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Agenda: Small & Big Data

Actuaries (should) have a strong background on econometric models and GLMs.

What can be done on small data?

use of expertise {y1, · · · , yn} with n small. See also (extremely) rare event
inference, Bayesian Models
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Agenda: Small & Big Data
What can be done on big data?

Massive data, {(y1,x1), · · · , (yn,xn)} where x ∈ Rk.

1. the sample size n can be large (asymptotic theory, n→∞)

2. the number of explanatory variables k can be large: “the more the merrier”.
There are 2k − 1 models and submodels (hard to test all of them, k = 30, 1
billion models) and typically requires estimation of the inverse of variance
matrices (complexity O(k3))

3. explanatory variables can be correlated

Note that massive data usually means missing values (sparcity). Answers are
deletetion (delete raws containing missingness), central imputation (mode,
median, mean) or model based imputation.

What can we learn from Machine Learning theory and related techniques?
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Part 1.
Small Data and Bayesian Philosophy
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“it’s time to adopt modern Bayesian data analysis as standard procedure in our
scientific practice and in our educational curriculum. Three reasons:

1. Scientific disciplines from astronomy to zoology are moving to Bayesian analysis.
We should be leaders of the move, not followers.

2. Modern Bayesian methods provide richer information, with greater flexibility and
broader applicability than 20th century methods. Bayesian methods are
intellectually coherent and intuitive.
Bayesian analyses are readily computed with modern software and hardware.

3. Null-hypothesis significance testing (NHST), with its reliance on p values, has
many problems.
There is little reason to persist with NHST now that Bayesian methods are accessible
to everyone.

My conclusion from those points is that we should do whatever we can to encourage the
move to Bayesian data analysis.” John Kruschke,

(quoted in Meyers & Guszcza (2013))
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Bayes vs. Frequentist, inference on heads/tails
Consider some Bernoulli sample x = {x1, x2, · · · , xn}, where xi ∈ {0, 1}.

Xi’s are i.i.d. B(p) variables, fX(x) = px[1− p]1−x, x ∈ {0, 1}.

Standard frequentist approach

p̂ = 1
n

n∑
i=1

xi = argmin
p∈(0,1)

{ n∏
i=1

fX(xi)︸ ︷︷ ︸
L(p;x)

}

From the central limit theorem
√
n

p̂− p√
p(1− p)

L→ N (0, 1) as n→∞

we can derive an approximated 95% confidence interval[
p̂± 1.96√

n

√
p̂(1− p̂)

]
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Bayes vs. Frequentist, inference on heads/tails
Example out of 1,047 contracts, 159 claimed a loss
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Small Data and Black Swans

Example [Operational risk] What if our sample
is x = {0, 0, 0, 0, 0} ?
How would we derive a confidence interval for p ?

“INA’s chief executive officer, dressed as Santa Claus,
asked an unthinkable question: Could anyone pre-
dict the probability of two planes colliding in midair?
Santa was asking his chief actuary, L. H. Longley-
Cook, to make a prediction based on no experience
at all. There had never been a serious midair collision
of commercial planes. Without any past experience or
repetitive experimentation, any orthodox statistician
had to answer Santa’s question with a resounding no.”
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Bayes, the theory that would not die

Liu et al. (1996) claim that “ Statistical methods
with a Bayesian flavor [...] have long been used
in the insurance industry”.

History of Bayesian statistics, the theory that would
not die by Sharon Bertsch McGrayne

“[Arthur] Bailey spent his first year in New York [in
1918] trying to prove to himself that ‘all of the fancy
actuarial [Bayesian] procedures of the casualty busi-
ness were mathematically unsound.’ After a year of in-
tense mental struggle, however, realized to his conster-
nation that actuarial sledgehammering worked” [...]
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Bayes, the theory that would not die

[...] “ He even preferred it to the elegance of frequen-
tism. He positively liked formulae that described
‘actual data . . . I realized that the hard-shelled un-
derwriters were recognizing certain facts of life ne-
glected by the statistical theorists.’ He wanted to
give more weight to a large volume of data than
to the frequentists small sample; doing so felt sur-
prisingly ‘logical and reasonable’. He concluded that
only a ‘suicidal’ actuary would use Fishers method
of maximum likelihood, which assigned a zero prob-
ability to nonevents. Since many businesses file no
insurance claims at all, Fishers method would pro-
duce premiums too low to cover future losses.”
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Bayes’s theorem
Consider some hypothesis H and some evidence E, then

PE(H) = P(H|E) = P(H ∩ E)
P(E) = P(H) · P(E|H)

P(E)

Bayes rule, prior probability P(H)
versus posterior probability after receiving evidence E, PE(H) = P(H|E).

In Bayesian (parametric) statistics, H = {θ ∈ Θ} and E = {X = x}.

Bayes’ Theorem,

π(θ|x) = π(θ) · f(x|θ)
f(x) = π(θ) · f(x|θ)∫

f(x|θ)π(θ)dθ
∝ π(θ) · f(x|θ)
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Small Data and Black Swans

Consider sample x = {0, 0, 0, 0, 0}.
Here the likelihood is (xi|θ) = θxi [1− θ]1−xi

f(x|θ) = θx
T1[1− θ]n−xT1

and we need a priori distribution π(·) e.g.
a beta distribution

π(θ) = θα[1− θ]β

B(α, β)

π(θ|x) = θα+xT1[1− θ]β+n−xT1

B(α+ xT1, β + n− xT1)
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On Bayesian Philosophy, Confidence vs. Credibility
for frequentists, a probability is a measure of the the frequency of repeated events

→ parameters are fixed (but unknown), and data are random

for Bayesians, a probability is a measure of the degree of certainty about values

→ parameters are random and data are fixed

“Bayesians : Given our observed data, there is a 95% probability that the true value of
θ falls within the credible region

vs. Frequentists : There is a 95% probability that when I compute a confidence interval
from data of this sort, the true value of θ will fall within it.” in Vanderplas (2014)

Example see Jaynes (1976), e.g. the truncated exponential
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is a 95% confidence interval
of a proportion ? Here x = 159 and n = 1047.

1. draw sets (x̃1, · · · , x̃n)k with Xi ∼ B(x/n)

2. compute for each set of values confidence
intervals

3. determine the fraction of these confidence
interval that contain x

→ the parameter is fixed, and we guarantee
that 95% of the confidence intervals will con-
tain it. ●
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On Bayesian Philosophy, Confidence vs. Credibility
Example What is 95% credible region of a pro-
portion ? Here x = 159 and n = 1047.

1. draw random parameters pk with from the
posterior distribution, π(·|x)

2. sample sets (x̃1, · · · , x̃n)k with Xi,k ∼ B(pk)

3. compute for each set of values means xk

4. look at the proportion of those xk

that are within this credible region
[Π−1(.025|x); Π−1(.975|x)]

→ the credible region is fixed, and we guarantee
that 95% of possible values of x will fall within it
it.
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Difficult concepts ? Difficult computations ?
We have a sample x = {x1, · · · , xd) i.i.d. from distribution fθ(·).

In predictive modeling, we need E(g(X)|x) =
∫
xfθ|x(x)dx where

fθ|x(x) = f(x|x) =
∫
f(x|θ) · π(θ|x)dθ

How can we derive π(θ|x) ?

Can we sample from π(θ|x) (use monte carlo technique to approximate the
integral) ?

Computations not that simple... until the 90’s : MCMC
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Markov Chain
Stochastic process, (Xt)t∈N?

, on some discrete space Ω

P(Xt+1 = y|Xt = x,Xt−1 = xt−1) = P(Xt+1 = y|Xt = x) = P (x, y)

where P is a transition probability, that can be stored in a transition matrix,
P = [Px,y] = [P (x, y)].

Observe that P(Xt+k = y|Xt = x) = Pk(x, y) where P k = [Pk(x, y)].

Under some condition, lim
n→∞

P n = Λ = [λT],

Problem given a distribution λ, is it possible to generate a Markov Chain that
converges to this distribution ?
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Bonus Malus and Markov Chains

Ex no-claim bonus, see Lemaire (1995).

Assume that the number of claims is
N ∼ P(21.7%), so that P(N = 0) =
80%.
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Hastings-Metropolis
Back to our problem, we want to sample from π(θ|x)

i.e. generate θ1, · · · , θn, · · · from π(θ|x).

Hastings-Metropolis sampler will generate a Markov Chain (θt) as follows,

• generate θ1

• generate θ? and U ∼ U([0, 1]),

compute R = π(θ?|x)
π(θt|x)

P (θt|θ?)
P (θ?|θt−1)

if U < R set θt+1 = θ?

if U ≥ R set θt+1 = θt

R is the acceptance ratio, we accept the new state θ? with probability min{1, R}.
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Hastings-Metropolis
Observe that

R = π(θ?) · f(x|θ?)
π(θt) · f(x|θt)

P (θt|θ?)
P (θ?|θt−1)

In a more general case, we can have a Markov process, not a Markov chain.

E.g. P (θ?|θt) ∼ N (θt, 1)
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Using MCMC to generate Gaussian values

> metrop1 <- function(n=1000,eps=0.5){
+ vec <- vector("numeric", n)
+ x=0
+ vec[1] <- x
+ for (i in 2:n) {
+ innov <- runif(1,-eps,eps)
+ mov <- x+innov
+ aprob <- min(1,dnorm(mov)/dnorm(x))
+ u <- runif(1)
+ if (u < aprob)
+ x <- mov
+ vec[i] <- x
+ }
+ return(vec)}
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Using MCMC to generate Gaussian values

> plot.mcmc <- function(mcmc.out) {
+ op <- par(mfrow=c(2,2))
+ plot(ts(mcmc.out),col="red")
+ hist(mcmc.out,30,probability=TRUE,
+ col="light blue")
+ lines(seq(-4,4,by=.01),dnorm(seq(-4,4,
+ by=.01)),col="red")
+ qqnorm(mcmc.out)
+ abline(a=mean(mcmc.out),b=sd(mcmc.out))
+ acf(mcmc.out,col="blue",lag.max=100)
+ par(op) }

> metrop.out<-metrop1(10000,1)
> plot.mcmc(metrop.out)
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Heuristics on Hastings-Metropolis
In standard Monte Carlo, generate θi’s i.i.d., then

1
n

n∑
i=1

g(θi)→ E[g(θ)] =
∫
g(θ)π(θ)dθ

(strong law of large numbers).

Well-behaved Markov Chains (P aperiodic, irreducible, positive recurrent) can
satisfy some ergodic property, similar to that LLN. More precisely,

• P has a unique stationary distribution λ, i.e. λ = λ× P

• ergodic theorem
1
n

n∑
i=1

g(θi)→
∫
g(θ)λ(θ)dθ

even if θi’s are not independent.
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Heuristics on Hastings-Metropolis
Remark The conditions mentioned above are

• aperiodic, the chain does not regularly return to any state in multiples of
some k.

• irreducible, the state can go from any state to any other state in some finite
number of steps

• positively recurrent, the chain will return to any particular state with
probability 1, and finite expected return time
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MCMC and Loss Models
Example A Tweedie model, E(X) = µ and Var(X) = ϕ · µp. Here assume that ϕ
and p are given, and µ is the unknown parameter.

→ need a predictive distribution for µ given x.

Consider the following transition kernel (a Gamma distribution)

µ|µt ∼ G
(µt
α
, α
)

with E(µ|µt) = µt and CV(µ) = 1√
α
.

Use some a priori distribution, e.g. G (α0, β0).
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MCMC and Loss Models

• generate µ1

• at step t : generate µ? ∼ G
(
α−1µt, α

)
and U ∼ U([0, 1]),

compute R = π(µ?) · f(x|µ?)
π(µt) · f(x|θt)

Pα(µt|θ?)
Pα(θ?|θt−1)

if U < R set θt+1 = θ?

if U ≥ R set θt+1 = θt

where

f(x|µ) = L(µ) =
n∏
i=1

f(xi|µ, p, ϕ),

f(x · |µ, p, ϕ) being the density of the Tweedie distribution, dtweedie function (x, p,
mu, phi) from library(tweedie).
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> p=2 ; phi=2/5
> set.seed(1) ; X <- rtweedie(50,p,10,phi)
> metrop2 <- function(n=10000,a0=10,
+ b0=1,alpha=1){
+ vec <- vector("numeric", n)
+ mu <- rgamma(1,a0,b0)
+ vec[1] <- mu
+ for (i in 2:n) {
+ mustar <- rgamma(1,vec[i-1]/alpha,alpha)
+ R=prod(dtweedie(X,p,mustar,phi)/dtweedie
+ (X,p,vec[i-1],phi))*dgamma(mustar,a0,b0)/
+ dgamma(vec[i-1],a0,b0)* dgamma(vec[i-1],
+ mustar/alpha,alpha)/dgamma(mustar,
+ vec[i-1]/alpha,alpha)
+ aprob <- min(1,R)
+ u <- runif(1)
+ ifelse(u < aprob,vec[i]<-mustar,
+ vec[i]<-vec[i-1]) }
+ return(vec)}
> metrop.output<-metrop2(10000,alpha=1)
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Gibbs Sampler
For a multivariate problem, it is possible to use Gibbs sampler.

Example Assume that the loss ratio of a company has a lognormal distribution,
LN(µ, σ2), .e.g

> LR <- c(0.958, 0.614, 0.977, 0.921, 0.756)

Example Assume that we have a sample x from a N (µ, σ2). We want the
posterior distribution of θ = (µ, σ2) given x . Observe here that if priors are
Gaussian N

(
µ0, τ

2) and the inverse Gamma distribution IG(a, b), them
µ|σ2,x ∼ N

(
σ2

σ2 + nτ2µ0 + nτ2

σ2 + nτ2x,
σ2τ2

σ2 + nτ2

) 2∑
i=1

σ2|µ,x ∼ IG

(
n

2 + a,
1
2

n∑
i=1

[xi − µ]2 + b

)
More generally, we need the conditional distribution of θk|θ−k,x, for all k.

> x <- log(LR)
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Gibbs Sampler

> xbar <- mean(x)
> mu <- sigma2=rep(0,10000)
> sigma2[1] <- 1/rgamma(1,shape=1,rate=1)
> Z <- sigma2[1]/(sigma2[1]+n*1)
> mu[1] <- rnorm(1,m=Z*0+(1-Z)*xbar,
+ sd=sqrt(1*Z))
> for (i in 2:10000){
+ Z <- sigma2[i-1]/(sigma2[i-1]+n*1)
+ mu[i] <- rnorm(1,m=Z*0+(1-Z)*xbar,
+ sd=sqrt(1*Z))
+ sigma2[i] <- 1/rgamma(1,shape=n/2+1,
+ rate <- (1/2)*(sum((x-mu[i])∧2))+1)
+ }
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Gibbs Sampler
Example Consider some vector X = (X1, · · · , Xd) with indépendent
components, Xi ∼ E(λi). We sample to sample from X given XT1 > s for some
threshold s > 0.

• start with some starting point x0 such that xT
0 1 > s

• pick up (randomly) i ∈ {1, · · · , d}

Xi given Xi > s− xT
(−i)1 has an Exponential distribution E(λi)

draw Y ∼ E(λi) and set xi = y + (s− xT
(−i)1)+ until xT

(−i)1 + xi > s

E.g. losses and allocated expenses
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Gibbs Sampler

> sim <- NULL
> lambda <- c(1,2)
> X <- c(3,3)
> s <- 5
> for(k in 1:1000){
+ i <- sample(1:2,1)
+ X[i] <- rexp(1,lambda[i])+
+ max(0,s-sum(X[-i]))
+ while(sum(X)<s){
+ X[i] <- rexp(1,lambda[i])+
+ max(0,s-sum(X[-i])) }
+ sim <- rbind(sim,X) }
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JAGS and STAN
Martyn Plummer developed JAGS Just another Gibbs sampler in 2007 (stable
since 2013) in library(runjags). It is an open-source, enhanced, cross-platform
version of an earlier engine BUGS (Bayesian inference Using Gibbs Sampling).

STAN library(Rstan) is a newer tool that uses the Hamiltonian Monte Carlo
(HMC) sampler.

HMC uses information about the derivative of the posterior probability density
to improve the algorithm. These derivatives are supplied by algorithm
differentiation in C/C++ codes.
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JAGS on the N (µ, σ2) distribution

> library(runjags)
> jags.model <- "
+ model {
+ mu ∼ dnorm(mu0, 1/(sigma0∧2))
+ g ∼ dgamma(k0, theta0)
+ sigma <- 1 / g
+ for (i in 1:n) {
+ logLR[i] ∼ dnorm(mu, g∧2)
+ }
+ }"

> jags.data <- list(n=length(LR),
+ logLR=log(LR), mu0=-.2, sigma0=0.02,
+ k0=1, theta0=1)

> jags.init <- list(list(mu=log(1.2),
+ g=1/0.5∧2),
+ list(mu=log(.8),
+ g=1/.2∧2))

> model.out <- autorun.jags(jags.model,
+ data=jags.data, inits=jags.init,
+ monitor=c("mu", "sigma"), n.chains=2)
> traceplot(model.out$mcmc)
> summary(model.out)
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STAN on the N (µ, σ2) distribution

> library(rstan)
> stan.model <- "
+ data {
+ int<lower=0> n;
+ vector[n] LR;
+ real mu0;
+ real<lower=0> sigma0;
+ real<lower=0> k0;
+ real<lower=0> theta0;
+ }
+ parameters {
+ real mu;
+ real<lower=0> sigma;
+ }

+ model {
+ mu ∼ normal(mu0, sigma0);
+ sigma ∼ inv_gamma(k0, theta0);
+ for (i in 1:n)
+ log(LR[i]) ∼ normal(mu, sigma);
+ }"

> stan.data <- list(n=length(LR), r=LR, mu0=mu0,
+ sigma0=sigma0, k0=k0, theta0=theta0)
> stan.out <- stan(model_code=stan.model,
+ data=stan.data, seed=2)
> traceplot(stan.out)
> print(stan.out, digits_summary=2)
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MCMC and Loss Models
Example Consider some simple time series of Loss Ratios,

LRt ∼ N (µt, σ2) where µt = φµt−1 + εt

E.g. in JAGS we can define the vector µ = (µ1, · · · , µT ) recursively

+ model {
+ mu[1] ∼ dnorm(mu0, 1/(sigma0∧2))
+ for (t in 2:T) { mu[t] ∼ dnorm(mu[t-1], 1/(sigma0∧2)) }
+ }
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MCMC and Claims Reserving
Consider the following (cumulated) triangle, {Ci,j},

0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.1 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7

λj 0000 1.3809 1.0114 1.0043 1.0018 1.0047
σj 0000 0.7248 0.3203 0.04587 0.02570 0.02570

(from Markus Gesmann ’ library(ChainLadder)).
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A Bayesian version of Chain Ladder

0 1 2 3 4 5
0 1.362418 1.008920 1.003854 1.001581 1.004735
1 1.383724 1.007942 1.005111 1.002119
2 1.380780 1.009916 1.004076
3 1.395848 1.017407
4 1.378373

λj 1.380900 1.011400 1.004300 1.001800 1.004700
σj 0.724800 0.320300 0.0458700 0.0257000 0.0257000

Assume that λi,j ∼ N
(
µj ,

τj
Ci,j

)
.

We can use Gibbs sampler to get the distribution of the transition factors, as well
as a distribution for the reserves,
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> source("http://freakonometrics.free.fr/
triangleCL.R")
> source("http://freakonometrics.free.fr/
bayesCL.R")
> mcmcCL<-bayesian.triangle(PAID)
> plot.mcmc(mcmcCL$Lambda[,1])
> plot.mcmc(mcmcCL$Lambda[,2])
> plot.mcmc(mcmcCL$reserves[,6])
> plot.mcmc(mcmcCL$reserves[,7])

> library(ChainLadder)
> MCL<-MackChainLadder(PAID)
> m<-sum(MCL$FullTriangle[,6]-
+ diag(MCL$FullTriangle[,6:1]))
> stdev<-MCL$Total.Mack.S.E
> hist(mcmcCL$reserves[,7],probability=TRUE,
> breaks=20,col="light blue")
> x=seq(2000,3000,by=10)
> y=dnorm(x,m,stdev)
> lines(x,y,col="red")
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A Bayesian analysis of the Poisson Regression Model
In a Poisson regression model, we have a sample (x,y) = {(xi, yi)},

yi ∼ P(µi) with logµi = β0 + β1xi.

In the Bayesian framework, β0 and β1 are random variables.

Example: for instance library(arm), (see also library(INLA))

The code is very simple : from
> reg<-glm(dist∼speed,data=cars,family=poisson)

get used to
> regb <- bayesglm(dist∼speed,data=cars,family=poisson)
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A Bayesian analysis of the Poisson Regression Model

> newd <- data.frame(speed=0:30)
> predreg <- predict(reg,newdata=
+ newd,type="response")
> plot(cars,axes)
> lines(newd$speed,predreg,lwd=2)

> library(arm)
> beta01<-coef(sim(regb))

> for(i in 1:100){
> lines(newd$speed,exp(beta01[i,1]+
> beta01[i,2]*newd$speed))}

> plot.mcmc(beta01[,1])
> plot.mcmc(beta01[,2])
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Other alternatives to classical statistics
Consider a regression problem, µ(x) = E(Y |X = x), and assume that smoothed
splines are used,

µ(x) =
k∑
i=1

βjhj(x)

Let H be the n× k matrix, H = [hj(xi)] = [h(xi)], then β̂ = (HTH)−1HTy,
and

ŝe(µ̂(x)) = [h(x)T(HTH)−1h(x)] 1
2 σ̂

With a Gaussian assumption on the residuals, we can derive (approximated)
confidence bands for predictions µ̂(x).
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Smoothed regression with splines

> dtf <- read.table(
+ "http://freakonometrics.free.fr/

theftinsurance.txt",sep=";",
+ header=TRUE)
> names(dtf)<-c("x","y")

> library(splines)
> reg=lm(y∼bs(x,df=4),data=dtf)

> yp=predict(reg,type="response",
+ newdata=new,interval="confidence")
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Bayesian interpretation of the regression problem
Assume here that β ∼ N (0, τΣ) as the priori distribution for β.

Then, if (x,y) = {(xi, yi), i = 1, · · · , n}, the posterior distribution of µ(x) will be
Gaussian, with

E(µ(x)|x,y) = h(x)T
(
HTH + σ2

τ
Σ−1

)−1

HTy

cov(µ(x), µ(x′)|x,y) = h(x)T
(
HTH + σ2

τ
Σ−1

)−1

h(x′)σ2

Example Σ = I

@freakonometrics 44



Arthur CHARPENTIER - Data Science (for Actuaries): from Small to Big Data

Bayesian interpretation of the regression problem

> tau <- 100
> sigma <- summary(reg)$sigma
> H=cbind(rep(1,nrow(dtf)),matrix(bs(b$x,
+ df=4),nrow=nrow(dtf)))
> h=cbind(rep(1,nrow(new)),matrix(bs(new$x,
+ df=4),nrow=nrow(new)))
> E=h%*%solve(t(H)%*%H + sigma∧2/tau*
+ diag(1,ncol(H)))%*%t(H)%*%dtf$y
> V=h%*%solve(t(H)%*%H + sigma∧2/tau*
+ diag(1,ncol(H)))%*% t(h) * sigma∧2
> z=E+t(chol(V))%*%rnorm(length(E))
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Bootstrap strategy
Assume that Y = µ(x) + ε, and based on the estimated model, generate pseudo
observations, y?i = µ̂(xi) + ε̂?i .

Based on (x,y?) = {(xi, y?i ), i = 1, · · · , n}, derive the estimator µ̂?(?)

(and repeat)
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Bootstrap strategy

> for(b in 1:1000) {
+ i=sample(1:nrow(dtf),size=nrow(dtf),
+ replace=TRUE)
+ regb=lm(y∼bs(x,df=4),data=dtf[i,])
+ ypb[,b]=predict(regb,type="response",
+ newdata=new))
+ }

Observe that the bootstrap is the Bayesian
case, when τ →∞.
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Some additional references (on Bayesian Modeling)
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Part 2.
Big Data and Statistical/Machine Learning
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Econometric Based Models in Actuarial Science
Consider an i.i.d. sample {y1, · · · , yn} with yi ∈ {0, 1},

P(Yi = yi) = πyi [1− π]1−yi , with yi ∈ {0, 1}.

where π ∈ [0, 1], so that P(Yi = 1) = π and P(Yi = 0) = 1− π.

The likelihood is

L(π;y) =
n∏
i=1

P(Yi = yi) =
n∏
i=1

πyi [1− π]1−yi

and the log-likelihood is

logL(π;y) =
n∑
i=1

yi log[π] + (1− yi) log[1− π]

The first order condition is
∂ logL(π;y)

∂π
=

n∑
i=1

yi
π
− 1− yi

1− π = 0, i.e. π? = y.

@freakonometrics 50



Arthur CHARPENTIER - Data Science (for Actuaries): from Small to Big Data

Econometric Based Models in Actuarial Science
Assume that P(Yi = 1) = πi,

logit(πi) = X ′iβ, where logit(πi) = log
(

πi
1− πi

)
,

or
πi = logit−1(X ′iβ) = exp[X ′iβ]

1 + exp[XT
i β]

.

The log-likelihood is

logL(β) =
n∑
i=1

yi log(πi)+(1−yi) log(1−πi) =
n∑
i=1

yi log(πi(β))+(1−yi) log(1−πi(β))

and the first order conditions are solved numerically

∂ logL(β)
∂βk

=
n∑
i=1

Xk,i[yi − πi(β)] = 0.
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Predictive Classification
Let m(x) = E(Y |X = x). With a logistic regression, we can get a prediction

m̂(x) = exp[xTβ̂]
1 + exp[xTβ̂]

> fit_glm <- glm(Y X,family=binomial, data=df)
> m_glm <- function(x) {
+ predict( fit_glm,newdata=data.frame(X=x),type=’response’) }

Is that the ‘best’ model we can get from the data?

What if n and/or k are very large?

Can’t we use machine learning algorithms? What can statistical learning teach
us?
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Using Information for Predictions
Suppose that the true model is

Yi = X1,iβ1 +X2,iβ2 + εi,

but we estimate the model on X1 (only)

Yi = X1,ib1 + ηi.

b̂1 = (XT
1X1)−1XT

1Y

= (XT
1X1)−1XT

1 [X1,iβ1 +X2,iβ2 + ε]
= (XT

1X1)−1XT
1X1β1 + (XT

1X1)−1XT
1X2β2 + (XT

1X1)−1XT
1 ε

= β1 + (X ′1X1)−1XT
1X2β2︸ ︷︷ ︸

β12

+ (XT
1X1)−1XT

1 εi︸ ︷︷ ︸
νi

i.e. E(b̂1) = β1 + β12.

Note that if XT
1X2 = 0 (X1 ⊥X2), E(b̂1) = β1.
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On Model Selection
 Yi = X1,iβ1 +X2,iβ2 + εi, (1, 2)

Yi = X1,ib1 + ηi. (1)

Here Var(ε) ≤ Var(η), so R2
(1,2) ≥ R

2
(1) and logL(1,2) ≥ logL(1).

For variable selection, we need to penalize. A standard technique is to penalize a
criteria.

logL(β̂, σ̂2) = −n2 [log(2π) + log[σ̂2]]− 1
2σ2 ‖Y −Xβ̂‖

2︸ ︷︷ ︸
SSE

in the context of Linear Regression,

AIC = n log SSE
n

+ 2dim(X)

BIC = n log SSE
n

+ log[n]dim(X)

But it is also possible to derive a penalized estimator...
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Modeling and Predicting
Consider predictions obtained from a linear model and a nonlinear model, either
on the training sample, or on a validation sample,
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Risk and Loss Function in Statistical Learning
Consider some loss function, L(θ, θ̂) , e.g. a quadratic loss function (`2
regression).

In the frequentist approach, the risk function is given by

R(θ, θ̂) = Eθ
(
L
(
θ, θ̂(X)

))
=
∫
X

L
(
θ, θ̂(X

)
dPθ(x).

In a Bayesian approach, the expectation is calculated using the posterior
distribution π? of the parameter θ

R(θ, θ̂) =
∫

Θ
L(θ, θ̂)dπ?(θ).
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Risk and Loss Function in Statistical Learning
Consider here the risk of a model m̂n(·).

The true risk is

Rn = E(L)
(
[L
(
Y, m̂n(X)

))
=
∫
Y×X

L(y, m̂n(x))dP(y,x)

The empirical risk is

R̂n = 1
n

n∑
i=1

L(yi, m̂n(xi)))

Can we say something about R̂n?

lim
n→∞

1
n

n∑
i=1

L(yi, m̂n(xi))︸ ︷︷ ︸
Rn

= ?
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Vapnik and Consistency

Here the true model is a standard logistic
> U <- data.frame(X1=runif(n),X2=runif(n))
> U$Y <- rbinom(n,size=1,prob=(U[,1]+U[,2])/2)
> reg <- glm(Y∼X1+X2,data=U,family=binomial)
> pd <- function(x1,x2){
+ predict(reg,newdata=data.frame(X1=x1,X2=x2),
+ type="response")>.5 }
> MissClassU <- mean(abs(pd(U$X1,U$X2)-U$Y))

Training Sample Size
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Vapnik and Overfitting

We fit some polynomial logistic regression
> reg <- glm(Y poly(X1,s)+poly(X2,s),
+ data=U, family=binomial)

R̂n ≤ Rn +
√

VC[log(2n/d) + 1]− log[α/4]
n

with probability 1 − α, where VC denotes the
Vapnik-Chervonenkis dimension.
Here VC = 2(s+ 1).

Vapnik−Chervonenkis Dimension (complexity)
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Penalization and Mean Square Error
Consider the quadratic loss function, L(θ, θ̂) = (θ − θ̂)2, the risk function
becomes the mean squared error of the estimate,

R(θ, θ̂) = E(θ − θ̂)2 = [θ − E(θ̂)]2︸ ︷︷ ︸
bias2

+E(E[θ̂]− θ̂)2︸ ︷︷ ︸
variance

Get back to the intial example, yi ∈ –0, 1˝, with p = P(Y = 1).

Consider the estimate that minimizes the mse, that can be writen p̂ = (1− α)y,
then

mse(p̂) = α2p2 + (1− α)2 p(1− p)
n

then α? = 1− p
1 + (n− 1)p .
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Penalization and Support Vector Machines
SVMs were developed in the 90’s based on previous work, from Vapnik & Lerner
(1963), see also Vailant (1984).

Assume that points are linearly separable, i.e. there is ω
and b such that

Y = –
+1 if ωTx+ b > 0
−1 if ωTx+ b < 0

Problem: infinite number of solutions, need a good one,
that separate the data, (somehow) far from the data.

maximize the distance s.t. Hω,b separates ±1 points, i.e.

min – 1
2ω

Tω ˝ s.t. Yi(ωTxi + b) ≥ 1, ∀i.
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Penalization and Support Vector Machines

Define support vectors as observations such that

|ωTxi + b| = 1

The margin is the distance between hyperplanes defined by
support vectors. The distance from support vectors to Hω,b
is ‖ω‖−1

Now, what about the non-separable case?

Here, we cannot have yi(ωTxi + b) ≥ 1 ∀i.
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Penalization and Support Vector Machines
introduce slack variables,

–
ωTxi + b ≥ +1− ξi when yi = +1
ωTxi + b ≤ −1 + ξi when yi = −1

where ξi ≥ 0 ∀i. There is a classification error when ξi > 1.

The idea is then to solve

min – 1
2ω

Tω + C1T1ξ>1 ˝, instead ofmin – 1
2ω

Tω ˝

> library(kernlab)

> fit <- ksvm(Y ∼ . , data=df)
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Penalization and GLM’s
The logistic regression is based on empirical risk, when y ∈ –0, 1˝

− 1
n

n∑
i=1

(
yix

T
i β − log[1 + exp(xT

i β)]
)

or, if y ∈ – − 1,+1˝,
1
n

n∑
i=1

log
[
1 + exp(yixT

i β)
]
.

A regularized version with the `1 norm is the LASSO?logistic regression

1
n

n∑
i=1

log
[
1 + exp(yixT

i β)
]

+ λ‖β‖1

or more generaly, with smoothing functions

1
n

n∑
i=1

log [1 + exp(yig(xi))] + λ‖g‖

?
Least Absolute Shrinkage and Selection Operator.
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Penalization and GLM’s
We should solve

ĝ = argmin
g∈G

– 1
n

n∑
i=1

log [1 + exp(yig(xi))] + λ‖g‖ ˝

Then
m̂(x) = sign

(
1

1 + exp[−ĝ(x]) −
1
2

)
.

Nothing new here.... Machine Learning is simply a “ loose confederation of
themes in statistical inference (and decision-making)”, according to Michael
Jordan, with a focus on prediction.
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Using Bayes Rule on Classification
Consider the (symmetric) missclassification loss function L(y, ŷ) = 1(y 6= ŷ),
where ŷ = m(x)

The (theoritical) risk function

R(m) = E[L(Y,m(X))] =
∫
L(y,m(x))dP(y,x) = P(Y 6= m(X))

The best classifier would be m? such that

m? = argminm–E[L(Y,m(X))]˝ = argminm–P(Y 6= m(X))˝

which is Bayes (naive) classifier

m?(x) = argminy–P[Y = y|X = x]˝ = argminy –P[X = x|Y = y]
P[X = x] ˝

(where P[X = x] is the density in the continuous case).
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Using Bayes Rule on Classification
In the case where y takes two values,

m?(x) = –
1 if E(Y |X = x) > 1

2
0 otherwise

and the set
DS = –x,E(Y |X = x) = 1

2 ˝

is called the decision boundary.

m?(x) = –
1 if r2

1 < r2
0 + 2log P(Y = 1)

P(Y = 0) + log |Σ0|
|Σ1|

0 otherwise

where r2
y is the Manalahobis distance, r2

y = [X − µy]TΣ−1
y [X − µy].
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Using Bayes Rule on Classification
If

δy(x) = −1
2 log |Σy| −

1
2 [X − µy]TΣ−1

y [X − µy] + logP(Y = y)

the decision boundary of this classifier is

–x such that δ0(x) = δ1(x)˝

which is quadratic in x.

this is the quadratic discriminant analysis.

If Σ0 = Σ1, then

δy(x) = [x]TΣ−1[µy]− 1
2 [µy]TΣ−1[µy] + logP(Y = y)

which is linear in x.

this is the quadratic discriminant analysis.
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The difference between LDA and QDA
> fitL <- lda(y ∼ x1 + x2, data=df)
> pL <- function(u,v) predict(fitL,
+ newdata=data.frame(x1=u,x2=v)
+ )$posterior[,"1"])

> fitQ <- qda(y ∼ x1 + x2, data=df)
> pL <- function(u,v) predict(fitQ,
+ newdata=data.frame(x1=u,x2=v)
+ )$posterior[,"1"])
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In sample, out of sample, and cross-validation
The training-validation paradigm is well know in statistics, see kernel density
estimation and optimal bandwidth.

The mean squared error for m̂h(x) is E
[
(m̂h(x)−m(x))2

]
, for some

meta-parameter h.

The mean integrated squared error is
∫
mse[m̂h(x)]dP(x) can be approximated

using its empirical version

m̂ise[m̂h] = 1
n

n∑
i=1

mse[m̂h(Xi)] = 1
n

n∑
i=1

Var[m̂h(Xi)] + bias2[m̂h(Xi)].

The optimal h would be h? = argmin–m̂ise[m̂h]˝
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In sample, out of sample, and cross-validation

Usual bias-variance tradeoff, or Goldilock principle:
h should be neither too small, nor too large

• undersmoothed: bias too large, variance too small

• oversmoothed: variance too large, bias too small

Problem mh(·) is unknown, and m̂h(Xi)’s are not independent.

In the Leave-one-out Cross Validation, we use instead m̂h(−i)(Xi)’s. We solve

h? = 1
n

n∑
i=1

[Yi − m̂h(−i)(Xi)]2
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Trees, Forests and Boosting
Create a partition of X = Rk, –C1, · · · , Cq˝, and define

m?
j = argmax – 1

#Cj

∑
xi∈Cj

1(Yi = y) ˝

so that
m̂(x) =

∑
j

m?
j1(x ∈ Cj)

Here we seek the optimal partition –C1, · · · , Cq˝. ●
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CART algorithm is based on a simple (and fast) technique, for some impurity
index, e.g. Gini index.
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Trees, Forests and Boosting

Gini(P ) = −
∑

P∈–A,B,C˝
P[x ∈ P ]︸ ︷︷ ︸

weight

P[Y = 0|x ∈ P ] · P[Y = 1|x ∈ P ]︸ ︷︷ ︸
impurity
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Trees

> gini <- function(y,classe){
+ T=table(y,classe)
+ nx=apply(T,2,sum)
+ n=sum(T)
+ pxy=T/matrix(rep(nx,each
+ =2),nrow=2)
+
omega=matrix(rep(nx,each
+ =2), nrow=2)/n
+ g=-sum(omega*pxy*
+ (1-pxy))
+ return(g)}
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Bagging : Bootstrap Aggregation

> library(randomForest)
> reg <- randomForest(y∼x1+x2,data=df)

For classes, m̃(x) = argmax
y

B∑
b=1

1(y = m̂(b)).

For probabliities,

m̃(x) = 1
n

B∑
b=1

m̂(b)(x) = 1
n

B∑
b=1

kb∑
j=1

yi1(xi ∈ Cj).
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Nonlinearities: Gradient Boosting vs. Splines
A regression problem can be formulated as

m? = argmin
m∈M

–E
(
L
(
Y,m(X)

))
˝

With a parametric model, solve

θ? = argmin
θ∈Θ⊂Rk

–E
(
L
(
Y,mθ(X)

))
˝

usually using numerical algorithms...

Consider here an incremental form, θ? = θ?0 + θ?1 + · · ·+ θ?M .

Standard algorithm is the (steepest) gradient descent, based on the empirical risk.
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Nonlinearities: Gradient Boosting vs. Splines
Start from θ?0. At step j, θ

(j)? = θ?0 + θ?1 + · · ·+ θ?j , then compute

θ?j+1 = −∇Rn(θ(j)?) where ∇Rn(θ) =
[
∂Rn
∂θi

]
and then update θ(j+1)? = θ(j)? + θ?j+1. Finally, θ

? = θ(M)?.

In a more general setting, we can do the same to get m?(x). Start from m?
0(x).

At step j, m(j)?(x) = m?
0(x) +m?

1(x) + · · ·+m?
j (x), then compute

m?
j+1(x) = −∇Rn(m(j)?(x)) (or sort of).

Here optimization is in a function space. Assume that −∇Rn(m(j)?(θ)) is
expressed in a parametric family of bases learner functions, h(·,θ),

θ?j = argmin
θ∈Θ⊂Rk

–E
(
L
(
Y,m(j)?(x) + h(x,θ)

))
˝

Then update m(j+1)?(x) = m(j)?(x) + h(x,θ?j ).
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Nonlinearities: Gradient Boosting vs. Splines
For the `2 loss function, it is simply based on residual (re)fitting since[

∂Rn
∂θk

]
=

n∑
i=1

ωi[Yi −m(j)?(Xi)]

In practice, learning should be weak, e.g. tree based learners h(·,θ).

But it is also possible to consider splines smoothers to obtain also good model.
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Nonlinearities

> library(dismo)
> reg <- gbm.step(data=db,gbm.x=1,gbm.y=2,
+ family="gaussian",tree.complexity=5,
+ learning.rate=0.01,bag.fraction=0.5)

for linear splines, consider

Yi = β0 + β1Xi + β2(Xi − s1)+ + β3(Xi − s2)+ + εi

> library(splines)
> reg <- lm(y∼bs(x),data=df)
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Nonlinearities

> library(dismo)
> reg <- gbm.step(data=db,gbm.x=1,gbm.y=2,
+ family="gaussian",tree.complexity=5,
+ learning.rate=0.01,bag.fraction=0.5)

for linear splines, consider

Yi = β0 + β1Xi + β2(Xi − s1)+ + β3(Xi − s2)+ + εi

> library(splines)
> reg <- lm(y∼bs(x),data=df)
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Comparing Various Models

Consider simulated data, based on the following
m(x1, x2) function
> m <- function(x1, x2) { sin(x1+x2)/(x1+x2) }

with some additional Gaussian noise
> df <- data.frame(x1=(runif(n, min=1, max=6)),
+ x2=(runif(n, min=1, max=6)))
> df$m=m(df$x1, df$x2)
> df$y=df$m+rnorm(n,sd=.07)
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Comparing Various Models

A standard regression model is not good
> reg <- lm(y∼x1+x2,data=df)
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Comparing Various Models

... but neither is a regression tree
> reg <- rpart(y∼x1+x2,data=df,method="anova")
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Comparing Various Models

but random forests are nice
> library(randomForest)
> reg <- randomForest(y∼x1+x2,data=df)
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Comparing Various Models

and gradient boosting algorithms too

> library(dismo)
> reg <- gbm.step(data=df, gbm.x = 1:2, gbm.y = 4,
+ family = "gaussian", tree.complexity = 5,
+ learning.rate = 0.01, bag.fraction = 0.5)
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Comparing Various Models

But one can also get a nice model with a simple
k-nearest neighbour
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Comparing Various Models

... or using bivariate splines

> library(mgcv)
> reg <- gam(y∼s(x1,x2),data=df)

@freakonometrics 87



Arthur CHARPENTIER - Data Science (for Actuaries): from Small to Big Data

Comparing Various Models

Econometric models also perform well on a valida-
tion sample (and not only on the training sample).
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Some additional references (on Statistical Learning)
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Take-Away Conclusion

“People rarely succeed unless they have fun in what they are doing ” D. Carnegie

• on very small datasets, it is possible to use Bayesian tech-
nique to derive robust predictions,

• on extremely large datasets, it is possible to use ideas de-
veloped in machine learning, on regression models (e.g.
boostraping and aggregating)

• all those techniques require computational skills

“the numbers have no way of speaking for themselves. We
speak for them. ... Before we demand more of our data, we
need to demand more of ourselves ” N. Silver, in Silver (2012).
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