte Carlo, generate  $\theta_i$ 's i.i.d., then

$$\frac{1}{n}\sum_{i=1}^{n}g(\theta_{i}) \to \mathbb{E}[g(\theta)] = \int g(\theta)\pi(\theta)d\theta$$

(strong law of large numbers).

Well-behaved Markov Chains ( $\boldsymbol{P}$  aperiodic, irreducible, positive recurrent) can satisfy some ergodic property, similar to that LLN. More precisely,

- **P** has a unique stationary distribution  $\lambda$ , i.e.  $\lambda = \lambda \times \mathbf{P}$
- ergodic theorem

$$\frac{1}{n}\sum_{i=1}^{n}g(\theta_i) \to \int g(\theta)\lambda(\theta)d\theta$$

even if  $\theta_i$ 's are not independent.

## Heuristics on Hastings-Metropolis

 ${\bf Remark}$  The conditions mentioned above are

- aperiodic, the chain does not regularly return to any state in multiples of some k.
- irreducible, the state can go from any state to any other state in some finite number of steps
- positively recurrent, the chain will return to any particular state with probability 1, and finite expected return time

### MCMC and Loss Models

**Example** A Tweedie model,  $\mathbb{E}(X) = \mu$  and  $\operatorname{Var}(X) = \varphi \cdot \mu^p$ . Here assume that  $\varphi$  and p are given, and  $\mu$  is the unknown parameter.

 $\rightarrow$  need a predictive distribution for  $\mu$  given  $\boldsymbol{x}$ .

Consider the following transition kernel (a Gamma distribution)

$$\mu | \mu_t \sim \mathcal{G}\left(\frac{\mu_t}{\alpha}, \alpha\right)$$

with  $\mathbb{E}(\mu|\mu_t) = \mu_t$  and  $\mathrm{CV}(\mu) = \frac{1}{\sqrt{\alpha}}$ .

Use some a priori distribution, e.g.  $\mathcal{G}(\alpha_0, \beta_0)$ .

### MCMC and Loss Models

#### • generate $\mu_1$

• at step 
$$t$$
: generate  $\mu^* \sim \mathcal{G}(\alpha^{-1}\mu_t, \alpha)$  and  $U \sim \mathcal{U}([0, 1])$ ,

compute 
$$R = \frac{\pi(\mu^{\star}) \cdot f(\boldsymbol{x}|\mu^{\star})}{\pi(\mu_t) \cdot f(\boldsymbol{x}|\theta_t)} \frac{P_{\alpha}(\mu_t|\theta^{\star})}{P_{\alpha}(\theta^{\star}|\theta_{t-1})}$$

if 
$$U < R$$
 set  $\theta_{t+1} = \theta^*$ 

if 
$$U \ge R$$
 set  $\theta_{t+1} = \theta_t$ 

where

$$f(\boldsymbol{x}|\boldsymbol{\mu}) = \mathcal{L}(\boldsymbol{\mu}) = \prod_{i=1}^{n} f(x_i|\boldsymbol{\mu}, p, \varphi),$$

 $f(x \cdot | \mu, p, \varphi)$  being the density of the Tweedie distribution, dtweedie function (x, p, mu, phi) from library(tweedie).

```
> p=2; phi=2/5
> set.seed(1) ; X <- rtweedie(50,p,10,phi)</pre>
> metrop2 <- function(n=10000,a0=10,
+ b0=1,alpha=1){
+ vec <- vector("numeric", n)
+ mu <- rgamma(1,a0,b0)
+ vec[1] <- mu
+ for (i in 2:n) {
+ mustar <- rgamma(1,vec[i-1]/alpha,alpha)
+ R=prod(dtweedie(X,p,mustar,phi)/dtweedie
+ (X,p,vec[i-1],phi))*dgamma(mustar,a0,b0)/
+ dgamma(vec[i-1],a0,b0)* dg
+ mustar/alpha,alpha)/dgamma(mustar,
+ vec[i-1]/alpha,alpha)
+ \operatorname{aprob} <- \min(1, \mathbb{R})
+ u <- runif(1)
+ ifelse(u < aprob,vec[i]<-mustar,
+ vec[i]<-vec[i-1]) }
+ return(vec)
> metrop.output<-metrop2(10000,alpha=1)
```

## Gibbs Sampler

For a multivariate problem, it is possible to use Gibbs sampler.

**Example** Assume that the loss ratio of a company has a lognormal distribution,  $LN(\mu, \sigma^2)$ , e.g

> LR <- c(0.958, 0.614, 0.977, 0.921, 0.756)

**Example** Assume that we have a sample  $\boldsymbol{x}$  from a  $\mathcal{N}(\mu, \sigma^2)$ . We want the posterior distribution of  $\boldsymbol{\theta} = (\mu, \sigma^2)$  given  $\boldsymbol{x}$ . Observe here that if priors are Gaussian  $\mathcal{N}(\mu_0, \tau^2)$  and the inverse Gamma distribution IG(a, b), them

$$\begin{aligned} \mu | \sigma^2, \boldsymbol{x} \sim \mathcal{N} \left( \frac{\sigma^2}{\sigma^2 + n\tau^2} \mu_0 + \frac{n\tau^2}{\sigma^2 + n\tau^2} \overline{\boldsymbol{x}}, \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2} \right) \\ \sigma^2 | \mu, \boldsymbol{x} \sim IG \left( \frac{n}{2} + a, \frac{1}{2} \sum_{i=1}^n [x_i - \mu]^2 + b \right) \end{aligned}$$

More generally, we need the conditional distribution of  $\theta_k | \theta_{-k}, x$ , for all k. > x <- log(LR)

## Gibbs Sampler

```
> xbar <- mean(x)
> mu <- sigma2=rep(0,10000)
> sigma2[1] <- 1/rgamma(1,shape=1,rate=1)</pre>
> Z <- sigma2[1]/(sigma2[1]+n*1)
> mu[1] <- rnorm(1,m=Z*0+(1-Z)*xbar,
+ sd = sqrt(1*Z))
> for (i in 2:10000){
+ Z <- sigma2[i-1]/(sigma2[i-1]+n*1)
+ mu[i] <- rnorm(1,m=Z*0+(1-Z)*xbar)
+ sd = sqrt(1*Z))
+ sigma2[i] <- 1/rgamma(1,shape=n/2+1,
+ rate <- (1/2)^*(sum((x-mu[i])^2))+1)
+ }
```

### **Gibbs Sampler**

**Example** Consider some vector  $\mathbf{X} = (X_1, \dots, X_d)$  with indépendent components,  $X_i \sim \mathcal{E}(\lambda_i)$ . We sample to sample from  $\mathbf{X}$  given  $\mathbf{X}^{\mathsf{T}} \mathbf{1} > s$  for some threshold s > 0.

- start with some starting point  $x_0$  such that  $x_0^{\mathsf{T}} \mathbf{1} > s$
- pick up (randomly)  $i \in \{1, \cdots, d\}$

 $X_i$  given  $X_i > s - \boldsymbol{x}_{(-i)}^{\mathsf{T}} \mathbf{1}$  has an Exponential distribution  $\mathcal{E}(\lambda_i)$ 

draw  $Y \sim \mathcal{E}(\lambda_i)$  and set  $x_i = y + (s - \boldsymbol{x}_{(-i)}^{\mathsf{T}} \mathbf{1})_+$  until  $\boldsymbol{x}_{(-i)}^{\mathsf{T}} \mathbf{1} + x_i > s$ 

E.g. losses and allocated expenses



```
> sim <- NULL 
> lambda <- c(1,2) 
> X <- c(3,3) 
> s <- 5 
> for(k in 1:1000){
+ i <- sample(1:2,1) 
+ X[i] <- rexp(1,lambda[i])+ 
+ max(0,s-sum(X[-i])) 
+ while(sum(X)<s){
+ X[i] <- rexp(1,lambda[i])+ 
+ max(0,s-sum(X[-i])) }
+ sim <- rbind(sim,X) }
```

## JAGS and STAN

Martyn Plummer developed JAGS Just another Gibbs sampler in 2007 (stable since 2013) in library(runjags). It is an open-source, enhanced, cross-platform version of an earlier engine BUGS (Bayesian inference Using Gibbs Sampling).

**STAN** library(Rstan) is a newer tool that uses the Hamiltonian Monte Carlo (HMC) sampler.

HMC uses information about the derivative of the posterior probability density to improve the algorithm. These derivatives are supplied by algorithm differentiation in C/C++ codes.

# JAGS on the $\mathcal{N}(\mu, \sigma^2)$ distribution

```
> library(runjags)
> jags.model <- "
+ model {
+ mu ~ dnorm(mu0, 1/(sigma0^2))
+ g ~ dgamma(k0, theta0)
+ sigma <- 1 / g
+ for (i in 1:n) {
+ logLR[i] ~ dnorm(mu, g^2)
+ }
+ }"
```

```
> jags.data <- list(n=length(LR),
+ logLR=log(LR), mu0=-.2, sigma0=0.02,
+ k0=1, theta0=1)
```

```
> jags.init <- list(list(mu=log(1.2),
+ g=1/0.5<sup>^{2}</sup>),
+ list(mu=log(.8),
+ g=1/.2<sup>^{2}</sup>2))
```

```
> model.out <- autorun.jags(jags.model,
+ data=jags.data, inits=jags.init,
+ monitor=c("mu", "sigma"), n.chains=2)
> traceplot(model.out$mcmc)
> summary(model.out)
```

# STAN on the $\mathcal{N}(\mu, \sigma^2)$ distribution

- > library(rstan)
- > stan.model <- "
- $+ data \{$
- + int<lower=0> n;
- + vector[n] LR;
- + real mu0;
- + real<lower=0> sigma0;
- + real<lower=0> k0;
- + real<lower=0> theta0;
- $+ \}$
- + parameters {
- + real mu;
- + real<lower=0> sigma;
- $+ \}$

```
+ model {
+ mu \sim normal(mu0, sigma0);
+ sigma \sim inv_gamma(k0, theta0);
+ for (i in 1:n)
+ log(LR[i]) \sim normal(mu, sigma);
+ }"
```

- > stan.data <- list(n=length(LR), r=LR, mu0=mu0,
- + sigma0=sigma0, k0=k0, theta0=theta0)
- > stan.out <- stan(model\_code=stan.model,</pre>
- + data=stan.data, seed=2)
- > traceplot(stan.out)
- > print(stan.out, digits\_summary=2)

## MCMC and Loss Models

**Example** Consider some simple time series of Loss Ratios,

 $LR_t \sim \mathcal{N}(\mu_t, \sigma^2)$  where  $\mu_t = \phi \mu_{t-1} + \varepsilon_t$ 

E.g. in JAGS we can define the vector  $\boldsymbol{\mu} = (\mu_1, \cdots, \mu_T)$  recursively

```
+ model {
+ mu[1] ~ dnorm(mu0, 1/(sigma0^2))
+ for (t in 2:T) { mu[t] ~ dnorm(mu[t-1], 1/(sigma0^2)) }
+ }
```

# MCMC and Claims Reserving

Consider the following (cumulated) triangle,  $\{C_{i,j}\}$ ,

|                                    |             | 0    | 1      | 2      | 3       | 4       | 5       |  |  |  |  |
|------------------------------------|-------------|------|--------|--------|---------|---------|---------|--|--|--|--|
|                                    | 0           | 3209 | 4372   | 4411   | 4428    | 4435    | 4456    |  |  |  |  |
|                                    | 1           | 3367 | 4659   | 4696   | 4720    | 4730    | 4752.4  |  |  |  |  |
|                                    | 2           | 3871 | 5345   | 5398   | 5420    | 5430.1  | 5455.8  |  |  |  |  |
|                                    | 3           | 4239 | 5917   | 6020   | 6046.1  | 6057.4  | 6086.1  |  |  |  |  |
|                                    | 4           | 4929 | 6794   | 6871.7 | 6901.5  | 6914.3  | 6947.1  |  |  |  |  |
|                                    | 5           | 5217 | 7204.3 | 7286.7 | 7318.3  | 7331.9  | 7366.7  |  |  |  |  |
| $\lambda_{j}$                      | $\lambda_j$ |      | 1.3809 | 1.0114 | 1.0043  | 1.0018  | 1.0047  |  |  |  |  |
| $\sigma_{z}$                       | j           |      | 0.7248 | 0.3203 | 0.04587 | 0.02570 | 0.02570 |  |  |  |  |
| kus Cosmann' library(Chainladdor)) |             |      |        |        |         |         |         |  |  |  |  |

(from Markus Gesmann ' library(ChainLadder)).

# A Bayesian version of Chain Ladder

|                                                                                         | 0 | 1        | 2        | 3        | 4        | 5        |  |  |  |  |
|-----------------------------------------------------------------------------------------|---|----------|----------|----------|----------|----------|--|--|--|--|
| 0                                                                                       |   | 1.362418 | 1.008920 | 1.003854 | 1.001581 | 1.004735 |  |  |  |  |
| 1                                                                                       |   | 1.383724 | 1.007942 | 1.005111 | 1.002119 |          |  |  |  |  |
| 2                                                                                       |   | 1.380780 | 1.009916 | 1.004076 |          |          |  |  |  |  |
| 3                                                                                       |   | 1.395848 | 1.017407 |          | _        |          |  |  |  |  |
| 4                                                                                       |   | 1.378373 |          |          |          |          |  |  |  |  |
| $\lambda_j$                                                                             | 1 | .3809    | 1.0114   | 1.0043   | 1.0018   | 1.0047   |  |  |  |  |
| $\sigma_{j}$                                                                            | 0 | .7248    | 0.3203   | 0.04587  | 0.02570  | 0.02570  |  |  |  |  |
| ssume that $\lambda_{i,j} \sim \mathcal{N}\left(\mu_j, \frac{\tau_j}{C_{i,j}}\right)$ . |   |          |          |          |          |          |  |  |  |  |

We can use Gibbs sampler to get the distribution of the transition factors, as well as a distribution for the reserves,

- > source("http://freakonometrics.free.fr/
  triangleCL.R")
- > source("http://freakonometrics.free.fr/ bayesCL.R")
- > mcmcCL<-bayesian.triangle(PAID)
- > plot.mcmc(mcmcCL\$Lambda[,1])
- > plot.mcmc(mcmcCL\$Lambda[,2])
- > plot.mcmc(mcmcCL\$reserves[,6])
- > plot.mcmc(mcmcCL\$reserves[,7])
- > library(ChainLadder)
- > MCL<-MackChainLadder(PAID)
- > m<-sum(MCL\$FullTriangle[,6]-
- + diag(MCL\$FullTriangle[,6:1]))
- > stdev<-MCL\$Total.Mack.S.E
- > hist(mcmcCL\$reserves[,7],probability=TRUE,
- > breaks=20,col="light blue")
- > x=seq(2000,3000,by=10)
- > y=dnorm(x,m,stdev)
- > lines(x,y,col="red")

# A Bayesian analysis of the Poisson Regression Model

In a Poisson regression model, we have a sample  $(\boldsymbol{x}, \boldsymbol{y}) = \{(x_i, y_i)\},\$ 

$$y_i \sim \mathcal{P}(\mu_i)$$
 with  $\log \mu_i = \beta_0 + \beta_1 x_i$ .

In the Bayesian framework,  $\beta_0$  and  $\beta_1$  are random variables.

**Example:** for instance library(arm), (see also library(INLA))

```
The code is very simple : from
```

```
> reg<-glm(dist~speed,data=cars,family=poisson)
```

get used to

> regb <- bayesglm(dist~speed,data=cars,family=poisson)</pre>

# A Bayesian analysis of the Poisson Regression Model

- > newd <- data.frame(speed=0:30)
- > predreg <- predict(reg,newdata=
- + newd,type="response")
- > plot(cars,axes)
- > lines(newd\$speed,predreg,lwd=2)
- > library(arm)
- > beta01<-coef(sim(regb))
- > for(i in 1:100){
- $> {\sf lines(newd\$speed,exp(beta01[i,1]+$
- > beta01[i,2]\*newd\$speed))
- > plot.mcmc(beta01[,1])
  > plot.mcmc(beta01[,2])

#### Other alternatives to classical statistics

Consider a regression problem,  $\mu(x) = \mathbb{E}(Y|X = x)$ , and assume that smoothed splines are used,

$$\mu(x) = \sum_{i=1}^{k} \beta_j h_j(x)$$

Let  $\boldsymbol{H}$  be the  $n \times k$  matrix,  $\boldsymbol{H} = [h_j(x_i)] = [\boldsymbol{h}(x_i)]$ , then  $\widehat{\boldsymbol{\beta}} = (\boldsymbol{H}^{\mathsf{T}}\boldsymbol{H})^{-1}\boldsymbol{H}^{\mathsf{T}}\boldsymbol{y}$ , and

$$\widehat{\operatorname{se}}(\widehat{\mu}(x)) = [\boldsymbol{h}(x)^{\mathsf{T}} (\boldsymbol{H}^{\mathsf{T}} \boldsymbol{H})^{-1} \boldsymbol{h}(x)]^{\frac{1}{2}} \widehat{\sigma}$$

With a Gaussian assumption on the residuals, we can derive (approximated) confidence bands for predictions  $\hat{\mu}(x)$ .

# Smoothed regression with splines

```
> dtf <- read.table(
+ "http://freakonometrics.free.fr/
theftinsurance.txt",sep=";",
+ header=TRUE)
> names(dtf)<-c("x","y")</pre>
```

```
> library(splines)
> reg=lm(y~bs(x,df=4),data=dtf)
```

```
> yp=predict(reg,type="response",
+ newdata=new,interval="confidence")
```

#### Bayesian interpretation of the regression problem

Assume here that  $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, \tau \boldsymbol{\Sigma})$  as the priori distribution for  $\boldsymbol{\beta}$ .

Then, if  $(\boldsymbol{x}, \boldsymbol{y}) = \{(x_i, y_i), i = 1, \dots, n\}$ , the posterior distribution of  $\mu(\boldsymbol{x})$  will be Gaussian, with

$$\mathbb{E}(\mu(x)|\boldsymbol{x},\boldsymbol{y}) = \boldsymbol{h}(x)^{\mathsf{T}} \left(\boldsymbol{H}^{\mathsf{T}}\boldsymbol{H} + \frac{\sigma^{2}}{\tau}\boldsymbol{\Sigma}^{-1}\right)^{-1} \boldsymbol{H}^{\mathsf{T}}\boldsymbol{y}$$

$$\operatorname{cov}(\mu(x), \mu(x') | \boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{h}(x)^{\mathsf{T}} \left( \boldsymbol{H}^{\mathsf{T}} \boldsymbol{H} + \frac{\sigma^2}{\tau} \boldsymbol{\Sigma}^{-1} \right)^{-1} \boldsymbol{h}(x') \sigma^2$$

#### Example $\Sigma = \mathbb{I}$

# Bayesian interpretation of the regression problem

- > tau  $<\!\!$  100
- > sigma <- summary(reg)\$sigma</pre>
- > H=cbind(rep(1,nrow(dtf)),matrix(bs(b\$x,
- + df=4),nrow=nrow(dtf)))
- > h=cbind(rep(1,nrow(new)),matrix(bs(new\$x,
- + df=4),nrow=nrow(new)))
- > E=h%\*%solve(t(H)%\*%H + sigma^2/tau\*
- + diag(1,ncol(H)))%\*%t(H)%\*%dtf\$y
- > V = h%\*%solve(t(H)%\*%H + sigma<sup>^2</sup>/tau\*
- + diag(1,ncol(H)))%\*% t(h) \* sigma<sup>2</sup>
- > z=E+t(chol(V))%\*%rnorm(length(E))

# **Bootstrap strategy**

Assume that  $Y = \mu(x) + \varepsilon$ , and based on the estimated model, generate pseudo observations,  $y_i^{\star} = \hat{\mu}(x_i) + \hat{\varepsilon}_i^{\star}$ . Based on  $(\boldsymbol{x}, \boldsymbol{y}^{\star}) = \{(x_i, y_i^{\star}), i = 1, \cdots, n\}$ , derive the estimator  $\hat{\mu}^{\star}(\star)$ (and repeat)

# **Bootstrap strategy**

```
> for(b in 1:1000) {
+ i=sample(1:nrow(dtf),size=nrow(dtf),
+ replace=TRUE)
+ regb=lm(y~bs(x,df=4),data=dtf[i,])
+ ypb[,b]=predict(regb,type="response",
+ newdata=new))
+ }
```

Observe that the bootstrap is the Bayesian case, when  $\tau \to \infty$ .

# Some additional references (on Bayesian Modeling)



Part 2. Big Data and Statistical/Machine Learning



#### **Econometric Based Models in Actuarial Science**

Consider an i.i.d. sample  $\{y_1, \dots, y_n\}$  with  $y_i \in \{0, 1\}$ ,

$$\mathbb{P}(Y_i = y_i) = \pi^{y_i} [1 - \pi]^{1 - y_i}, \text{ with } y_i \in \{0, 1\}.$$

where  $\pi \in [0, 1]$ , so that  $\mathbb{P}(Y_i = 1) = \pi$  and  $\mathbb{P}(Y_i = 0) = 1 - \pi$ . The likelihood is

$$\mathcal{L}(\pi; \boldsymbol{y}) = \prod_{i=1}^{n} \mathbb{P}(Y_i = y_i) = \prod_{i=1}^{n} \pi^{y_i} [1 - \pi]^{1 - y_i}$$

and the log-likelihood is

$$\log \mathcal{L}(\pi; \boldsymbol{y}) = \sum_{i=1}^{n} y_i \log[\pi] + (1 - y_i) \log[1 - \pi]$$

The first order condition is

$$\frac{\partial \log \mathcal{L}(\pi; \boldsymbol{y})}{\partial \pi} = \sum_{i=1}^{n} \frac{y_i}{\pi} - \frac{1 - y_i}{1 - \pi} = 0, \text{ i.e. } \pi^* = \overline{y}.$$

Econometric Based Models in Actuarial Science Assume that  $\mathbb{P}(Y_i = 1) = \pi_i$ ,

logit
$$(\pi_i) = \mathbf{X}'_i \boldsymbol{\beta}$$
, where logit $(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right)$ ,

or

$$\pi_i = \text{logit}^{-1}(\boldsymbol{X}'_i \boldsymbol{\beta}) = \frac{\exp[\boldsymbol{X}'_i \boldsymbol{\beta}]}{1 + \exp[\boldsymbol{X}_i^{\mathsf{T}} \boldsymbol{\beta}]}.$$

The log-likelihood is

$$\log \mathcal{L}(\beta) = \sum_{i=1}^{n} y_i \log(\pi_i) + (1 - y_i) \log(1 - \pi_i) = \sum_{i=1}^{n} y_i \log(\pi_i(\beta)) + (1 - y_i) \log(1 - \pi_i(\beta))$$

and the first order conditions are solved numerically

$$\frac{\partial \log \mathcal{L}(\boldsymbol{\beta})}{\partial \beta_k} = \sum_{i=1}^n X_{k,i} [y_i - \pi_i(\boldsymbol{\beta})] = 0.$$

# **Predictive Classification**

Let  $m(\boldsymbol{x}) = \mathbb{E}(Y|\boldsymbol{X} = \boldsymbol{x})$ . With a logistic regression, we can get a prediction

$$\widehat{m}(\boldsymbol{x}) = \frac{\exp[\boldsymbol{x}^{\mathsf{T}}\widehat{\boldsymbol{\beta}}]}{1 + \exp[\boldsymbol{x}^{\mathsf{T}}\widehat{\boldsymbol{\beta}}]}$$

Is that the 'best' model we can get from the data?

```
What if n and/or k are very large?
```

Can't we use machine learning algorithms? What can statistical learning teach us?

### **Using Information for Predictions**

Suppose that the true model is

$$Y_i = \boldsymbol{X}_{1,i}\boldsymbol{\beta}_1 + \boldsymbol{X}_{2,i}\boldsymbol{\beta}_2 + \varepsilon_i,$$

but we estimate the model on  $X_1$  (only)

$$Y_i = \boldsymbol{X}_{1,i} \boldsymbol{b}_1 + \eta_i.$$

$$\widehat{\boldsymbol{b}}_{1} = (\boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{Y} = (\boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} [\boldsymbol{X}_{1,i} \boldsymbol{\beta}_{1} + \boldsymbol{X}_{2,i} \boldsymbol{\beta}_{2} + \varepsilon] = (\boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1} \boldsymbol{\beta}_{1} + (\boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{2} \boldsymbol{\beta}_{2} + (\boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} \varepsilon = \boldsymbol{\beta}_{1} + \underbrace{(\boldsymbol{X}_{1}' \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{2} \boldsymbol{\beta}_{2}}_{\boldsymbol{\beta}_{12}} + \underbrace{(\boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} \varepsilon_{i}}_{\boldsymbol{\nu}_{i}}$$

i.e. 
$$\mathbb{E}(\widehat{\boldsymbol{b}}_1) = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_{12}.$$
  
Note that if  $\boldsymbol{X}_1^{\mathsf{T}} \boldsymbol{X}_2 = \boldsymbol{0} \ (\boldsymbol{X}_1 \perp \boldsymbol{X}_2), \ \mathbb{E}(\widehat{\boldsymbol{b}}_1) = \boldsymbol{\beta}_1$ 

### **On Model Selection**

$$\begin{cases} Y_i = \boldsymbol{X}_{1,i}\boldsymbol{\beta}_1 + \boldsymbol{X}_{2,i}\boldsymbol{\beta}_2 + \varepsilon_i, \quad (1,2) \\ Y_i = \boldsymbol{X}_{1,i}\boldsymbol{b}_1 + \eta_i. \end{cases}$$
(1)

Here  $\operatorname{Var}(\varepsilon) \leq \operatorname{Var}(\eta)$ , so  $R^2_{(1,2)} \geq R^2_{(1)}$  and  $\log \mathcal{L}_{(1,2)} \geq \log \mathcal{L}_{(1)}$ .

For variable selection, we need to penalize. A standard technique is to penalize a criteria.

$$\log \mathcal{L}(\widehat{\beta}, \widehat{\sigma}^2) = -\frac{n}{2} [\log(2\pi) + \log[\widehat{\sigma}^2]] - \frac{1}{2\sigma^2} \underbrace{\|\mathbf{Y} - \mathbf{X}\widehat{\beta}\|^2}_{SSE}$$

in the context of Linear Regression,

$$AIC = n \log \frac{SSE}{n} + 2\dim(\mathbf{X})$$

$$BIC = n \log \frac{SSE}{n} + \log[n] \dim(\mathbf{X})$$

But it is also possible to derive a penalized estimator...

# **Modeling and Predicting**

Consider predictions obtained from a linear model and a nonlinear model, either on the training sample, or on a validation sample,

#### **Risk and Loss Function in Statistical Learning**

Consider some loss function,  $L(\theta, \hat{\theta})$ , e.g. a quadratic loss function ( $\ell_2$  regression).

In the frequentist approach, the risk function is given by

$$R(\theta,\widehat{\theta}) = \mathbb{E}_{\theta}\left(L\big(\theta,\widehat{\theta}(\boldsymbol{X})\big)\right) = \int_{X} L\big(\theta,\widehat{\theta}(\boldsymbol{X}) \ d\mathbb{P}_{\theta}(\boldsymbol{x}).$$

In a Bayesian approach, the expectation is calculated using the posterior distribution  $\pi^*$  of the parameter  $\theta$ 

$$R(\theta,\widehat{\theta}) = \int_{\Theta} L(\theta,\widehat{\theta}) d\pi^{\star}(\theta).$$

#### **Risk and Loss Function in Statistical Learning**

Consider here the risk of a model  $\widehat{m}_n(\cdot)$ .

The true risk is

$$R_n = \mathbb{E}(L)\left(\left[L\left(Y, \widehat{m}_n(\boldsymbol{X})\right)\right) = \int_{\mathcal{Y} \times X} L(y, \widehat{m}_n(\boldsymbol{x})) d\mathbb{P}(y, \boldsymbol{x})\right)$$

The empirical risk is

$$\widehat{R}_n = \frac{1}{n} \sum_{i=1}^n L(y_i, \widehat{m}_n(\boldsymbol{x}_i)))$$

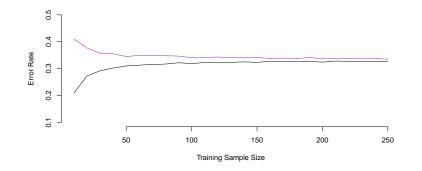
Can we say something about  $\widehat{R}_n$ ?

$$\lim_{n \to \infty} \underbrace{\frac{1}{n} \sum_{i=1}^{n} L(y_i, \widehat{m}_n(\boldsymbol{x}_i))}_{R_n} = ?$$

# Vapnik and Consistency

Here the true model is a standard logistic
> U <- data.frame(X1=runif(n),X2=runif(n))
> U\$Y <- rbinom(n,size=1,prob=(U[,1]+U[,2])/2)
> reg <- glm(Y~X1+X2,data=U,family=binomial)
> pd <- function(x1,x2){
+ predict(reg,newdata=data.frame(X1=x1,X2=x2),
+ type="response")>.5 }
> MiseGle add <- mean(abs(md(U\$X1,U\$X2),U\$X))</pre>

> MissClassU <- mean(abs(pd(U\$X1,U\$X2)-U\$Y))</pre>



# Vapnik and Overfitting

We fit some polynomial logistic regression > reg <- glm(Y poly(X1,s)+poly(X2,s), + data=U, family=binomial)

$$\widehat{R}_n \le R_n + \sqrt{\frac{\operatorname{VC}[\log(2n/d) + 1] - \log[\alpha/4]}{n}}$$

with probability  $1 - \alpha$ , where VC denotes the Vapnik-Chervonenkis dimension. Here VC = 2(s+1).



### **Penalization and Mean Square Error**

Consider the quadratic loss function,  $L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$ , the risk function becomes the mean squared error of the estimate,

$$R(\theta, \hat{\theta}) = \mathbb{E}(\theta - \hat{\theta})^2 = \underbrace{[\theta - \mathbb{E}(\hat{\theta})]^2}_{\text{bias}^2} + \underbrace{\mathbb{E}(\mathbb{E}[\hat{\theta}] - \hat{\theta})^2}_{\text{variance}}$$

Get back to the initial example,  $y_i \in -0, 1''$ , with  $p = \mathbb{P}(Y = 1)$ .

Consider the estimate that minimizes the mse, that can be writen  $\hat{p} = (1 - \alpha)\overline{y}$ , then

mse
$$(\hat{p}) = \alpha^2 p^2 + (1 - \alpha)^2 \frac{p(1 - p)}{n}$$

then 
$$\alpha^{\star} = \frac{1-p}{1+(n-1)p}.$$

# **Penalization and Support Vector Machines**

SVMs were developed in the 90's based on previous work, from Vapnik & Lerner (1963), see also Vailant (1984).

Assume that points are linearly separable, i.e. there is  $\boldsymbol{\omega}$  and b such that

$$Y = - \frac{+1 \text{ if } \boldsymbol{\omega}^{\mathsf{T}} \boldsymbol{x} + b > 0}{-1 \text{ if } \boldsymbol{\omega}^{\mathsf{T}} \boldsymbol{x} + b < 0}$$

Problem: infinite number of solutions, need a good one, that separate the data, (somehow) far from the data.

maximize the distance s.t.  $H_{\boldsymbol{\omega},b}$  separates  $\pm 1$  points, i.e.

$$\min -\frac{1}{2}\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{\omega} \quad \text{s.t.} \quad Y_i(\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{x}_i + b) \ge 1, \ \forall i.$$

# **Penalization and Support Vector Machines**

Define support vectors as observations such that

$$|\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{x}_i + b| = 1$$

The margin is the distance between hyperplanes defined by support vectors. The distance from support vectors to  $H_{\omega,b}$  is  $\|\omega\|^{-1}$ 

Now, what about the non-separable case? Here, we cannot have  $y_i(\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{x}_i + b) \geq 1 \ \forall i$ .

### **Penalization and Support Vector Machines**

 $\widehat{\mathbf{v}}$  introduce slack variables,

$$- \boldsymbol{\omega}^{\mathsf{T}} \boldsymbol{x}_i + b \ge +1 - \xi_i \text{ when } y_i = +1$$
$$\boldsymbol{\omega}^{\mathsf{T}} \boldsymbol{x}_i + b \le -1 + \xi_i \text{ when } y_i = -1$$

where  $\xi_i \ge 0 \ \forall i$ . There is a classification error when  $\xi_i > 1$ .

The idea is then to solve

$$\min -\frac{1}{2}\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{\omega} + \boldsymbol{C}\mathbf{1}^{\mathsf{T}}\mathbf{1}_{\boldsymbol{\xi}>1} \ ", \text{ instead of } \min -\frac{1}{2}\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{\omega} \ "$$

> library(kernlab)

 $> fit <- ksvm(Y \sim$  . , data=df)

### Penalization and GLM's

The logistic regression is based on empirical risk, when  $y\in -0,1''$ 

$$-\frac{1}{n}\sum_{i=1}^{n} \left( y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta} - \log[1 + \exp(\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta})] \right)$$

or, if  $y \in --1, +1''$ ,

$$\frac{1}{n}\sum_{i=1}^{n}\log\left[1+\exp(y_{i}\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta})\right].$$

A regularized version with the  $\ell_1$  norm is the LASSO\*logistic regression

$$\frac{1}{n} \sum_{i=1}^{n} \log \left[ 1 + \exp(y_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}) \right] + \lambda \|\boldsymbol{\beta}\|_1$$

or more generaly, with smoothing functions

$$\frac{1}{n}\sum_{i=1}^{n}\log\left[1+\exp(y_{i}g(\boldsymbol{x}_{i}))\right]+\lambda\|g\|$$

 $\star$  Least Absolute Shrinkage and Selection Operator.

# Penalization and GLM's

We should solve

$$\widehat{g} = \underset{g \in \mathcal{G}}{\operatorname{argmin}} - \frac{1}{n} \sum_{i=1}^{n} \log \left[ 1 + \exp(y_i g(\boldsymbol{x}_i)) \right] + \lambda \|g\|$$

Then

$$\widehat{m}(\boldsymbol{x}) = \operatorname{sign}\left(\frac{1}{1 + \exp[-\widehat{g}(\boldsymbol{x}])} - \frac{1}{2}\right).$$

Nothing new here.... Machine Learning is simply a "loose confederation of themes in statistical inference (and decision-making)", according to Michael Jordan, with a focus on prediction.

# Using Bayes Rule on Classification

Consider the (symmetric) missclassification loss function  $L(y, \hat{y}) = \mathbf{1}(y \neq \hat{y})$ , where  $\hat{y} = m(\mathbf{x})$ 

The (theoritical) risk function

$$R(m) = \mathbb{E}[L(Y, m(\boldsymbol{X}))] = \int L(y, m(\boldsymbol{x})) d\mathbb{P}(y, \boldsymbol{x}) = \mathbb{P}(Y \neq m(\boldsymbol{X}))$$

The best classifier would be  $m^{\star}$  such that

$$m^{\star} = \operatorname{argmin}_{m} - \mathbb{E}[L(Y, m(\boldsymbol{X}))]'' = \operatorname{argmin}_{m} - \mathbb{P}(Y \neq m(\boldsymbol{X}))''$$

which is Bayes (naive) classifier

$$m^{\star}(\boldsymbol{x}) = \operatorname{argmin}_{y} - \mathbb{P}[Y = y | \boldsymbol{X} = \boldsymbol{x}]'' = \operatorname{argmin}_{y} - \frac{\mathbb{P}[\boldsymbol{X} = \boldsymbol{x} | Y = y]}{\mathbb{P}[\boldsymbol{X} = \boldsymbol{x}]}$$
"

(where  $\mathbb{P}[X = x]$  is the density in the continuous case).

# Using Bayes Rule on Classification

In the case where y takes two values,

$$m^{\star}(\boldsymbol{x}) = - \begin{array}{c} 1 \text{ if } \mathbb{E}(Y|\boldsymbol{X} = \boldsymbol{x}) > rac{1}{2} \\ 0 \text{ otherwise} \end{array}$$

and the set

$$\mathcal{D}_S = -\boldsymbol{x}, \mathbb{E}(Y|\boldsymbol{X} = \boldsymbol{x}) = rac{1}{2}$$
"

is called the decision boundary.

$$m^{\star}(\boldsymbol{x}) = - \begin{array}{c} 1 \text{ if } r_1^2 < r_0^2 + 2\log \frac{\mathbb{P}(Y=1)}{\mathbb{P}(Y=0)} + \log \frac{|\boldsymbol{\Sigma}_0|}{|\boldsymbol{\Sigma}_1|} \\ 0 \text{ otherwise} \end{array}$$

where  $r_y^2$  is the Manalahobis distance,  $r_y^2 = [\mathbf{X} - \boldsymbol{\mu}_y]^{\mathsf{T}} \boldsymbol{\Sigma}_y^{-1} [\mathbf{X} - \boldsymbol{\mu}_y]$ .

### Using Bayes Rule on Classification

If

$$\delta_y(\boldsymbol{x}) = -\frac{1}{2} \log |\boldsymbol{\Sigma}_y| - \frac{1}{2} [\boldsymbol{X} - \boldsymbol{\mu}_y]^{\mathsf{T}} \boldsymbol{\Sigma}_y^{-1} [\boldsymbol{X} - \boldsymbol{\mu}_y] + \log \mathbb{P}(Y = y)$$

the decision boundary of this classifier is

$$-oldsymbol{x}$$
 such that  $\delta_0(oldsymbol{x})=\delta_1(oldsymbol{x})$ "

which is quadratic in  $\boldsymbol{x}$ .

this is the quadratic discriminant analysis.

If  $\Sigma_0 = \Sigma_1$ , then

$$\delta_y(\boldsymbol{x}) = [\boldsymbol{x}]^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}[\boldsymbol{\mu}_y] - \frac{1}{2} [\boldsymbol{\mu}_y]^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}[\boldsymbol{\mu}_y] + \log \mathbb{P}(Y = y)$$

which is linear in  $\boldsymbol{x}$ .

this is the quadratic discriminant analysis.

# The difference between LDA and QDA

- > pL <- function(u,v) predict(fitL,</p>
- + newdata=data.frame(x1=u,x2=v)
- + )\$posterior[,"1"])

> fitL <- Ida(y  $\sim$  x1 + x2, data=df) > fitQ <- qda(y  $\sim$  x1 + x2, data=df)

- > pL <- function(u,v) predict(fitQ,
- + newdata=data.frame( $\times 1=u, \times 2=v$ )
- + )\$posterior[,"1"])

## In sample, out of sample, and cross-validation

The training-validation paradigm is well know in statistics, see kernel density estimation and optimal bandwidth.

The mean squared error for  $\widehat{m}_h(\boldsymbol{x})$  is  $\mathbb{E}\left[\left(\widehat{m}_h(\boldsymbol{x}) - m(\boldsymbol{x})\right)^2\right]$ , for some meta-parameter h.

The mean integrated squared error is  $\int \text{mse}[\hat{m}_h(\boldsymbol{x})]d\mathbb{P}(\boldsymbol{x})$  can be approximated using its empirical version

$$\widehat{\text{mise}}[\widehat{m}_h] = \frac{1}{n} \sum_{i=1}^n \text{mse}[\widehat{m}_h(\boldsymbol{X}_i)] = \frac{1}{n} \sum_{i=1}^n \text{Var}[\widehat{m}_h(\boldsymbol{X}_i)] + \text{bias}^2[\widehat{m}_h(\boldsymbol{X}_i)].$$

The optimal h would be  $h^* = \operatorname{argmin}-\widehat{\operatorname{mise}}[\widehat{m}_h]''$ 

# In sample, out of sample, and cross-validation

Usual bias-variance tradeoff, or Goldilock principle: h should be neither too small, nor too large

- **undersmoothed**: bias too large, variance too small
- oversmoothed: variance too large, bias too small



**Problem**  $m_h(\cdot)$  is unknown, and  $\widehat{m}_h(X_i)$ 's are not independent.

In the Leave-one-out Cross Validation, we use instead  $\widehat{m}_{h(-i)}(X_i)$ 's. We solve

$$h^{\star} = \frac{1}{n} \sum_{i=1}^{n} [Y_i - \widehat{m}_{h(-i)}(\boldsymbol{X}_i)]^2$$

# Trees, Forests and Boosting

Create a partition of  $\mathcal{X} = \mathbb{R}^k, -C_1, \cdots, C_q$ ", and define

$$m_j^{\star} = \operatorname{argmax} -\frac{1}{\#C_j} \sum_{\boldsymbol{x}_i \in C_j} \mathbf{1}(Y_i = y) "$$

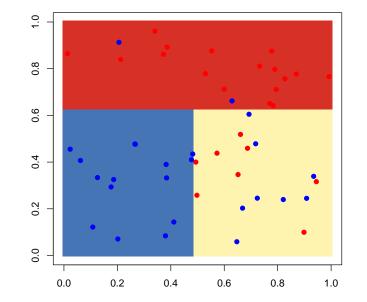
so that

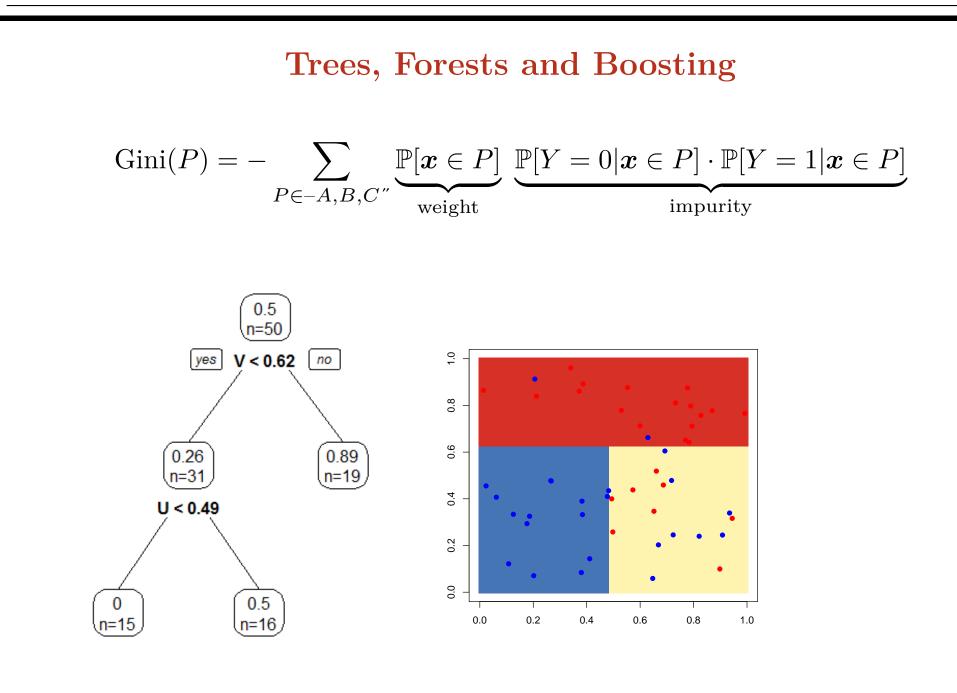
$$\widehat{m}(\boldsymbol{x}) = \sum_{j} m_{j}^{\star} \mathbf{1}(\boldsymbol{x} \in C_{j})$$

Here we seek the optimal partition  $-C_1, \cdots, C_q$ ".

CART algorithm is based on a simple (and fast) technique, for some impurity index, e.g. Gini index.

72



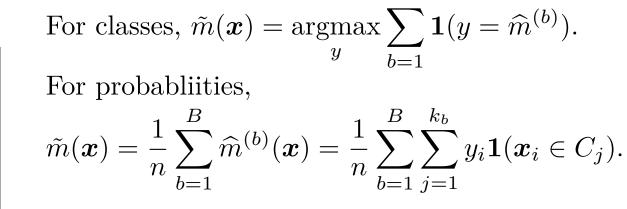


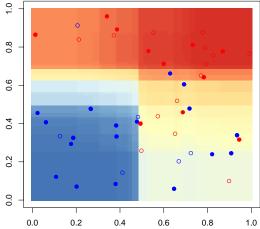
#### Trees

> gini <- function(y,classe){</pre> + T=table(y,classe) + nx = apply(T, 2, sum)+ n = sum(T)+ pxy=T/matrix(rep(nx,each +=2),nrow=2) +omega=matrix(rep(nx,each +=2), nrow=2)/n+ g=-sum(omega\*pxy\* + (1-pxy))+ return(g)}

#### **Bagging : Bootstrap Aggregation**

> library(randomForest)
> reg <- randomForest(y~x1+x2,data=df)</pre>





## Nonlinearities: Gradient Boosting vs. Splines

A regression problem can be formulated as

$$m^{\star} = \operatorname*{argmin}_{m \in \mathcal{M}} - \mathbb{E} \left( L(Y, m(X)) \right)$$
"

With a parametric model, solve

$$\boldsymbol{\theta}^{\star} = \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^{k}} - \mathbb{E} \left( L(Y, m_{\boldsymbol{\theta}}(\boldsymbol{X})) \right)$$

usually using numerical algorithms...

Consider here an incremental form,  $\boldsymbol{\theta}^{\star} = \boldsymbol{\theta}_{0}^{\star} + \boldsymbol{\theta}_{1}^{\star} + \cdots + \boldsymbol{\theta}_{M}^{\star}$ .

Standard algorithm is the (steepest) gradient descent, based on the empirical risk.

#### Nonlinearities: Gradient Boosting vs. Splines

Start from  $\theta_0^{\star}$ . At step j,  $\theta^{(j)\star} = \theta_0^{\star} + \theta_1^{\star} + \cdots + \theta_j^{\star}$ , then compute

$$\boldsymbol{\theta}_{j+1}^{\star} = -\nabla R_n(\boldsymbol{\theta}^{(j)\star}) \text{ where } \nabla R_n(\boldsymbol{\theta}) = \left[\frac{\partial R_n}{\partial \boldsymbol{\theta}_i}\right]$$

and then update  $\theta^{(j+1)\star} = \theta^{(j)\star} + \theta^{\star}_{j+1}$ . Finally,  $\theta^{\star} = \theta^{(M)\star}$ .

In a more general setting, we can do the same to get  $m^{\star}(\boldsymbol{x})$ . Start from  $m_{0}^{\star}(\boldsymbol{x})$ . At step j,  $m^{(j)\star}(\boldsymbol{x}) = m_{0}^{\star}(\boldsymbol{x}) + m_{1}^{\star}(\boldsymbol{x}) + \cdots + m_{j}^{\star}(\boldsymbol{x})$ , then compute  $m_{j+1}^{\star}(\boldsymbol{x}) = -\nabla R_{n}(m^{(j)\star}(\boldsymbol{x}))$  (or sort of).

Here optimization is in a function space. Assume that  $-\nabla R_n(m^{(j)\star}(\boldsymbol{\theta}))$  is expressed in a parametric family of bases learner functions,  $h(\cdot, \boldsymbol{\theta})$ ,

$$\boldsymbol{\theta}_{j}^{\star} = \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^{k}} - \mathbb{E}\left(L\left(Y, m^{(j)\star}(\boldsymbol{x}) + h(\boldsymbol{x}, \boldsymbol{\theta})\right)\right) "$$

Then update  $m^{(j+1)\star}(\boldsymbol{x}) = m^{(j)\star}(\boldsymbol{x}) + h(\boldsymbol{x}, \boldsymbol{\theta}_j^{\star}).$ 

### Nonlinearities: Gradient Boosting vs. Splines

For the  $\ell_2$  loss function, it is simply based on residual (re)fitting since

$$\left[\frac{\partial R_n}{\partial \boldsymbol{\theta}_k}\right] = \sum_{i=1}^n \omega_i [Y_i - m^{(j)\star}(\boldsymbol{X}_i)]$$

In practice, learning should be weak, e.g. tree based learners  $h(\cdot, \theta)$ .

But it is also possible to consider splines smoothers to obtain also good model.

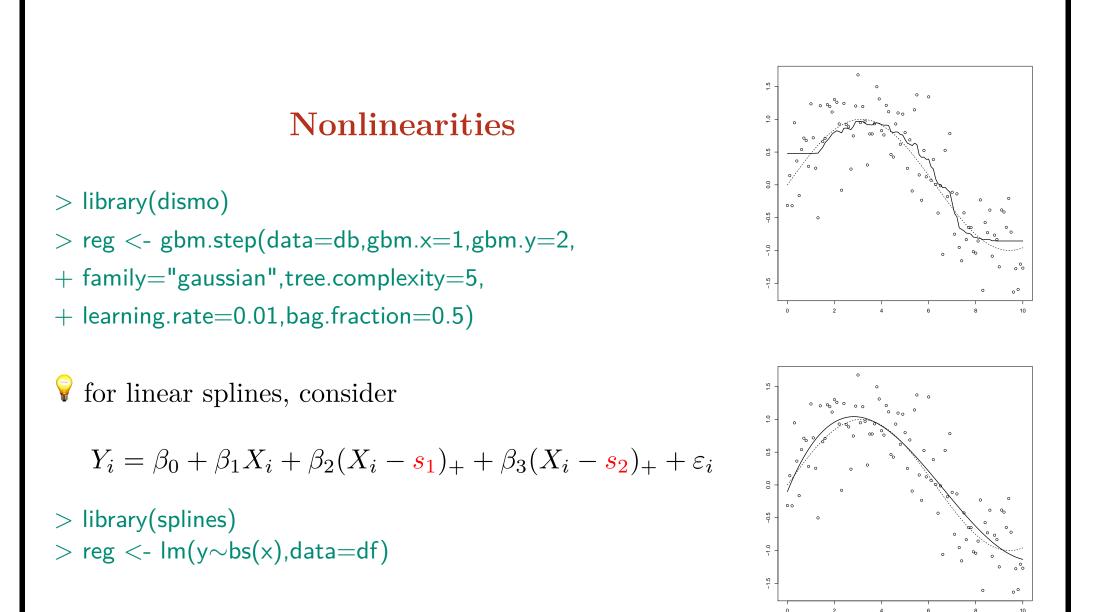
# Nonlinearities

- > library(dismo)
- > reg <- gbm.step(data=db,gbm.x=1,gbm.y=2,
- + family="gaussian",tree.complexity=5,
- + learning.rate=0.01,bag.fraction=0.5)

 $\mathbf{\widehat{v}}$  for linear splines, consider

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 (X_i - \mathbf{s_1})_+ + \beta_3 (X_i - \mathbf{s_2})_+ + \varepsilon_i$$

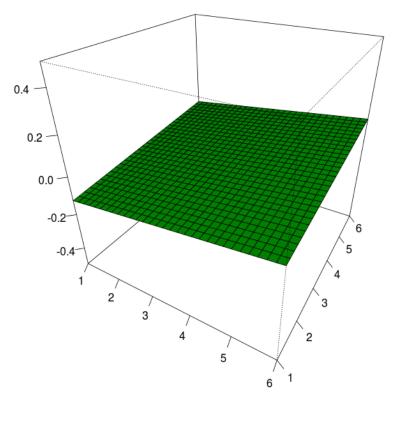
> library(splines)
> reg <- lm(y~bs(x),data=df)</pre>



Consider simulated data, based on the following  $m(x_1, x_2)$  function > m <- function(x1, x2) { sin(x1+x2)/(x1+x2) }

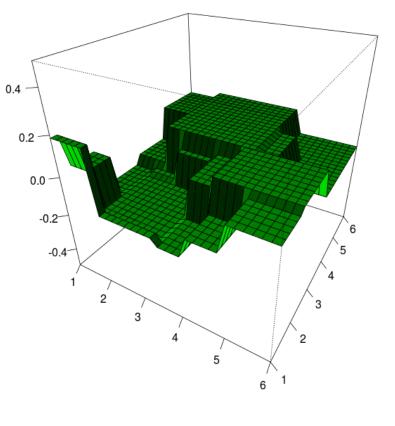
with some additional Gaussian noise > df <- data.frame(x1=(runif(n, min=1, max=6)), + x2=(runif(n, min=1, max=6))) > df\$m=m(df\$x1, df\$x2) > df\$y=df\$m+rnorm(n,sd=.07)

A standard regression model is not good > reg <- lm(y~x1+x2,data=df)

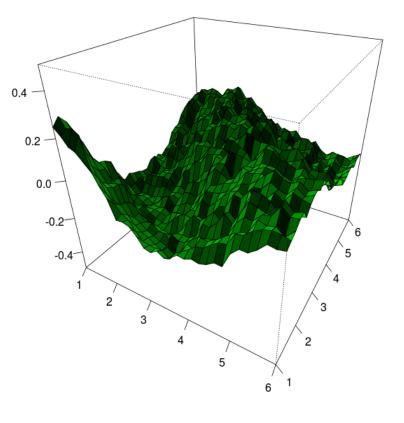


... but neither is a regression tree

> reg <- rpart(y~x1+x2,data=df,method="anova")</pre>



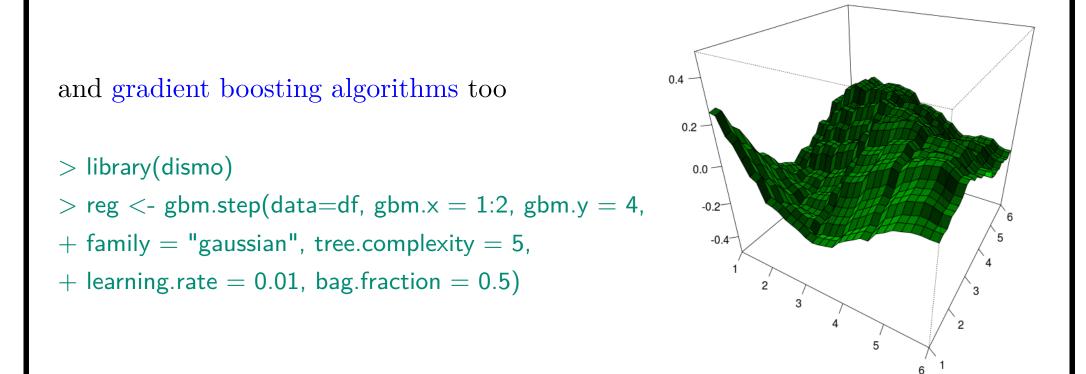




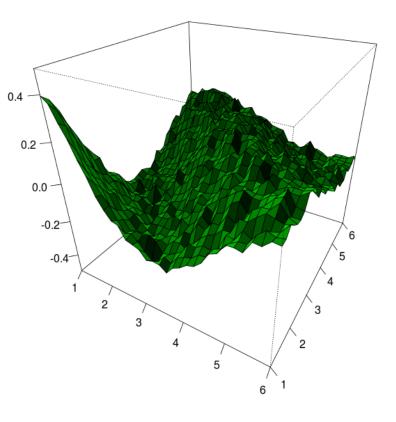
but random forests are nice

> library(randomForest)

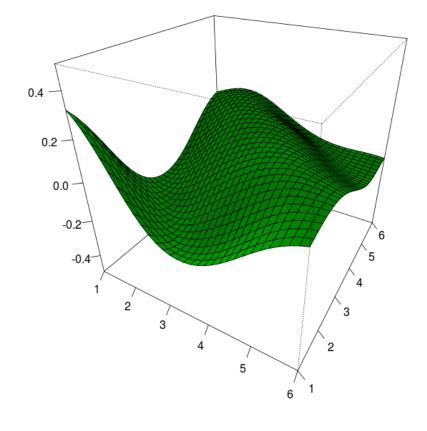
> reg <- randomForest(y~x1+x2,data=df)</pre>



But one can also get a nice model with a simple k-nearest neighbour







... or using bivariate splines

> library(mgcv)

 $> reg <- gam(y \sim s(x1,x2),data=df)$ 

Econometric models also perform well on a validation sample (and not only on the training sample).

## Some additional references (on Statistical Learning)



## **Take-Away Conclusion**

"People rarely succeed unless they have fun in what they are doing " D. Carnegie

- on very small datasets, it is possible to use Bayesian technique to derive robust predictions,
- on extremely large datasets, it is possible to use ideas developed in machine learning, on regression models (e.g. boostraping and aggregating)
- all those techniques require computational skills

"the numbers have no way of speaking for themselves. We speak for them. ... Before we demand more of our data, we need to demand more of ourselves " N. Silver, in Silver (2012).

