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Data

“People use statistics as the drunken man uses lamp

posts - for support rather than illumination”,

Andrew Lang or not

see also Chris Anderson The End of Theory: The Data
Deluge Makes the Scientific Method Obsolete, 2008

1. An Overview on (Big) Data

2. Big Data & Statistical/Machine Learning
3. Classification Models

4. Small Data & Bayesian Philosophy

5. Data, Models & Actuarial Science

¥ ©freakonometrics


http://quoteinvestigator.com/2014/01/15/stats-drunk
http://www.wired.com/2008/06/pb-theory/
http://www.wired.com/2008/06/pb-theory/
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Part 1.
An Overview on (Big) Data

¥ ©freakonometrics 4
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Historical Aspects of Data

A tally (or tally stick) was an ancient memory aid device used to record and

document numbers, quantities, or even messages.

¥ ©freakonometrics 5
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Historical Aspects of Data

Data Manipulation: Herman Hollerith created a
Tabulating Machine that uses punch carts to reduce
the workload of US Census, in 1881, see 1880 Census,

n =50 million Americans.
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http://www.censusrecords.com/content/1880_census
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Historical Aspects of Data
Survey and Polls: 1936 US elections
Hawinds sriarik e p——

Literary Digest Poll based on 2.4 million readers === mrssmmmWeekiv oL L e |~

Institute Forecasts the Reelection of Franklin D, Roosevelt,

A . Landon: 5 7% VS. F . D . RO Osevelt : 43 % . ‘:;i\'ﬁf Him 34% of l’¢1||1||.'?1- Vote, Minimum of 315 l:;.lu.plq:.rs

George Gallup sample of about 50,000 people
A. Landon: 44% vs. F.D. Roosevelt: 56%

Actual results
A. Landon: 38% vs. F.D. Roosevelt: 62%

Sampling techniques, polls, predictions based on small samples
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Data Center: The US Government plans the world’s first data center to store 742

Historical Aspects of Data

&!]_en-Stoﬂ Report

Data Center Plan Called Privacy Invasion

By ROB¥RT 8. ATLEN
and PAUL SCOTT

WASHINGTON — A specfal
White lousze task force Is rec-
ommending the ereation of a
tederal data cenler which even-
tually could have a comprehen-
slve file on every man, woman
and child in the country

Now under study in inner ads
ministration circles. the still
seerelt  report  advoecates the
gradual transfer of all govern-
mental roeords gnd statistices to
magnelle computer tape, which
would he turned over (o A news
ly-crealed agency thal would
Etmcltnn as a general data cen-
er.

The computerized Information
wauld be avallablie, at the push
of a button, to a wide range
of government authorities.

T e tina ol nnel af The nroe.

clal Seeurity, eensus data, med.
jeal, credit and eoriminal res
ports.

"Comprehensive information
of this kind, centralized in one
ageney,' says Gallagher, “could
eonstitute a highl dangerous
dosgier bank. Such an agency
would be a distinet departure
from our American tradition.*

Subcommittee  Investigators
have ascertained that the task
force's report stales that a vast
accumulation of government
records a]rnaﬂgr {s on computer
tape and could be turned over
to the proposed general data
center immediately. Listed as
among these available files are:

Internal Revenue Service —
74 2 million personal and cor-
poraie tax returns.

Defense Depariment — 14

the most intimate Informatian,
the investigators learned, ars
freely passed around among
agencies. Graphically illusira-

tive of this practice and I[is
harsh consequences are the fol-
lowing two instances:

A teenager visiting Washing.
ton stayed with an uncle, at his
molher's suggestion. During the
night the bny was sexually as-
saulted by the unecle. Years la
ter, as a Phl Beta Kappa grad-
uate from a leading Easterh
university, the hoir El[lmltt‘d for
a job with the National Security
Agency. During a required lie
detector test he told about lhe
assault. His {rank admission
cost him the desired job.

But that wasn't all. This af-
tair, in which he was an inno-

snml slmbbison Fumcimidad Tivm aoain

million tax returns and 175 million sets of fingerprints, in 1965.
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Historical Aspects of Data
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Historical Aspects of Data

Data Manipulation: Relational Database model de-
veloped by Edgar F. Codd

See Relational Model of Data for Large Shared Data
Banks, (Codd (1970)

Considered as a major breakthrough for users and
machine designers

Data or tables are thought as a matrix composted of
intersecting rows and columns, each columns being
attributes.

Tables are related to each other through a common
attribute.

Concept of relational diagrams



http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
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The Two Cultures

‘The Two Cultures’, see |Breiman (2001)
e Data Modeling (statistics, econometrics)

e Algorithmic Modeling (computational & algo-
rithmics)

‘Big Data Dynamic Factor Models for Macroe-

conomic Measurementand Forecasting’, Diebold

(2000)

Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling:
The Two Cultures

nature

The Data Modeling Culture

, linear regression
Y4 Jogistic regression
Cox model

The Algorithmic Modeling Culture

y —— unknown

decision trees
neural nets



https://projecteuclid.org/euclid.ss/1009213726
http://www.ssc.upenn.edu/~fdiebold/papers/paper40/temp-wc.PDF
http://www.ssc.upenn.edu/~fdiebold/papers/paper40/temp-wc.PDF
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And the XIXth Century...

Nature’s special issue on Big Data, Nature (2008) and many of business journals

Business = | il M?’:}ﬁ. g
¢—8 Review The ata e

The strong get stronger
3'-:53'3:53"::1&2 GETTING AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT
Galactic Centre CONTRO L '
-
"é’

| SCIENCE IN THE

Ofreakonometrics 13


http://www.nature.com/news/specials/bigdata/index.html
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And the XIXth Century...
Techology changed, HDFS (Hadoop Distribution File System), MapReduce

¥ @freakonometrics

Ghr New ﬂu rk &imes Technology | Personal Tech | Business Day Log In | Register Now

OCTOBER 24, 2012, 9

) AM | @ 4 Comments

Big Data in More Hands

By QUENTIN HARDY

E} racerook
W TWITTER
¥ cooGLE+
£l save
E-MAIL
SHARE

& PRINT

Business people, Big Data is coming for you.

Software that captures lots of data and uses it to make predictions has
mostly been the province of engineers skilled in arcane databases and
statisticians capable of developing complex algorithms. As the business gets
bigger, however, software makers are domesticating their products in the
hope they will prove attractive to a broader population.

Cloudera, which offers a popular version of the open source database called
Hadoop, released software on Wednesday that makes it possible to run
queries from a more mainstream SQL programming language interface.
SQL, thanks to its adoption by Oracle, Microsoft and others, is known to
millions of business analysts.

“This enables us to talk to a whole other class of customer,” said Mike
Olson, the chief executive of Cloudera. “The knock against Hadoop was that
itis too complex.”

There is a reason for that. Hadoop is one of several so-called unstructured
databases that were created at Yahoo and Google, after those two
companies found they had previously unimaginable amounts of data about

4 Google Shifts Pitch
for Its New Robots, Darpa Offers
Chromebooks $2 Million Prize

AROUND THE WEB »

THE NEXT WEB BLOOMBERG

Google says Maps | j‘ HTC Posts Lowest Net
redirect on ans=zci>  Income In Eight Years
Windows Phone After Revenue Drops
was a product decision,

and will be removed

g SCUTTLEBOT News from the Web, annotated by o

Google's Schmidt arrive in North Korea

REUTERS | From Mountain View to...errr, Pyongyang? -
Somini Sengupta

AP provides sponsored tweets during electronics show
AP.0RG | The Associated Press is renting out its Twitter feed,

with 1.5 million followers, to advertisers during C.E.S. -
Joshua Brustein

A history of griefing
EDGE-ONLINE.COM | Meet the cult of gamers who want to
ruin your day - just for kicks. - Jenna Wortham

A Million First Dates
THE ATLANTIC | Is online romance threatening monogamy? -

In Contest for Rescue )

14



Riskcenter

7 http://www.ub.edu/riskcenter

And the XIXth Century...

Data changed, because of the digital /numeric revolution, see Gartner’s 3V
(Volume, Variety, Velocity), see Gartner.

The New YJork Times
s -
undayReview . o rue

WORLD US. NY./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION ARTS STYLE TRAVEL JOBS REALESTATE AUTOS

Search All NYTimes.com

NEWS ANALYSIS

The Age Dt B]_g Data Log in to see what your friends are sharing onLog In With Facebook
nytimes.com. Privacy Policy | What's This?

By STEVE LOHR

Published: February 11, 2012 82 Comments
What's Popular Now [E]

. . . RECOMMEND
GOOD with numbers? Fascinated by data? The sound vou hear is Felony Counts for | ™ Senate Women |}
opportunity knocking. TWITTER 2 in Suicide of Lead in Effort to

) Bullied 12-Year- Find Accord

LINKEDIN old
Enlarge This Image Mo Zhou was snapped up by I.B.M.

last summer, as a freshly minted Yale COMMENTS (82)

M.B.A., to join the technology EMAIL
company’s fast-growing ranks of data RINT
consultants. They help businesses
make sense of an explosion of data —
Web traffic and social network SHARE
comments, as well as software and

REPRINTS

sensors that monitor shipments, /,j YEARS A

suppliers and customers — to guide _ <, SLAVE
Chad tiagen CisiONs, trim costs and lift sales, “T've | WATCH THE TRAILER
always had a love of numbers,” savs

Ms. Zhou, whose job as a data analyst suits her skills.
Multimedia

To exploit the data flood, America will need many more like
her. A report last year by the McKinsev Global Institute, the
research arm of the consulting firm, projected that the
United States needs 140,000 to 190,000 more workers with
“deep analytical” expertise and 1.5 million more data-

Siera =6.145-16.986x(S
-1.858x((GB-FB-PU)+PA
x(((GB-FB-PU)+PA)"2)+1
+PA)-5.195x(BB+PA)x((

Graphic
Play (Data-Driven) Ball!

literate managers, whether retrained or hired.

The impact of data abundance extends well beyond
business. Justin Grimmer, for example, is one of the new
breed of political scientists. A 28-year-old assistant



http://www.gartner.com/it-glossary/big-data
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And the XIXth Century...

Business Intelligence, transversal approach

HOME PAGE | TODAY'S PAPER | VIDEO | MOST POPULAR | U.S, Edition + LogIn Register Now Help

EI]P.N(‘\U ork imes . Search All NYTimes.com
4 Business Day

WORLD US. NY./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION ARTS STYLE TRAVEL JOBS REALESTATE AUTOS

Search | Global DealBook Markets Economy Energy Media Personal Tech Small Business Your Money

UNBOXED

. - Log in to see what your friends
How Big Data Became So Big IANUMAAMIIRIN f Log In With Facebook
By STEVE LOHR Privacy Policy | What's This?

Published: August 11, 2012
What's Popular Now

THIS has been the crossover year for Big Data — as a concept, as a i racesook ) o
Despite New 1 The Big Fail

term and, yes, as a marketing tool. Big Data has sprung from the ¥ TWITTER Health Law.

confines of technology circles into the mainstream. Some See Sharp

$4 coooLe+ Rise in Premiums

@, Enlarge This Image  First, here are a few, well, data points: E-MAIL
Big Data was a featured topic this year SHARE
at the World Economic Forum in S prix MOST E-MAILED RECOMMENDED FOR YOU
Davos, Switzerland, with a report
titled “Big Data, Big Impact.” In
March, the federal government

announced $200 million in research programs for Big Data MW 2. CRITICS NOTEBOOK
. The Rainbow That Follows "Jersey Shore’
computing.

B RePRINTS 1. OFF THE DRIBBLE
Stoudemire Commemorates Brother's Death

Add to Portfolio Rick Smolan, creator of the “Day in the Life” photography 3 L";'{:‘;:‘E:pm_ Tax Reformn
International Business series, has a new project in the works, called “The Human T
Machines Corporation Face of Big Data.” The New York Times has adopted the . THE LEARNING NETWORK _ _
Go to your Portfolio » term in headlines like “The Age of Big Data” and “Big Data }I’IIILI!II(} Lﬁ?&?&hﬂi"iﬁ?ﬂ“ o
on Campus.” And a sure sign that Big Data has arrived -

Mainre Cnmnanioe Puch tha T imite nfa Tav

¥ @freakonometrics 16
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Big Data & (Health) Insurance

The Power of Healthcare Data

The Body as a Source

Example: popular application, Google Flu Trend

Annual U.S. Flu Activity - Mid-Atlantic Region
ILI percentage ® Google Flu Trends @CDC Data

2006

See also Lazer et al. (2014)

But much more can be done on an individual level.

¥ ©freakonometrics ].7


https://www.google.org/flutrends/about/
http://gking.harvard.edu/files/gking/files/0314policyforumff.pdf
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Big Data & Computational Issues

parallel computing is a necessity”

CPU Central Processing Unit, the heart of the computer

RAM Random Access Memory non-persistent memory

HD Hard Drive persistent memory

Practical issues: CPU can be fast, but finite speed;

RAM is non persistent, fast but slow vs. HD is persistent, slow
but big

How could we measure speed: Latency and performance
Latency is a time interval between the stimulation and response
(e.g. 10ms to read the first bit)

Performance is the number of operations per second (e.g.
100Mb /sec)

Example Read one file of 100Mb ~ 1.01sec.

Example Read 150 files of 1b ~ 0.9sec.

* thanks to David Sibai for this section.
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Big Data & Computational Issues

Standard PC GCOMPUTER SPECIALIST
CPU : 4 core, 1ns latenty DELL T3400 =

RAM : 32 or 64 Gb, 100ns latency, 20Gb /sec INTEL
HD : 1 Th, 10ms latency, 100Mo/sec CorE 2 Duo

320GB HDD

4GB RAM

How long does it take ? 256MB

e.g. count spaces in a 2Tb text file GRAPHIC CARD

about 2.10'? operations (comparaison) Ngl 9 |
File on the HD, 100Mb/sec ~ 2.10% sec ~ 6 hours | |

Vistam
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Big Data & Computational Issues

Why not parallelize 7 between machines

Spread data on 10 blocks of 200Gb, each machine count spaces, then sum the 10
totals... should be 10 times faster.

Many machines connected, in a datacenter
Alternative: use more cores in the CPU (2, 4, 16 cores, e.g.)

A CPU is multi-tasks, and it could be possible to vectorize. E.g. summing n
numbers takes O(n) operations,

Example ay + b1, as + bs, - - -, a, + b,, takes n nsec.
But it is possible to use SIMD (single instruction multiple data)
Example a + b= (a1, -+ ,a,) + (b1, -+ ,b,) take 1 nsec.
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Big Data & Computational Issues

Alternatives to standard PC material
Games from the 90s, more and more 3d viz, based on more

and more computations
GPU Graphical Processing Unit that became GPGPU Gen-
eral Purpose GPU

Hundreds of small processors, slow, high specialized (and dedicated to simple

computations)

Difficult to use (needs of computational skills) but more and more libraries
Complex and slow communication CPU - RAM - GPU

Sequential code is extremely slow, but highly parallelized

Interesting for Monte Carlo computations

E.g. pricing of Variable Annuities
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Big Data & Computational Issues

A parallel algorithm is a computational strategy which divide a target
computation into independent part, and assemble them so as to obtain the target
computation. E.g. Couting words with MapReduce

Mmanoin shuffling
input splitting ppImg reducing output

BEAR: 1

CAT:1 BEAR : 1

CAT DOG DOG:1
BEAR CAT BEAR:1

CAT DOG
BEAR CAT
LION CAT LION CAT
DOG DOG DOG DOG
CAT LION
BEAR CAT

CAT LION
BEAR CAT

¥ ©freakonometrics 22
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Data, (deep) Learning & Al
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What can we do with those data?
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Part 2.
Big Data and Statistical/Machine Learning

¥ ©freakonometrics 25
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Statistical Learning and Philosophical Issues

From Machine Learning and Econometrics, by Hal Varian :

“Machine learning use data to predict some variable as a function of other

covariables,

e may, or may not, care about insight, importance, patterns

e may, or may not, care about inference (how y changes as some & change)

Econometrics use statistical methodes for prediction, inference and causal

modeling of economic relationships

e hope for some sort of insight (inference is a goal)

e in particular, causal inference is goal for decision making.”

— machine learning, ‘new tricks for econometrics’

¥ ©freakonometrics 26


http://web.stanford.edu/class/ee380/Abstracts/140129-slides-Machine-Learning-and-Econometrics.pdf
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Statistical Learning and Philosophical Issues

Remark machine learning can also learn from econometrics, especially with non

i.i.d. data (time series and panel data)

Remark machine learning can help to get better predictive models, given good

datasets. No use on several data science issues (e.g. selection bias).

non-supervised vs. supervised techniques
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Non-Supervised and Supervised Techniques
Just a;’s, here, no y;: unsupervised.

Use principal components to reduce dimension: we want d vectors zq, - - -
such that

d
€Xr; ~ E Wi j<4 O X ~ ZQT
j=1

where €2 is a k x d matrix, with d < k.

First Compoment is z; = Xw; where

wy = argmax {|| X - w||*} = argmax {wTXTXw}
lwll=1 lwll=1

Second Compoment is zo = Xwsy where

(@) 2 (1) T
wo = argmax ¢ || X - wl|“p where X =X — Xw; w,
N——

zZ1

lewll=1
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Unsupervised Techniques: Cluster Analysis

Data : {QZZ = <513177;,33277;),Z' = 1, s ,n}
Distance matrix D; ; = D(x,, x.,)

the distance is between clusters, not (only) individuals,

( .
jcnin  {d(@i, ;)

D(xc,,xc,) = 4 d(T,,Tc,)

\ iegl’aji}écz{d(wiv 213])}

for some (standard) distance d, e.g. Fuclidean (¢5), Manhattan (¢,
See also Bertin (1967).
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Unsupervised Techniques: Cluster Analysis

Data : {513@ = (ZUl,Z',ZUQ,?;),Z' = 1, T ,TL}
Distance matrix D; ; = D(x.,, T,)

The standard output is usually a dendrogram.

Cluster Dendrogram

hclust (*, "complete")
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ax;’s are observations from i.i.d random variables X;
with distribution Fj, g,

Fpo(x) =p1 - Fo,(®) +p2 - Fo,(x) +---

Cluster 1

E.g. Fp, is the c.d.f. of a N(u,, X) distribution.
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Unsupervised Techniques

Data : {wz = <£I?1,7;,5132,7;),Z. = ]., s ,n}

iterative procedure:

1. start with £ points z1, - 2%

2. cluster c; are {d(x;,z,) < d(x;,2;),5 # 7}

3. zj =T,

See Steinhaus (1957)) or |Lloyd (1957))
But curse of dimensionality, unhelpful in high dimen-

sion



http://www.ams.org/mathscinet-getitem?mr=0090073
http://www.cs.nyu.edu/~roweis/csc2515-2006/readings/lloyd57.pdf
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Datamining, Explantory Analysis, Regression, Statistical
Learning, Predictive Modeling, etc

In statistical learning, data are approched with little priori information.

In regression analysis, see Cook & Weisberg (1999)

The primary goal in a regression analysis is to understand, as far as possi-
ble with the available data, how the conditional distribution of the response y
varies across subpopulations determined by the possible values of the predictor
or predictors. Since this is the central idea, it will be helpful to have a conve-

i.e. we would like to get the distribution of the response variable Y conditioning

on one (or more) predictors X.

Consider a regression model, 1; = m(xz;) + ;, where ¢; ’s are i.i.d. N(0,0?),

possibly linear y; = x| 3 + &;, where ¢;’s are (somehow) unpredictible.



http://www.stat.umn.edu/arc/
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Machine Learning and ‘Statistics’

Machine learning and statistics seem to be very similar, they share the same
goals—they both focus on data modeling—but their methods are affected by

their cultural differences.

“The goal for a statistician is to predict an interaction between variables with
some degree of certainty (we are never 100% certain about anything). Machine
learners, on the other hand, want to build algorithms that predict, classify, and
cluster with the most accuracy, see Why a Mathematician, Statistician & Machine
Learner Solve the Same Problem Differently

Machine learning methods are about algorithms, more than about asymptotic

statistical properties.

Validation is not based on mathematical properties, but on properties out of
sample: we must use a training sample to train (estimate) model, and a testing

sample to compare algorithms (hold out technique).



http://www.galvanize.com/blog/2015/08/26/why-a-mathematician-statistician-machine-learner-solve-the-same-problem-differently-2/
http://www.galvanize.com/blog/2015/08/26/why-a-mathematician-statistician-machine-learner-solve-the-same-problem-differently-2/
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Goldilock Principle: the Mean-Variance Tradeoff

In statistics and in machine learning, there will be parameters and
meta-parameters (or tunning parameters. The first ones are estimated, the

second ones should be chosen.

See Hill estimator in extreme value theory. X has a Pareto distribution - with

index & - above some threshold w if

PIX > 2|X > u] = (%)E for z > .

Given a sample x, consider the Pareto-QQ plot, i.e. the scatterplot

i
—log (1 — log ;..
{ Og( n+1) OB }i:n—k--- n

Y Y

for points exceeding X,,_.,. The slope is &, i.e.

' 1
log Xy —i11.n = log Xyt + & (— log Lo log n )

n—+1 kE+1
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Goldilock Principle: the Mean-Variance Tradeoff

Hence, consider estimator
k—1

~ 1
fk — E ; log Ln—im — log Ln—kn-

k is the number of large observations, in the upper tail.

Standard mean-variance tradeoff,

e L large: bias too large, variance too small

e k small: variance too large, bias too small
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Goldilock Principle: the Mean-Variance Tradeoff
Same holds in kernel regression, with bandwidth h (length of neighborhood)

Z?:l Kh(x — mz)yz
2?21 Ky (r — ;)

mp(z) =

E(Y|X = z) = / f%’(?)'ydy

Standard mean-variance tradeoff,

e ) large: bias too large, variance too small

e /, small: variance too large, bias too small
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Goldilock Principle: the Mean-Variance Tradeoff

More generally, we estimate 8), or 7, (-)

Use the mean squared error for 6y,

E [(9—5h)2]

or mean integrated squared error my,(+)

2| [ on@) - (@) da

In statistics, derive an asymptotic expression for these quantities, and find h*

that minimizes those.

¥ Ofreakonometrics 38
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Goldilock Principle: the Mean-Variance Tradeoff
For kernel regression, the MISE can be approximated by

() (oo e e

where f is the density of &’s. Thus the optimal 5 is

( 52 zmmd_‘” \

TeK (z)de) m' (x m’ f’(a: T
| (Temer@i)’ (@) 2@t @) ae

(hard to get a simple rule of thumb... up to a constant, h* ~ n_%)

Use bootstrap, or cross-validation to get an optimal A
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Randomization is too important to be left to chance!

Bootstrap (resampling) algorithm is very important (nonparametric monte carlo)

— data (and not model) driven algorithm
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Randomization is too important to be left to chance!

AN AN

Consider some sample = (x1,--- ,x,) and some statistics 6. Set (9\% = 0(x)
R ~ 1]
Jackknife used to reduce bias: set 6(_;) = 0(x(_;)), and 0 = — Z 0 i)
n
i=1
If E(0,) =60+ O(n~ ") then E(6,) = 0 + O(n?).

See also leave-one-out cross validation, for m(-)

n

1

mse = — Z[yz — m(—7;) (xz)]z

n -
1=1

AN AN

Boostrap estimate is based on bootstrap samples: set 0,y = 0(x()), and
1 =~
— Z 1), where x3) is a vector of size n, where values are drawn from
n
i=1
{x1, -+ ,x,}, with replacement. And then use the law of large numbers...

See |[Efron (1979).

0 =



http://www.stat.cmu.edu/~fienberg/Statistics36-756/Efron1979.pdf
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Hold-Out, Cross Validation, Bootstrap
Hold-out: Split {1,--- ,n} into T (training) and V (validation)

Train the model on {(y;,x;),7 € T} and compute

~ 1 R
R = W Zf(yz‘, m(x;)

eV
k-fold cross validation: Split {1,--- ;n} into Iy, -, Iy. Set Iz = {1, ,n}\I;

Train model on IJ—. and compute

~ 1 k _
R = E ZRJ where Rj = ﬁ Zg(yzam;(w%))

J iEIj
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Hold-Out, Cross Validation, Bootstrap

Leave-one-out bootstrap: generate Iy, --- ,Ig bootstrapped samples from
{1,---,n)

set ny = Ligr, + -+ Ligr,

~ 1 1
R==-3"= ty, (=
n n; g(ywmb(m’b)
1=1 b:i%]b

Remark Probability that ith raw is not selection (1 —n=1)" — e ~ 36.8%,

cf training / validation samples (2/3-1/3)
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Statistical Learning and Philosophical Issues

From (y;,x;), there are different stories behind, see Freedman (2005)

e the causal story : x;; is usually considered as independent of the other
covariates xy ;. For all possible o, that value is mapped to m(x) and a noise
is atatched, . The goal is to recover m(-), and the residuals are just the

difference between the response value and m(x).

the conditional distribution story : for a linear model, we usually say that Y
given X = x is a N (m(x), 0?) distribution. m(x) is then the conditional
mean. Here m(-) is assumed to really exist, but no causal assumption is

made, only a conditional one.

the explanatory data story : there is no model, just data. We simply want to
summarize information contained in x’s to get an accurate summary, close to

the response (i.e. min{/(y,, m(x;))}) for some loss function /.



http://www.cambridge.org/us/academic/subjects/statistics-probability/statistical-theory-and-methods/statistical-models-theory-and-practice-2nd-edition
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Machine Learning vs. Statistical Modeling

In machine learning, given some dataset (x;,y;), solve

m(-) = argmin {Z@ Yi, M ))}

m(-)EF

for some loss functions £(-, ).

In statistical modeling, given some probability space (€2, 4,P), assume that y;
are realization of i.i.d. variables Y; (given X; = ;) with distribution F;. Then

solve

() = argmax {log L(m(x); y)} = argmax {Zlogf yism(a >>}

m(-)EF m(-)eF | ;=1

where log £ denotes the log-likelihood.
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Computational Aspects: Optimization

Econometrics, Statistics and Machine Learning rely on the same object:

optimization routines.

A gradient descent/ascent algorithm A stochastic algorithm
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Loss Functions
Fitting criteria are based on loss functions (also called cost functions). For a

quantitative response, a popular one is the quadratic loss,

Uy, m(x)) = [y — m(z)]*.

Recall that

/

E(Y) = argmin{||Y — m||7,} = argmin{E ([Y — m]*)}

meR meR

Var(Y) = min{E ([Y —m]*)} = E ([Y ~ E(Y)]*)

\

The empirical version is
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Loss Functions

1
Remark median(y) = argmin Z —|y; — m|
meR i—1 n

Quadratic loss function ¢(a,b)* = (a — b)?,

n

Y wi—2'B)?=|Y - X8|,

1=1

Absolute loss function ¢(a,b) = |a — b

D lyi—2 Bl =Y — X8|,
=1
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Loss Functions

)? = (z —y)?,

» Y
Absolute loss function 1 (x,y) = |z — y\
y) =

Quadratic loss function 5 (x

Quantile loss function £ (x, |(x — —1,.<,)|

Huber loss function

5(z—2)

lr(z,y) =3 °
7|z —y| — 472 otherwise.

2 for |x —y| < T,

i.e. quadratic when |z —y| < 7 and linear otherwise.
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Loss Functions

For classification: misclassification loss function

Uz, y) = Lasy or £(2, ) = Lsign(a)£sign(y)

- (377 y) — Tlsign(w)<0,sign(y)>0 + [1 — 7-]]-Sign(:J[;)>O,sign(y)<0

For {—1,+1} classes,
Hinge loss (‘maximum-margin’ classification) ¢(x,y) = (1 — zy)+
Logistic/log loss £(x,y) = log[1l 4+ e~ "Y]

Squared Loss {(x,y) = [z — y]* = [1 — 2y]?
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Linear Predictors

In the linear model, least square estimator yields
j=XB=X[X"X]"'X"Y

-~

H

We have a linear predictor if the fitted value 4 at point & can be written

y =m(z) = Z Sw,iVi = Spy
i=1

where S, is some vector of weights (called smoother vector), related to a n x n

smoother matrix,
y=_Sy

where prediction is done at points ax;’s.
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Degrees of Freedom and Model Complexity
E.g.

S,=X[X"X]"x

that is related to the hat matrix, y = Hy.

Note that
T |ISY — HY ||

 trace([S — H|T[S — H))

can be used to test a linear assumtion: if the model is linear, then 1" has a Fisher

distribution.

In the context of linear predictors, trace(S) is usually called equivalent number of

parameters and is related to n— effective degrees of freedom (as in Ruppert et al.
(2003)).



http://www.stat.tamu.edu/~carroll/semiregbook/
http://www.stat.tamu.edu/~carroll/semiregbook/
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Model Evaluation

In linear models, the R? is defined as the proportion of the variance of the the

response y that can be obtained using the predictors.

But maximizing the R? usually yields overfit (or unjustified optimism in Berk
(2008)).

In linear models, consider the adjusted R?,

n—1

R =1-[1-R?Y

n—p—1

where p is the number of parameters (or more generally trace(.S)).



http://www.springer.com/us/book/9780387775005
http://www.springer.com/us/book/9780387775005
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Model Evaluation
Alternatives are based on the Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC), based on a penalty imposed on some

criteria (the logarithm of the variance of the residuals),

n

1
AIC = log <n Z[yz —

1=1

n

1
BIC =log (n Z[yz —

1=1

In a more general context, replace p by trace(S)
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Goodhart’s Law

‘when a measure becomes a target, it ceases to

be a good measure’, by Charles Goodhart

¥ Ofreakonometrics 55
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Occam’s Razor

Between two models which explain as well the data, choose the simplest one

NN

Machine Learning: usually need to tradeoff between the training error and model

complexity

m = argﬂinin {6(Y, m(X)) + Q(m)}
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Occam’s Razor

m = arg;lnin {6y, m(X)+ Q(m)}

where 2(m) is a regularizer, that characterizes the complexity of the model.

small varlance large variance
large bias small bias

>

‘under-ﬁt over-fit

validation error

prediction error

training error

small .
model complexity
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Model Evaluation

One can also consider the expected prediction error (with a probabilistic model)
E[((Y, m(X)]

We cannot claim (using the law of large number) that

% Zf(yz‘, m(xi)) = BU(Y, m(X)]

since m depends on (y;, x;)’s.
Natural option : use two (random) samples, a training one and a validation one.

Alternative options, use cross-validation, leave-one-out or k-fold.
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Underfit / Overfit and Variance - Mean Tradeoff

Goal in predictive modeling: reduce uncertainty in our predictions.

Need more data to get a better knowledge.

Unfortunately, reducing the error of the prediction on a dataset does not

generally give a good generalization performance

— need a training and a validation dataset
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Overfit, Training vs. Validation and Complexity

complexity <— polynomial degree
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Overfit, Training vs. Validation and Complexity

complexity <— number of neighbors (k)
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Themes in Data Science

Predictive Capability we want here to have a model that predict well for new

observations

Bias-Variance Tradeoff A very smooth prediction has less variance, but a large

bias. We need to find a good balance between the bias and the variance

Loss Functions In machine learning, goodness of fit is discussed based on
disparities between predicted values, and observed one, based on some loss

function
Tuning or Meta Parameters Choice will be made in terms of tuning parameters
Interpretability Does it matter to have a good model if we cannot interpret it 7

Coding Issues Most of the time, there are no analytical expression, just an

alogrithm that should converge to some (possibly) optimal value

Data Data collection is a crucial issue (but will not be discussed here)




/
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Scalability Issues

Dealing with big (or massive) datasets, large number of observations (n) and/or

large number of predictors (features or covariates, k).

Ability to parallelize algorithms might be important (map-reduce).

s

. ~
. |

n can be large, but limited
(portfolio size)
large variety k

large volume nk

— Feature Engineering

¥ Ofreakonome trics 63
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Part 3.
Application to Classification

¥ Ofreakonometrics 64:
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Econometric Based Models in Actuarial Science
Consider an i.i.d. sample {y1,--- ,y,} with y; € {0,1},
P(Y; = y;) = 7%l —x]'" ¥, with y; € {0,1}.
where m € [0,1], sothat P(Y; = 1) =7 and P(Y; =0) =1 — 7.
The likelihood is

L(my) = HP(Yz =y;) = Hﬂ'yi[l — )t

and the log-likelihood is

log L(m

The first order condition is

Olog L(m;y
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Econometric Based Models in Actuarial Science
Assume that P(Y; = 1) = 7,

logit(m;) = X8, where logit(m;) = log (1 i ) :
T

or
exp[ X} ]
1+ eXp[XZ-Tﬁ] .

= logit ™! (X} 8) =

The log-likelihood is

log £(8) = ) i log(m:)+(1—y;) log(1—;) Zyzlog mi(B))+(1—y;) log(1—m;(B))

and the first order conditions are solved numerically
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Logistic Classification

It is a linear classifier since we have a linear separa-
tion between the e’s and the e’s.

Let m(x) = E(Y|X = «).

With a logistic regression, we can get a prediction

_ eXp[CBTE]A
1 + explxT 3]

m(ax

Is that the ‘best’ model we can get from the data?
What if n and/or k are very large?

¥ Ofreakonometrics 67
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Why a Logistic and not a Probit Regression?
Bliss (1934) suggested a model such that

P(Y =1|X =z) = H(z" ) where H(-) = ®(")

the c.d.f. of the N'(0, 1) distribution. This is the probit model.
This yields a latent model, y; = 1(y; > 0) where

y; = ﬂBiT,B + ¢, is a nonobservable score.

In the logistic regression, we model the odds ratio,

P(Y =1|X = z)
P(Y £ 1|X = z)

= exp[z' B

expl-]

P(Y = 1|X = @) = H(z"8) where H(.) = 1+ expl]

which is the c.d.f. of the logistic variable, see Verhulst (1845)

Table 3.2 'Transformation of percentages to probits

% 0 1 2 3 4 1 (] 7 8 9

0 — 267 205 3.2 3.26 3.36 3.45 3.62 3.69 3.60
10 372 3.77 3.82 3.87 3.92 3.96 4.01 4.06 4.08 4.12
20 4.16 4.19 4.23 4.26 4.20 4.33 4.30 4.39 4.42 4.45
30 448 4.60 4.63 4.50 4.69 4.01 "4.64 4.07 4.69 4.72
40 4.76 4.77 4.80 4.82 4.86 4.87 4.90 4.92 4.95 4.97
60 5.00 656.03 5.05 6.08 6.10 5.13 6.16 6.18 5.20 65.23
60 6525 6.28 6.31 65.33 636 6.30 5.4l 6.44 5.47 5.50
70 5.62 5.55 5.68 b5.61 65.64 656.67 571 674 577 5.8l
80 5.84 6.88 592 696 599 6.04 6.08 6.13 6.18 0.23
90 6.28 0.3¢ 041 048 06.66 6.64 6.76 6.88 7.06 7.33

— 00¢ 01 02 03 04 05 06 07 08 0.9
99 7.33 17.37 741 1746 7.61 7.68 7.66 7.76 '7.88 8.09

Soit p la population : représentons par dp 'accroi 1t in-
finiment petit qu'elle recoil dant un terps infini courtdt,
§i la population croissait en progression géométrique, nous au-
rions l'égquation g’;’ == mp. Mais comme la vitesse d'accroisse-
ment de Ja population est retardée par 'augmentation méme da
nombre des habitans , nous devrons retrancher de mp une fonc-
tion inconnue de p; de maniére que la formule & intégrer de-
viendra

P

dp
= = mp —(p)

L’hypothése la plus simple que I'on puisse faire sur la forme
de la fonction ¢, est de supposer ¢ (p)==np*. On trouve alors
pour intégrale de 'équation ci-dessus

t=— l [log. p ~log. (m—np)] + constante,
m

et il suffira de trois observations pour déterminer les deux
coefliciens constans m et n et la constante arbitraire.
En résolvant la dernidre équation par rapport i p , il vient
' mp’ emt
P=—

en désignant par p’ la population qui répond 4 =10, et parela
base des logarithmes népériens. Si l'on faitt=-¢o , on voit quela
valeur de p correspondante est P= ? Telle est donc la limite
supérieure de la population.



http://www.sciencemag.org/content/79/2037/38
http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN129323640_0018&DMDID=dmdlog7
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Predictive Classifier

To go from a score to a class:
if s(z) > s, then Y (x) = 1 and s(z) < s, then Y (z) = 0
Plot TP(s) = P[Y = 1Y = 1] against FP(s) = P[Y = 1|Y = 0]
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Comparing Classifiers: Accuracy and Kappa

Kappa statistic kK compares an Observed Accuracy with an Expected Accuracy
(random chance), see Landis & Koch (1977).

See also Observed and Random Confusion Tables

Y =0

Y =1

TN
FP

FN
TP

Y =0

TN+FP

Y =1

FN+TP

Y =0

Y =1

25
4

3
39

11.44
17.56

16.56
25.44

random accuracy =

K =

29

42

total accuracy =

TN 4+ FP]-[TP+ FN] + TP+ FP]-[TN + FN]

TP+TN

n

29

42

~ 90.14%

total accuracy — random accuracy

n2

1 — random accuracy

~ 79.48%

~ 51.93%



http://www.jstor.org/pss/2529310

7 http://www.ub.edu/riskcenter

On Model Selection

Consider predictions obtained from a linear model and a nonlinear model, either

on the training sample, or on a validation sample,
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Penalization and Support Vector Machines
SVMs were developed in the 90’s based on previous work, from Vapnik & Lerner
(1963), see also Vailant (1984).

Assume that points are linearly separable, i.e. there is w
and b such that

+lifwz+b>0
1ifwlz+b<0

Problem: infinite number of solutions, need a good one,

that separate the data, (somehow) far from the data.

maximize the distance s.t. H,,; separates =1 points, i.e.

1
min {§wTw} s.t. Yi(w'a; +b) > 1, Vi.



http://www.mathnet.ru/links/125522e9ff005782963e9e6755d41d43/at11885.pdf
http://www.mathnet.ru/links/125522e9ff005782963e9e6755d41d43/at11885.pdf
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Penalization and Support Vector Machines

Define support vectors as observations such that

wla; +b) =1

The margin is the distance between hyperplanes defined by
support vectors. The distance from support vectors to H,,

is ]~

Now, what about the non-separable case?

Here, we cannot have y;(w'x; +b) > 1 Vi.
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Penalization and Support Vector Machines

Thus, introduce slack variables,

wTazi —I-b Z +1 —fi when Y; — +1
wTa:i + b < —1 +€z when Y; — —1

where & > 0 Vi. There is a classification error when &; > 1.

The idea is then to solve

1 1
min {§wTw -+ ClT1€>1} , instead of min {inw}
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Support Vector Machines, with a Linear Kernel
So far,
d(wo, Hop) = min {[lzo — zs,)

where || - ||¢, is the Euclidean (¢5) norm,

||£B0—£I?Hg2:\/(330—513) (kg — ) = VXo-Tn — 2T + T

More generally,

Ao, Hu) = _min {|lzo — 2|1}
w,b

where || - || is some kernel-based norm,

2o — x| = VE(xo,20) — 2k(x0.2) + k(x-2)
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Heuristics on SVMs

An interpretation is that data aren’t linearly seperable in the original space, but

might be separare by some kernel transformation,

//// '

‘/‘},"

I
)"' " 1‘ }\\
//,/U, ““*N
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A
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Penalization and Mean Square Error

Consider the quadratic loss function, £(6,0) = (6 — )2, the risk function becomes

the mean squared error of the estimate,

[0 —E(0))” +E(E[0] - 0)*

bias? variance

Get back to the intial example, y; € {0,1}, with p =P(Y = 1).

Consider the estimate that minimizes the mse, that can be writen p = (1 — a)y
then

)2]9(1 D p)

mse(p) = o?p* + (1 — «

l—p
I+ (n—1)p

i.e.unbiased estimators have nice mathematical properties, but can be improved.

then o* =
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Linear Model

Consider some linear model y; = ! 8 +¢; foralli=1,--- ,n.

Assume that ¢; are i.i.d. with E(¢) = 0 (and finite variance). Write

(yl\ (1 3511 l‘m\ (50\ (51\

B
= +

o) N e |
——

y,nxl X nx(k+1)
B,(k+1)x1

Assuming € ~ N(0, 0°T), the maximum likelihood estimator of 3 is
B = argmin{[ly — X" 8]l,} = (X X)Xy
.. under the assumtption that X TX is a full-rank matrix.

What if X X cannot be inverted? Then B = (X T X]~1X "y does not exist, but
B, =[X"X + M| ' X"y always exist if A > 0.
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Ridge Regression

The estimator E = | X X + A1 X Ty is the Ridge estimate obtained as solution
of

( )
n

B = argmin 4 Z[yz' —Bo—x; B2+ A [|Blle,
B i=1 g
\ 1782

for some tuning parameter A\. One can also write

B = argmin {||[Y — X" 8|,}
B;ll Blley <s

Remark Note that we solve 8 = argmin {objective(3)} where
B

objective(8) = i@ +  R(B)

training loss regularization
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Going further on sparcity issues

In severall applications, k can be (very) large, but a lot of features are just noise:
B; = 0 for many j’s. Let s denote the number of relevent features, with s << k,

cf |Hastie, Tibshirani & Wainwright (2015),

s = card{S} where S = {j; 3; # 0}

The model is now y = X t8s + ¢, where X £ X s is a full rank matrix.



https://www.crcpress.com/Statistical-Learning-with-Sparsity-The-Lasso-and-Generalizations/Hastie-Tibshirani-Wainwright/9781498712163
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Going further on sparcity issues
Define ||a|ls, = 3" 1(|as| > 0). Ici dim(B) = s.

We wish we could solve

B = argmin {|Y — X" 8], }
BillBlleg <s

Problem: it is usually not possible to describe all possible constraints, since

(2) coefficients should be chosen here (with k£ (very) large).

Idea: solve the dual problem

B=  argmin  {||Blle}

B;llY =X T8¢, <h

where we might convexify the ¢y norm, || - ||¢,-
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Regularization /,, /; and /,

min{||8]|¢, } subject to |[Y — X ' Bll,, <h
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Going further on sparcity issues

On [—1,+1]*, the convex hull of ||B]|¢, is || 8]l

On [—a, +a]®, the convex hull of ||B||¢, is a™ 1| 8¢,

Hence,

B = argmin {|Y — X 'S¢, }
BillBlley <8

is equivalent (Kuhn-Tucker theorem) to the Lagragian optimization problem

//8\ — argmin{HY - XT/B’|£2+)‘H6H€1}
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LASSO Least Absolute Shrinkage and Selection Operator

B € argmin{[|Y — X 7B, +A[ Bl }

is a convex problem (several algorithms*), but not strictly convex (no unicity of

the minimum). Nevertheless, predictions y = :cTﬁ are unique

* MM, minimize majorization, coordinate descent Hunter (2003).



http://sites.stat.psu.edu/~dhunter/papers/mmtutorial.pdf
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Optimal LASSO Penalty
Use cross validation, e.g. K-fold,

B_y(A) = argmin ¢ > " [y; — a] B + A 8]

1Z Ly,

then compute the sum of the squared errors,

Qr(A) =

and finally solve

A* = argmin {

Note that this might overfit, so Hastie, Tibshiriani & Friedman (2009) suggest the
largest A such that

Q(\) < Q(N*) + se[\*] with se[X Z



http://statweb.stanford.edu/~tibs/ElemStatLearn/

Riskcenter

7 http://www.ub.edu/riskcenter

Coefficients

%)
2]
=
Q
)
=
[}
o
o

I
0.2

Log Lambda L1 Norm
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Penalization and GLM’s

The logistic regression is based on empirical risk, when y € {0,1}

_% 3" (yiz! B — log[l + exp(z] B)))

i=1
or, if y € {—1,+1},
1 n
- Z log [1 + exp(yiz; B)] -
i=1
A regularized version with the /1 norm is the LASSO logistic regression

1 mn
- > log [1+4 exp(ysz] B)] + Al B
1=1

or more generaly, with smoothing functions

1 mn
- > “log[1 + exp(yig(e:))] + Allgll
1=1
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Classification (and Regression) Trees, CART

one of the predictive modelling approaches used in statistics, data mining and
machine learning [...] In tree structures, leaves represent class labels and
branches represent conjunctions of features that lead to those class labels.

(Source: wikipedia).

Survival
29 42

INSYS <19

Death Survival
24 3 5 39

REPUL >= 1094

Death Survival
4 3 1 36

500 1000 1500 2000 2500 3000



https://en.wikipedia.org/wiki/Decision_tree_learning
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Classification (and Regression) Trees, CART
To split N into two { Ny, N}, consider

Ny
I(NL,Ng)= > —I(N:)
x€{L,R}

e.g. Gini index (used originally in CART, see Breiman et al. (1984))

v %5 (o

x€{L,R} yE{O 1}

and the cross-entropy (used in C4.5 and C5.0)

entropy (N Ng) = — 30 12 3 Dew o (”n>

ve{L,R} yE{O 1} Nz



https://books.google.ca/books?id=JwQx-WOmSyQC&hl=fr
https://en.wikipedia.org/wiki/C4.5_algorithm
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Classification (and Regression) Trees, CART

Ny : {wiJ’ < S} Ng: {ZEZ',]‘ > S}

1 I(N.. N
solve je{gr’l.aj%k},s{ (Nr,NRr)}

+— first split

T T T T T T T T T T T

T T
12 14 16 18 20 22 16 18 20 22 24 26 28

second split —

L— T L— T T T T T T T T T T T
8 10 12 14 16 500 1000 1500 2000 500 700 900 1100
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Pruning Trees

One can grow a big tree, until leaves have a (preset) small number of
observations, and then possibly go back and prune branches (or leaves) that do

not improve gains on good classification sufficiently.
Or we can decide, at each node, whether we split, or not.

In trees, overfitting increases with the number of steps, and leaves. Drop in

impurity at node N is defined as

AZ(Ny,Ng) = Z(N) — Z(Ny, Ng) = Z(N) — (
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(Fast) Trees with Categorical Features

Consider some simple categorical covariate, x € {A, B,C,--- .Y, Z}, defined from

a continuous latent variable x ~ U([0, 1]).

2 ABCDEFGHI JKLMNOPQRSTUVWXY Z S 4 NMKLOPJQRIGHFTDUSCEWYVXBYZA

@
o

©«
=]

Probability

=
o

N
=1

<
< 0.0 0.2 0.4

1
Compute y(z) = — Z y; ~ E|Y|X = z] and sort them
nx

X, =X
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(Fast) Trees with Categorical Features

Then the split is done base on sample

r € {xi.06, - 7%':26}

(049

VS. T € {xj+1:26; o, T96:26 ) \n=1000

X2 = FGH,LJK,LMN,OPQR

S~

0.68
n=501)

X2 = B,C,D,E,S,T,U,V,W,X
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Bagging
Bootstrapped Aggregation (Bagging) , is a machine learning ensemble

meta-algorithm designed to improve the stability and accuracy of machine

learning algorithms used in statistical classification (Source: wikipedia)).

It is an ensemble method that creates multiple models of the same type from
different sub-samples of the same dataset [boostrap]|. The predictions from each

separate model are combined together to provide a superior result |aggregation].
— can be used on any kind of model, but interesting for trees, see Breiman (1996)

Boostrap can be used to define the concept of margin,

B
margin, = Z 1(y; = y;) 2 Z 1(ys # yi)
B S

Remark Probability that ith raw is not selection (1 —n=1)" — e ~ 36.8%, cf
training / validation samples (2/3-1/3)



https://en.wikipedia.org/wiki/Bootstrap_aggregating
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Bagging : Bootstrap Aggregation

For classes, m(x) =

For probabilities

ZA“ =23 wi@ e Cy),

blj]_

o
o
o
™
o
o
n
Y
o
o
o
N
o
o
n
—

1000

500

¥ Ofreakonometrics 96
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Model Selection and Gini/Lorentz (on incomes)

Consider an ordered sample {y1,--- ,y,}, then Lorenz curve is

2;21 Yj
2?21 Yj

n

The theoretical curve, given a distribution F', is

J P ()
B ST

see |Gastwirth (1972)



http://econpapers.repec.org/RePEc:tpr:restat:v:54:y:1972:i:3:p:306-16
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Model Selection and Gini/Lorentz

A
Gini index is the ratio of the areas . Thus,
A+ B

p

n

n + 1 Lorenz curve
n—1
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Model Selection

Consider an ordered sample {y1,---,y,} of incomes,
with 11 < ys < --- <y,, then Lorenz curve is

2321 Yj
Z?:l Yj

n

We have observed losses y; and premiums 7(x;). Con-
sider an ordered sample by the model, see|Frees, Meyers

AN

& Cummins (2014), 7w(x1) > 7(x2) > -+ > 7W(xy), then
plot

2321 Yj
Z?=1 Yj

n



http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2438129
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2438129

a0 = a0

g -
Rwerape Prgang

oy
[F 4]
LS ]
L% ]
=1
=
g
&=
a2
bk
=
=
=T
=l
=
=
=
=

0% 40% 50% 60% 1% 80% 0%  100%

+ High Risk POPULATION SORTED BY PREDICTED RISK Low Risk b

See |Frees et al. (2010) or Tevet (2013).

¥ Ofreakonometrics 100


https://www.casact.org/education/spring/2010/handouts/C17-Frees2.pdf
http://www.casact.org/newsletter/index.cfm?fa=viewart&id=6540
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Part 4.
Small Data and Bayesian Philosophy

101
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“it’s time to adopt modern Bayesian data analysis as standard procedure in our

scientific practice and in our educational curriculum. Three reasons:

1. Scientific disciplines from astronomy to zoology are moving to Bayesian analysis.

We should be leaders of the move, not followers.

. Modern Bayesian methods provide richer information, with greater flexibility and
broader applicability than 20th century methods. Bayesian methods are

intellectually coherent and intuitive.

Bayesian analyses are readily computed with modern software and hardware.

. Null-hypothesis significance testing (NHST), with its reliance on p values, has

many problems.

There is little reason to persist with NHST now that Bayesian methods are accessible

to everyone.

My conclusion from those points is that we should do whatever we can to encourage the

move to Bayesian data analysis.” John Kruschke,

(quoted in Meyers & Guszcza (2013))

¥ ©freakonometrics 102
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Bayes vs. Frequentist, inference on heads/tails

Consider some Bernoulli sample « = {z1, 22, - ,z,}, where x; € {0,1}.
X,’s are i.i.d. B(p) variables, fx(z) = p*[1 —p]'~%, x € {0,1}.
Standard frequentist approach

g xr; = argmax

pe(0,1)

From the central limit theorem

AN

p—p
\F\/p(l—p

we can derive an approximated 95% confidence interval

1.96
pi—\/p 1-p

5 N(0,1) as n — oo

103
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Bayes vs. Frequentist, inference on heads/tails

Example out of 1,047 contracts, 159 claimed a loss

—— (True) Binomial Distribution
—— Poisson Approximation
—— Gaussian Approximation

Probability

To)
IS
Q
o
o
I5e)
Q
o
To)
IN
Q
o
o
IN
Q
o
To)
-
Q
o
o
-
o
o
To)
o
S
o
o
S
Q
o

Number of Insured Claiming a Loss
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Small Data and Black Swans

Example [Operational risk] What if our sample
is x ={0,0,0,0,0} 7
How would we derive a confidence interval for p ?

“INA’s chief executive officer, dressed as Santa Claus, how baves

asked an unthinkable question: Could anyone pre-
! e p k{{‘)the enigma code,

dict the probability of two planes colliding in midair?
hunted down russian

Cook, to make a prediction based on no experience submarines & EITIEI’QEd
at all. There had never been a serious midair collision triumphant from two )&,«/\

of commercial planes. Without any past experience or centuries of co ntroversy

repetitive experimentation, any orthodox statistician

Santa was asking his chief actuary, L. H. Longley-

had to answer Santa’s question with a resounding no.”

¥ Ofreakonometrics 105
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Bayes, the theory that would not die

Liu et al. (1996) claim that “ Statistical methods
with a Bayesian flavor [...] have long been used

in the insurance industry”.

History of Bayesian statistics, the theory that would
not die by Sharon Bertsch McGrayne

“[Arthur] Bailey spent his first year in New York [in
1918] trying to prove to himself that ‘all of the fancy
actuarial [Bayesian| procedures of the casualty busi-
ness were mathematically unsound.” After a year of in-
tense mental struggle, however, realized to his conster-

nation that actuarial sledgehammering worked” |...]

Ofreakonometrics 106
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Bayes, the theory that would not die

...] “ He even preferred it to the elegance of frequen-
tism. He positively liked formulae that described
‘actual data . . . I realized that the hard-shelled un-
derwriters were recognizing certain facts of life ne-
glected by the statistical theorists” He wanted to
give more weight to a large volume of data than
to the frequentists small sample; doing so felt sur-
prisingly ‘logical and reasonable’. He concluded that
only a ‘suicidal’ actuary would use Fishers method
of maximum likelihood, which assigned a zero prob-
ability to nonevents. Since many businesses file no
insurance claims at all, Fishers method would pro-

duce premiums too low to cover future losses.”

¥ Ofreakonometrics 107
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Bayes’s theorem

Consider some hypothesis H and some evidence E, then

Pp(H) = P(H|E) = P(g(g)E) - MH)IPJ(I%)E H)

Bayes rule,

prior probability P(H )

versus posterior probability after receiving evidence E, Pg(H)

In Bayesian (parametric) statistics, H = {6 € ©} and F = {X = x}.

Bayes’ Theorem,

f(x) [ f(x]|0)m(0)do

108
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Small Data and Black Swans

Consider sample & = {0,0,0,0,0}.
Here the likelihood is

Flw;]0) = 6%i[1 — gL~
f(33|9) = Qle[l _ g]n—mT1

and we need a priori distribution 7 () e.g.

a beta distribution

041 —0)°
- B(,p)

ea—l—mTl [1 . H]B—I—n—mTl

()

m(0|z) =

Bla+x™1,0+n—xTl)

109
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On Bayesian Philosophy, Confidence vs. Credibility

for frequentists, a probability is a measure of the the frequency of repeated events
— parameters are fixed (but unknown), and data are random
for Bayesians, a probability is a measure of the degree of certainty about values

— parameters are random and data are fixed

“Bayesians : Given our observed data, there is a 95% probability that the true value of

0 talls within the credible region

vs. Frequentists : There is a 95% probability that when I compute a confidence interval

from data of this sort, the true value of 0 will fall within it.” in Vanderplas (2014)

Example see Jaynes (1976), e.g. the truncated exponential

110


http://bayes.wustl.edu/etj/articles/confidence.pdf
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is a 95% confidence interval
of a proportion ? Here T = 159 and n = 1047.

1. draw sets (Z1,--- ,Zyn)r with X; ~ B(Z/n)

2. compute for each set of values confidence

intervals

. determine the fraction of these confidence

interval that contain

— the parameter is fixed, and we guarantee

that 95% of the confidence intervals will con-

tain it.

111
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is 95% credible region of a pro-
portion 7 Here * = 159 and n = 1047.

1. draw random parameters pp with from the

posterior distribution, 7(-|x)
. sample sets (21, -+ ,Zp)r With X; 1 ~ B(pg)
. compute for each set of values means 7y

. look at the proportion of those =
that are within this credible region
[II-1(.025|x); II-1(.975|x)]

— the credible region is fixed, and we guarantee
that 95% of possible values of T will fall within it
it.

112
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Difficult concepts ? Difficult computations ?

We have a sample ¢ = {z1,--- ,azn} i.i.d. from distribution fg(-).

In predictive modeling, we need E(g = [g(x ) fo)z(x)dx where

fo|z(x /fe m(0]x)d

while prior density (without information ) was

:/fg(m) (0)d6

Can we sample from 7(f|x) (use monte carlo technique to approximate the

How can we derive w(0|x) ?

integral) 7
Computations not that simple... until the 90’s : MCMC

113
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Markov Chain

Stochastic process, (X¢):en,, on some discrete space ()
P(Xip1 =yl Xe =2, Xy 4 =x,_1) = P(Xyq1 = y|Xy =2) = P(z,y)

where P is a transition probability, that can be stored in a transition matrix,
P =[P,,] = [P(x,y)].

Observe that P(X;, 1, = y| Xy = x) = Py(x,y) where P" = [P, (z,y)].

Under some condition, lim P" = A = [)\T],
n— oo

Problem given a distribution A, is it possible to generate a Markov Chain that
converges to this distribution 7

114
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Bonus Malus and Markov Chains

Ex no-claim bonus, see Lemaire (1995).

HONG KONG
Table B-9. Hong Kong System

Class Premium Class Afier

]
Claims

Starting class: 6.

Assume that the number of claims is
N ~ P(21.7%), so that P(N = 0) =
80%.
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Hastings-Metropolis

Back to our problem, we want to sample from 7(6|x)
i.e. generate 61,--- .,0,, - from w(0|x).

Hastings-Metropolis sampler will generate a Markov Chain (6;) as follows,

e generate 6

e generate 0* and U ~ U([0, 1]),

7(0%|2) P(6,]0%)
7(0,)z) P(0%]0,—1)

it U < R set 0,41 =07

compute R =

if U Z R set (975_|_1 :Ht

R is the acceptance ratio, we accept the new state * with probability min{1, R}.

116
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Hastings-Metropolis

Observe that

m(0%) - f(=|0%) P(6:|0%)

N = 6 (@) PO )

In a more general case, we can have a Markov

process, not a Markov chain.

E.g. P(0%|0:) ~ N(0:,1)

117
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Heuristics on Hastings-Metropolis

In standard Monte Carlo, generate 6;’s i.i.d., then
1 mn
" 9(0:) — Elg(0)
i=1

(strong law of large numbers).

Well-behaved Markov Chains (P aperiodic, irreducible, positive recurrent) can

satisfy some ergodic property, similar to that LLN. More precisely,

e P has a unique stationary distribution A, i.e. A=A x P

e crgodic theorem

AR FTONGL

even if 6;’s are not independent.
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Heuristics on Hastings-Metropolis

Remark The conditions mentioned above are

e aperiodic, the chain does not regularly return to any state in multiples of

some k.

e irreducible, the state can go from any state to any other state in some finite

number of steps

e positively recurrent, the chain will return to any particular state with

probability 1, and finite expected return time

120
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Gibbs Sampler

For a multivariate problem, it is possible to use Gibbs sampler.

Example Assume that the loss ratio of a company has a lognormal distribution,
LN(M: 02)7 -€.8

Example Assume that we have a sample x from a N (i, 0?). We want the
posterior distribution of @ = (u, %) given x . Observe here that if priors are
Gaussian N (p0,72) and the inverse Gamma distribution /G(a, b), them

i

2:“0—'_

plo?, x NN(

o2 nt? o272 )

T
o2 +nrt 02 +n7t2 " 02 4 nr2

2 n IS 2
P16 (3 0.3 S lri ol )

1=1

\

More generally, we need the conditional distribution of 8|0 _, x, for all k.
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ibbs Sampler
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Gibbs Sampler

Example Consider some vector X = (Xq,---, Xy) with indépendent
components, X; ~ £(A;). To sample from X given X1 > s for some s > 0:

start with some starting point xy such
that 11 > s

pick up (randomly) i € {1,--- ,d}

X; given X; > s — :U(T_ )1 has an Expo-

)

nential distribution £(\;)

draw Y ~ &£(\;) and set x; = y + (s —

:Iz(T_,L.)l)Jr until :1:(_,&.)1 +x; > S
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JAGS and STAN

Martyn Plummer developed JAGS Just another Gibbs sampler in 2007 (stable

since 2013). It is an open-source, enhanced, cross-platform version of an earlier

engine BUGS (Bayesian inference Using Gibbs Sampling).

STAN is a newer tool that uses the Hamiltonian Monte Carlo (HMC) sampler.

HMC uses information about the derivative of the posterior probability density
to improve the algorithm. These derivatives are supplied by algorithm
differentiation in C/C++ codes.
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MCMC and Claims Reserving

Consider the following (cumulated) triangle, {C; ;},

0 1 2 3 4 D
4372 4411 4428 4435 4456
4659 4696 4720 4730 | 4752.4
5345 5398 5420 | 5430.1 5455.8
0917 6020 | 6046.1 6057.4 6086.1
6794 | 6871.7 6901.5 6914.3 6947.1

7204.3 7286.7 7318.3 73319 7366.7

1.3809 1.0114  1.0043 1.0018 1.0047
0.7248 0.3203 0.04587 0.02570 0.02570
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A Bayesian version of Chain Ladder

1 2 3 4 D
1.362418 1.008920 1.003854 1.001581 1.004735
1.383724 1.007942 1.005111 1.002119
1.380780 1.009916 1.004076
1.395848 1.017407
1.378373

Aj 1.3809 1.0114 1.0043 1.0018 1.0047
o 0.7248 0.3203 0.04587 0.02570 0.02570

Assume that A; j ~ N (,uj, ij )
,J

We can use Gibbs sampler to get the distribution of the transition factors, as well

as a distribution for the reserves,
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A Bayesian version of Chain Ladder

Histogram of mecmc.out Histogram of memc.out
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Sample Quantiles
Sample Quantiles

Theoretical Quantiles Theoretical Quantiles
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A Bayesian analysis of the Poisson Regression Model

In a Poisson regression model, we have a sample

(wvy) — {(CEZ)?JZ)}?
yi ~ P(u;) with log u; = Bo + Br;.

In the Bayesian framework, 3y and 3; are ran-
dom variables.
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Other alternatives to classical statistics

Consider a regression problem, u(x) = E(Y|X = z), and assume that smoothed

splines are used,

k
p(@) = > Bih; @)

Let H be the n x k matrix, H = [hj (x4)] =
(h(z;)], then B = (H ' H) 'H'y, and

se(i(x)) = [h(z) (H"H) 'h(z)]%5

With a Gaussian assumption on the residu-
als, we can derive (approximated) confidence

bands for predictions ().
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Bayesian interpretation of the regression problem

Assume here that 8 ~ N (0,7X) as the priori
distribution for 3.

Then, if (x,y) = {(x;,y;), i = 1,--- ,n}, the
posterior distribution of u(x) will be Gaus-

sian, with

E(u(z)|z, y) = h(z)T (HTH + “—22—1> B H'y

T

cov(u(z), u(z)|x,y)

=h(z)" (HTH + 0—22—1) B h(z")o?

T

Example X =1
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Bootstrap strategy

Assume that Y = u(x) + ¢, and based on
the estimated model, generate pseudo obser-
vations, y* = pu(x;) + €.

Based on (x,y*) = {(z;,y}),e = 1,--- ,n},
derive the estimator j*(-)

(and repeat)

Observe that the bootstrap is the Bayesian

case, when 7 — oc.
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Part 5.
Data, Models & Actuarial Science
(some sort of conclusion)
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The Privacy-Utility Trade-Off

In Massachusetts, the Group Insurance Commission (GIC) is responsible for
purchasing health insurance for state employees

GIC has to publish the data: GIC(zip, date of birth, sex, diagnosis, procedure, ...)

Sweeney paid $20 and bought the voter registration list for Cambridge
Massachusetts, VOTER(name, party, ..., zip, date of birth, sex)

William Weld (former governor) lives in Cambridge, hence is in VOTER

.. \-l .
Ethnicity Name

Visit date Address

Date

Diagnosis _
registered

Procedure
Party
Medication affiliation
Total charge Date last
voted
Medical Data Voter List

Figure 1 Linking to re-identify data
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The Privacy-Utility Trade-Off

e 6 people in VOTER share his date of birth
e only 3 of them were man (same sex)
e Weld was the only one in that zip

e Sweeney learned Weld’s medical records

All systems worked as specified, yet an important data was leaked.

“87% of Americans are uniquely identified by their zip code, gender and birth
date”, see Sweeney (2000).

A dataset is considered k-anonymous if the information for each person contained
in the release cannot be distinguished from at least £ — 1 individuals whose

information also appear in the release
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176 ~ Chapitre 3. La prime pure NO SegmeﬂtatiOn

maniere des caractéristiques £ de 'assuré, et lui réclame donc une Insured Insurer

prime pure de montant [E[S], la méme que celle qu’il réclame a tous

les assurés du portefeuille, Dans ce cas, la sitnation est telle que L
- 0SS S — E[S]

présentée au Tableau 3.7,

Assurés  Assureur

Dépense E[S] S "’il-Sﬂl Average LOSS O
]_)I"Iu-rj:-.:' INOyenne "‘*"] 0

Veriance 2 VA Variance Var[S]

TAB. 3.7 Situation des assurés ef de Uassureur en Uabsence de

seqmentalior.

Perfect Information: €2 observable

L'assureur prend done l'entiereté de la variance des sinistres W[ 5]
a sa charge, que celle-ci soit due a lhétérogénéité du portefeuille, on

a la variabilité intrinséque des montants des sinistres.
Transfert de risque en information compléte Insured Insurer

A Taufre extreme, supposons que 'assureur incorpore toute I'in-
formation € dans la tarification. On serait alors dans la situation LOSS E[Slﬂ] S —_— E[S| Q]
décrite an Tableau 3.8,

- I Assurés ;\H.\;lu:ﬁw_l-r__| Average LOSS E[S] 0
| PJ]I“[IH["

E[5]] S—E[S[Q] |

|]\?]m“ [":|I<z|] -e}-'[.q_|||lai.w|nlJ | Variance Var |E[S|€2] Var | S — E[S|€2]

TaB. 3.8 — Situation des assurés et de assurenr dans le cas ou la

segmentation est opérée sur base de €.

Contrairement an cas précédent, la prime payée par un as- Q
suré prélevé au hasard dans le portefeuille est A présent une va- \’ a;r S e E V ar S Q | V ar ]E S .
riable aléatoire: E[S|€2] dépend des caractéristiques €2 de cet assuré.

Comme la variable aléatoire S — E[S]€2] est centrée, le risque as- \ . o \ - -
-~ -~

— insurer — insured

sume par Uassureur la variance du résultat financier de 'opération

d’assurance, i.e.

v[s-ElsiR] = E[(s-Eisial)]
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Non-Perfect Information: X C €2 is ob-
servable

3.8. La prime pure en univers segmenté 177

On assiste dans ce cas & un partage de la variance totale de S (c'est-
a-dire du risque) entre les assurés et 'assureur, matérialisé par la
formule

vis| = E[visia|| + V|E[S|]| .
151 = E[visil] +v[E(s|a]] Insured Insurer

—rASSUTEUr —+ASSUTES
Ainsi, lorsque toutes les variables pertinentes €2 ont été prises en L 0SS
compte, I'intervention de 'assureur se limite & la part des sinistres E [S | X ] S - E [ S ‘ X ]
due exclusivement au hasard; en effet, V[S|€2] représente les fluctua-

tions de S dues au seul hasard. Dans cette situation idéale, I'assureur Average Loss K [S ] 0
mutualise le risque et il n’y a donc aucune solidarité induite entre
les assurés du portefeuille: chacun paie en fonction de son propre

o s Variance Var |E[S|X] E | Var[S|X]

Transfert des risques en information partielle

Bien entendu, la situation décrite an paragraphe précédent est
purement théorique puisque parmi les variables explicatives £2 nom-

brenses sont celles qui ne peuvent pas étre observées par l'assureur.
En assurance automobile par exemple, ’assureur ne peut pas ob- E \/ a,r [S | X ] E s/ ar [ S Q
server la vitesse & laquelle Toule I'assuré, son agressivité au volant,

i le nombre de kilomeétres qu'il parcourt chaque année?. Des lors,
I'assureur ne peut utiliser qu'un sous-ensemble X des variables ex-

plicatives contenues dans 2, ie. X ¢ §. La situation est alors ‘ far E[S Q]

semblable & celle décrite an Tableau 3.9.

Assuré Assureur
Dépense E[S|X] S —E[S|X]

Dépense moyenne E[S] 0 V&I’ [S | Q

| Variance v [E[S|X]l E [V[SIX]—

aV

pooling

Var E[S]Q]‘X :

~

TAB. 3.9 — Situation de assuré et de l'assureur dans le cas ot la
segmentation est opérée sur base de X C €.

Il est intéressant de constater que
E[’V[S|X]J = IE[E["J[S'_H] XH + ]E[VILIE[S]Q]‘XH E
- E [vqslnd +E{V [Elsi ||X] } YY) “

mutualisation solidarité SOlidaI‘ity
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SEGMENTATION ET MUTUALISATION
LES DEUX FACES D'UNE MEME PIECE ?

Arthur Charpentier

Professewr & ["Université du Québec, Montréal

[ Simple model 2 = {X 1, X5 }.

Professenr a ['"Université catholique de Lowvain F
our Models
Romuald Elie

Professenr & I'Université de Marne-la-Vallée

Lassurance repose fondamentalement sur lidée que la mutualisation des risques entre des O w 1 9 w 2 )
assurés est possible. Cette mutualisation, qui peut étre vue comme une relecture actuarielle
de la loi des grands nomébres, na de sens quau sein d'une population de risques « homo- A~

génes » [Charpentier, 2011]. Cette condition (actuarielle) impose aux assureurs de m 1 €XT 1 ) €XT 2 )
segmenter, ce que confirment plusieurs travaux économiques (1). Avec lexplosion du
nombre de données, et donc de variables tarifaires possibles, certains assureurs évoquent
lidée d'un tarif indsviduel, semblant remettre en cause lidée méme de mutualisation des
risques. Entre cette force qui pousse & segmenter et la force de rappel qui tend (pour
des rafsons sociales mais aussi actuarielles, ou au moins de robustesse statistique (2)) i
imposer une solidarité minimale entre les assurés, quel équilibre va en résulter dans un
contexte de forte concurrence entre les sociétéds dassurance ?

l'année. Afin d'illuscrer les différents aspects de b

Ta“f]catloﬂ sans construction du tarif er ses conséquences, on va
. uriliser les données présentées dans le tableau 1 (voir

Segme ntation p. %), qui indique la fréquence annuelle de sinistres.

ans segmentation, le « prix juste » dunrisque  Les fareurs de risque sont id le lisu dhabivarion et 'dge

est lespérance marhématique de la charge  de lassuré, eron observe la fréquence de sinise par dasse.

annuelle. Clest l'idée du théortme fonda-  Le ool unitire, sipposé fixe, dquivaur 1 000 euros

menral de la valorisaion acruaridle : en  La prime pure est alors E [§]= 1 000 xE [N]. Dans
moyenne, la somme des primes doit permertre  cer exemple, la prime pure sans segmentation sera
d'indemniser I'ineégralité des dnistres survenus dans  de 82,30 euros.

Risques n* 103
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200285786
200285787
200285788
200285789
200285790
200285791
200285792
200285793
200285794
200285795
200285796
200285797
200285798
200285799
200285800
200285801
200285802
200285803
200285804
200285805

PolNum Cal¥ear

2010 mMmale
2010 male
2010 Female
2010 Female
2010 male
2010 Male
2010 Male
2010 mMmale
2010 Female
2010 Female
2010 mMmale
2010 Female
2010 Female
2010 Female
2010 mMmale
2010 Male
2010 Male
2010 male
2010 Female
2010 Female

ADAMTMaOaEPMmMEeMmMmeENTTEOoONNO0o@EMm

Gender Type Category

Large
Medium
Large
Large
Medium
Medium
Small
small
Large
Medium
Large
Medium
Medium
Medium
Large
Medium
Large
Small
Large
Large

Occupation Age Groupl Bonus Poldur

employed
Employed
Housewife
self-employed
Housewife
Self-employed
Employed
self-employed
Retired

Unemp loyed
self-employed
Housewife
Self-employed
Housewife
Retired
Housewife
Retired
employed
Retired
Retired

48
30
47
48
57
21
44
37
49
35
50
31
41
44
69
45
53
47
46
67

14
8
2

13

12

15
5

17
3
5

10
8

11

10
8

11
8

10
7

17

40
-30
-50
-30
-50

50
-40
-50

20

20
-30
140

90
-30
-40

30
-30
-10
-50
-50

0
9
2

[

WH OO 0w WL

vValue Adind SubGroup? Group2

32345
8995
9145

22075

24985

12100
9820

28680

28470
8590

20490
8385
6410
8485
9380

19700

10980

21980

28925

14525

1

el L = L= L L el e e k=]

031
Q29
uz21
RZ21
Qs
rR11
Qlo
Qs
L94
L112
Qlo
p28
L47
P29
uld
L40
ul9
L96
ul2
L52

FreErcrrCcRrROoOrroaRORCcL0

Density
35.43401501
239.4551701
88.29014956
275.2822626

99.6400095
259. 0040603
169.7885554

99. 6400095
84.22903844
66.06668352
169.7885554

41.2451199
b6.76541883
20.86448407
123.0152076
76.0527 2599
61.79475865
45.66982293
54.93181221
73.25249905

Numtppd Numtpbi

o= e e e e e e o e s e e e VM e o o s
OO0 000000000C0OHODDOOOH

5800. 018906

[ e O o i e o o o e o e e e 7 o e e e

Indtpbi
1056.0334927

16.507641942

= e e o e e o e e o e e e

Xl,z'

Xk

200375666
200375667
200375668
200375670
200375672
200375674
200375675
200375676
200375677
200375678
200375679
200375682
200375683
200375685
200375688
200375689
200375690
200375692
200375693
200375694

PolNum Calyear Gender

2011 Female
2011 mMale
2011 Female
2011 Male
2011 mMale
2011 Male
2011 Male
2011 mMale
2011 male
2011 Female
2011 mMale
2011 mMale
2011 Female
2011 Male
2011 mMale
2011 Female
2011 Male
2011 mMale
2011 mMale
2011 Female

<
i}
m

DTAOTEOMEEDIEFEMAMAMNDDD @S

Category
Large
Large

Medium
Small
small

Medium

Medium
Large
small

Medium
Large

Medium

Medium
Large
small

Medium
Large
Large

Medium
small

Occupation Age

Employed
uUnemp loyed
Employed
Self-employed
Employed
Employed
Housewife
self-employed
Housewife
Housewife
Housewife
self-employed
Self-employed
Employed
Retired
self-employed
Housewife
Employed
Self-employed
unemp 1oyed

46
31
27
22
21
45
51
49
31
31
69
43
64
25
55
54
42
36
26
24

Groupl
11
8
7
7
17
19
19
16
11
9
13
13

Poldur
0

11

13

14

14

e e R o - TT  PUR I S TR T

Value
42975
14835
19000
33305
25995

8320

8445
19545

5030
15480
29580

3735
13670
17315
19410

4165
11970
28415

4300
24003

COOHOFEFOFHOOFEFFEFOOHEHOOHOO

SubGroup2
L18
us
R30
a33
T25
N21
L110
L58
a7
P7
Q23
ul6
035
022
R49
u12
L125
L48
L97
M17

ErrrrcRmooCcoOToOrNRNRZA0RCr

Density
58.91132801
125.1320458
296.4319078
129.6690079
28.51184808
71.18027901
83.90453994
64.53563007
83.76263662
25.62227499
205.4307964
91.54176264
21.45273029
32.18545326
208.8164363
54.93181221
44.16537902
71.62174491
63.82886936
201.6569069
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Market Competition

Decision Rule: the insured selects the cheapeast premium,

A B C

787.93  706.97

170.04 197.81  285.99

473.15  447.58

337.98 336.20 468.45

1032.62

343.64

E

822.58

177.87

414.23

383.55

F

603.83

265.13

425.23

672.91
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Market Competition

Decision Rule: the insured selects randomly from the three cheapeast premium

B C

706.97  1032.62

197.81  285.99

447.58  343.64

336.20  468.45
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Market Competition

Decision Rule: the insured were |assigned | randomly to some insurance

company for year n — 1. For year n, they stay with their company if the premium

is one of the three cheapeast premium, if not, random choice among the four

B C D I F

706.97 1032.62 |907.64] 822.58  603.83

197.81  285.99  212.7v1 |177.87| 265.13

447.58 343.64  410.76  414.23  |425.23

336.20  468.45  339.33  383.99 67291
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Loss Ratio, Loss / Premium

Market Loss Ratio ~ 154%.

Loss Ratio
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Insurer A2
No segmentation, unique premium

Remark on normalized premiums,

7T2—m2113z— E mgiﬂz vy

Proportion of losses
Market Share (in %)
Loss Ratio (in %)

0.4 0.6 . . Al A2 A3 A4 A5 A6 A7 A8 A9 All Al A2 A3 A4 A5 A6 A7 A8 A9 All Al3

Proportion of insured
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Insured Al

GLM, frequency material / bodily injury, individual losses material

Ages in classes [18-30], [30-45], [45-60] and [60+], crossed with occupation

Manual smoothing, SAS and Excel

Actuaries in a Mutual Fund (in France)

Proportion of losses
Market Share (in %)
Loss Ratio (in %)

T T T T T T - D -

0.0 0.2 0.4 0.6 0.8 1.0 Al A2 A3 A4 A5 A6 A7 A8 A9 All Al13 Al A2 A3 A4 A5 A6 A7 A8 A9 All Al3

Proportion of insured
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Insurer A8/A9

GLM, frequency and losses, without major losses (>15k)

Age-gender interaction
Use of a commercial pricing software

Actuary in a French Mutual Fund

Proportion of losses
Market Share (in %)
Loss Ratio (in %)

0.4 0.6 . X Al A2 A3 A4 A5 A6 A7 A8 A9 All Al A2 A3 A4 A5 A6 A7 A8 A9 All Al3

Proportion of insured
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Insurer All

All features, but one XGBoost (gradient boosting)

Correction for negative premiums

Coded in Python actuary in an insurance company.

Proportion of losses
Market Share (in %)
Loss Ratio (in %)

T T T - o

T T T -

0.0 0.2 0.4 0.6 0.8 1.0 Al A2 A3 A4 A5 A6 A7 A8 A9 All Al13 Al A2 A3 A4 A5 A6 A7 A8 A9 All Al13

Proportion of insured
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Insurer Al12

All features, use of two XGBoost (gradient boosting) models

Correction for negative premiums

Coded in R by an actuary in an Insurance company.

Proportion of losses
Market Share (in %)
Loss Ratio (in %)

Al A2 A3 A4 A5 A6 A7 A8 A9 All Al13 Al A2 A3 A4 A5 A6 A7 A8 A9 All Al13

Proportion of insured
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Back on the Pricing Game

o
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Market Share (%)
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Take-Away Conclusion

“People rarely succeed unless they have fun in what they are doing ” D. Carnegie

e on very small datasets, it is possible to use Bayesian tech-

nique to derive robust predictions,

e on extremely large datasets, it is possible to use ideas de-
veloped in machine learning, on regression models (e.g.

boostraping and aggregating)

e all those techniques require computational skills

“the numbers have no way of speaking for themselves. We
speak for them. ... Before we demand more of our data, we

need to demand more of ourselves ” N. Silver, in Silver (2012).
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