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Agenda
“the numbers have no way of speaking for them-
selves. We speak for them. [· · · ] Before we de-
mand more of our data, we need to demand more
of ourselves ” from Silver (2012).

- (big) data

- econometrics & probabilistic modeling

- algorithmics & statistical learning

- different perspectives on classification

- boostrapping, PCA & variable section

see Berk (2008), Hastie, Tibshirani & Friedman
(2009), but also Breiman (2001)
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https://en.wikipedia.org/wiki/The_Signal_and_the_Noise
http://www.springer.com/us/book/9780387775005
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Data and Models
From {(yi,xi)}, there are different stories behind, see Freedman (2005)

• the causal story : xj,i is usually considered as independent of the other
covariates xk,i. For all possible x, that value is mapped to m(x) and a noise
is attached, ε. The goal is to recover m(·), and the residuals are just the
difference between the response value and m(x).

• the conditional distribution story : for a linear model, we usually say
that Y given X = x is a N (m(x), σ2) distribution. m(x) is then the
conditional mean. Here m(·) is assumed to really exist, but no causal
assumption is made, only a conditional one.

• the explanatory data story : there is no model, just data. We simply
want to summarize information contained in x’s to get an accurate summary,
close to the response (i.e. min{`(y,m(x))}) for some loss function `.

See also Varian (2014)
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http://www.cambridge.org/us/academic/subjects/statistics-probability/statistical-theory-and-methods/statistical-models-theory-and-practice-2nd-edition
https://www.aeaweb.org/articles?id=10.1257/jep.28.2.3
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Data, Models & Causal Inference
We cannot differentiate data and model that easily..

After an operation, should I stay at hospital, or go back home ?

as in Angrist & Pischke (2008),

(health | hospital) − (health | stayed home) [observed]

should be written

(health | hospital) − (health | had stayed home) [treatment effect]

+ (health | had stayed home) − (health | stayed home) [selection bias]

Need randomization to solve selection bias.
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http://press.princeton.edu/titles/8769.html
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Econometric Modeling
Data {(yi,xi)}, for i = 1, · · · , n, with xi ∈ X ⊂ Rp and yi ∈ Y.

A model is a m : X 7→ Y mapping

- regression, Y = R (but also Y = N)

- classification, Y = {0, 1}, {−1,+1}, {•, •}
(binary, or more)

Classification models are based on two steps,

• score function, s(x) = P(Y = 1|X = x) ∈ [0, 1]

• classifier s(x)→ ŷ ∈ {0, 1}.
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High Dimensional Data (not to say ‘Big Data’)

See Bühlmann & van de Geer (2011) or Koch (2013), X is a n× p matrix

Portnoy (1988) proved that maximum likelihood estimators are asymptotically
normal when p2/n→ 0 as n, p→∞. Hence, massive data, when p >

√
n.

More intersting is the sparcity concept, based not on p, but on the effective size.
Hence one can have p > n and convergent estimators.

High dimension might be scary because of curse of dimensionality, see
Bellman (1957). The volume of the unit sphere in Rp tends to 0 as p→∞,
i.e.space is sparse.
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http://www.springer.com/us/book/9783642201912
http://www.cambridge.org/us/academic/subjects/statistics-probability/statistical-theory-and-methods/analysis-multivariate-and-high-dimensional-data
https://projecteuclid.org/euclid.aos/1176350710
http://press.princeton.edu/titles/9234.html
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Computational & Nonparametric Econometrics
Linear Econometrics: estimate g : x 7→ E[Y |X = x] by a linear function.

Nonlinear Econometrics: consider the approximation for some functional basis

g(x) =
∞∑
j=0

ωjgj(x) and ĝ(x) =
h∑
j=0

ωjgj(x)

or consider a local model, on the neighborhood of
x,

ĝ(x) = 1
nx

∑
i∈Ix

yi, with Ix = {x ∈ Rp : ‖xi−x‖ ≤ h},

see Nadaraya (1964) and Watson (1964).

Here h is some tunning parameter: not estimated, but chosen (optimaly).
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https://dx.doi.org/10.1137%2F1109020
https://www.jstor.org/stable/25049340
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Econometrics & Probabilistic Model

from Cook & Weisberg (1999), see also Haavelmo (1965).

(Y |X = x) ∼ N (µ(x), σ2) with µ(x) = β0 + xTβ, and β ∈ Rp.

Linear Model: E[Y |X = x] = β0 + xTβ

Homoscedasticity: Var[Y |X = x] = σ2.

@freakonometrics 9

http://www.stat.umn.edu/arc/
http://www.uio.no/studier/emner/sv/oekonomi/ECON5101/v11/undervisningsmateriale/probability%20approach.pdf
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Conditional Distribution and Likelihood

(Y |X = x) ∼ N (µ(x), σ2) with µ(x) = β0 + xTβ, et β ∈ Rp

The log-likelihood is

logL(β0,β, σ
2|y,x) = −n2 log[2πσ2]− 1

2σ2

n∑
i=1

(yi − β0 − xT
i β)2

︸ ︷︷ ︸ .
Set

(β̂0, β̂, σ̂
2) = argmax

{
logL(β0,β, σ

2|y,x)
}
.

First order condition XT[y −Xβ̂] = 0. If matrix X is a full rank matrix

β̂ = (XTX)−1XTy = β + (XTX)−1XTε.

Asymptotic properties of β̂,
√
n(β̂ − β) L→ N (0,Σ) as n→∞

@freakonometrics 10
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Geometric Perspective

Define the orthogonal projection on X ,

ΠX = X[XTX]−1XT

ŷ = X[XTX]−1XT︸ ︷︷ ︸
ΠX

y = ΠXy.

Pythagoras’ theorem can be writen

‖y‖2 = ‖ΠXy‖2 + ‖ΠX⊥y‖2 = ‖ΠXy‖2 + ‖y −ΠXy‖2

which can be expressed as
n∑
i=1

y2
i︸ ︷︷ ︸

n×total variance

=
n∑
i=1

ŷ2
i︸ ︷︷ ︸

n×explained variance

+
n∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸
n×residual variance

@freakonometrics 11
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Geometric Perspective
Define the angle θ between y and ΠXy,

R2 = ‖ΠXy‖
2

‖y‖2
= 1− ‖ΠX⊥y‖

2

‖y‖2
= cos2(θ)

see Davidson & MacKinnon (2003)

y = β0 +X1β1 +X2β2 + ε

If y?2 = ΠX⊥1 y and X?
2 = ΠX⊥1 X2, then

β̂2 = [X?
2

TX?
2]−1X?

2
Ty?2

X?
2 = X2 if X1 ⊥X2,

Frisch-Waugh theorem.
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http://qed.econ.queensu.ca/ETM/
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From Linear to Non-Linear

ŷ = Xβ̂ = X[XTX]−1XT︸ ︷︷ ︸
H

y i.e. ŷi = hT
xi
y,

with - for the linear regression - hx = X[XTX]−1x.

One can consider some smoothed regression, see Nadaraya (1964) and Watson
(1964), with some smoothing matrix S

m̂h(x) = sT
xy =

n∑
i=1

sx,iyi withs sx,i = Kh(x− xi)
Kh(x− x1) + · · ·+Kh(x− xn)

for some kernel K(·) and some bandwidth h > 0.
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https://dx.doi.org/10.1137%2F1109020
https://www.jstor.org/stable/25049340
https://www.jstor.org/stable/25049340
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From Linear to Non-Linear

T = ‖Sy −Hy‖
trace([S −H]T[S −H])

can be used to test for linearity, Simonoff (1996). trace(S) is the equivalent
number of parameters, and n− trace(S) the degrees of freedom, Ruppert et al.
(2003).
Nonlinear Model, but Homoscedastic - Gaussian

• (Y |X = x) ∼ N (µ(x), σ2)

• E[Y |X = x] = µ(x)

@freakonometrics 14

http://link.springer.com/book/10.1007%2F978-1-4612-4026-6
http://www.stat.tamu.edu/~carroll/semiregbook/
http://www.stat.tamu.edu/~carroll/semiregbook/
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Conditional Expectation

from Angrist & Pischke (2008), x 7→ E[Y |X = x].

@freakonometrics 15

http://press.princeton.edu/titles/8769.html
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Exponential Distributions and Linear Models

f(yi|θi, φ) = exp
(
yiθi − b(θi)

a(φ) + c(yi, φ)
)

with θi = h(xT
i β)

Log likelihood is expressed as

logL(θ, φ|y) =
n∑
i=1

log f(yi|θi, φ) =
∑n
i=1 yiθi −

∑n
i=1 b(θi)

a(φ) +
n∑
i=1

c(yi, φ)

and first order conditions
∂ logL(θ, φ|y)

∂β
= XTW−1[y − µ] = 0

as in Müller (2001), where W is a weight matrix, function of β.

We usually specify the link function g(·) defined as

ŷ = m(x) = E[Y |X = x] = g−1(xTβ).

@freakonometrics 16

http://www.marlenemueller.de/publications/HandbookCS.pdf
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Exponential Distributions and Linear Models
Note that W = diag(∇g(ŷ) ·Var[y]), and set

z = g(ŷ) + (y − ŷ) · ∇g(ŷ)

the the maximum likelihood estimator is obtained iteratively

β̂k+1 = [XTW−1
k X]−1XTW−1

k zk

Set β̂ = β∞, so that
√
n(β̂ − β) L→ N (0, I(β)−1)

with I(β) = φ · [XTW−1
∞X].

Note that [XTW−1
k X] is a p× p matrix.

@freakonometrics 17
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Exponential Distributions and Linear Models

Generalized Linear Model:

• (Y |X = x) ∼ L(θx, ϕ)

• E[Y |X = x] = h−1(θx) = g−1(xTβ)

e.g. (Y |X = x) ∼ P(exp[xTβ]).

Use of maximum likelihood techniques for inference.

Actually, more a moment condition than a distribution assumption.

@freakonometrics 18
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Goodness of Fit & Model Choice
From the variance decomposition

1
n

n∑
i=1

(yi − ȳ)2

︸ ︷︷ ︸
total variance

= 1
n

n∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸
residual variance

+ 1
n

n∑
i=1

(ŷi − ȳ)2

︸ ︷︷ ︸
explained variance

and define
R2 =

∑n
i=1(yi − ȳ)2 −

∑n
i=1(yi − ŷi)2∑n

i=1(yi − ȳ)2

More generally

Deviance(β) = −2 log[L] = 2
∑
i=1

(yi − ŷi)2 = Deviance(ŷ)

The null deviance is obtained using ŷi = y, so that

R2 = Deviance(y)−Deviance(ŷ)
Deviance(y) = 1− Deviance(ŷ)

Deviance(y) = 1− D
D0

@freakonometrics 19
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Goodness of Fit & Model Choice
One usually prefers a penalized version

R̄2 = 1− (1−R2)n− 1
n− p

= R2 − (1−R2) p− 1
n− p︸ ︷︷ ︸

penalty

See also Akaike criteria AIC = Deviance + 2 · p

or Schwarz, BIC = Deviance + log(n) · p

In high dimension, consider a corrected version

AICc = Deviance + 2 · p · n

n− p− 1

@freakonometrics 20
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Stepwise Procedures
Forward algorithm

1. set j?1 = argmin
j∈{∅,1,··· ,n}

{AIC({j})}

2. set j?2 = argmin
j∈{∅,1,··· ,n}\{j?

1}
{AIC({j?1 , j})}

3. ... until j? = ∅

Backward algorithm

1. set j?1 = argmin
j∈{∅,1,··· ,n}

{AIC({1, · · · , n}\{j})}

2. set j?2 = argmin
j∈{∅,1,··· ,n}\{j?

1}
{AIC({1, · · · , n}\{j?1 , j})}

3. ... until j? = ∅

@freakonometrics 21
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Econometrics & Statistical Testing
Standard test for H0 : βk = 0 against H1 : βk 6= 0 is Student-t est tk = β̂k/seβ̂k

,

Use the p-value P[|T | > |tk|] with T ∼ tν (and ν = trace(H)).

In high dimension, consider the FDR (False Discovery Ratio).

With α = 5%, 5% variables are wrongly significant.

If p = 100 with only 5 significant variables, one should expect also 5 false positive,
i.e. 50% FDR, see Benjamini & Hochberg (1995) and Andrew Gelman’s talk.

@freakonometrics 22

https://www.jstor.org/stable/2346101
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Under & Over-Identification
Under-identification is obtained when the true model is
y = β0 + xT

1β1 + xT
2β2 + ε, but we estimate y = β0 + xT

1 b1 + η.

Maximum likelihood estimator for b1 is

b̂1 = (XT
1X1)−1XT

1y

= (XT
1X1)−1XT

1 [X1,iβ1 +X2,iβ2 + ε]
= β1 + (X ′1X1)−1XT

1X2β2︸ ︷︷ ︸
β12

+ (XT
1X1)−1XT

1 ε︸ ︷︷ ︸
νi

so that E[b̂1] = β1 + β12, and the bias is null when XT
1X2 = 0 i.e. X1 ⊥X2,

see Frisch-Waugh).

Over-identification is obtained when the true model is y = β0 + xT
1β1ε, but we

fit y = β0 + xT
1 b1 + xT

2 b2 + η.

Inference is unbiased since E(b1) = β1 but the estimator is not efficient.

@freakonometrics 23
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Statistical Learning & Loss Function
Here, no probabilistic model, but a loss function, `. For some set of functions
M, X → Y, define

m? = argmin
m∈M

{
n∑
i=1

`(yi,m(xi))
}

Quadratic loss functions are interesting since

y = argmin
m∈R

{
n∑
i=1

1
n

[yi −m]2
}

which can be writen, with some underlying probabilistic model

E(Y ) = argmin
m∈R

{
‖Y −m‖2`2

}
= argmin

m∈R

{
E
(
[Y −m]2

)}
For τ ∈ (0, 1), we obtain the quantile regression (see Koenker (2005))

m? = argmin
m∈M0

{
n∑
i=1

`τ (yi,m(xi))
}

avec `τ (x, y) = |(x− y)(τ − 1x≤y)|
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http://www.cambridge.org/at/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/quantile-regression
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Boosting & Weak Learning

m? = argmin
m∈M

{
n∑
i=1

`(yi,m(xi))
}

is hard to solve for some very large and general spaceM of X → Y functions.

Consider some iterative procedure, where we learn from the errors,

m(k)(·) = m1(·)︸ ︷︷ ︸
∼y

+m2(·)︸ ︷︷ ︸
∼ε1

+m3(·)︸ ︷︷ ︸
∼ε2

+ · · ·+mk(·)︸ ︷︷ ︸
∼εk−1

= m(k−1)(·) +mk(·).

Formely ε can be seen as ∇`, the gradient of the loss.
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Boosting & Weak Learning
It is possible to see this algorithm as a gradient descent. Not

f(xk)︸ ︷︷ ︸
〈f,xk〉

∼ f(xk−1)︸ ︷︷ ︸
〈f,xk−1〉

+ (xk − xk−1)︸ ︷︷ ︸
αk

∇f(xk−1)︸ ︷︷ ︸
〈∇f,xk−1〉

but some kind of dual version

fk(x)︸ ︷︷ ︸
〈fk,x〉

∼ fk−1(x)︸ ︷︷ ︸
〈fk−1,x〉

+ (fk − fk−1)︸ ︷︷ ︸
ak

?︸︷︷︸
〈fk−1,∇x〉

where ? is a gradient is some functional space.

m(k)(x) = m(k−1)(x) + argmin
f∈F

{
n∑
i=1

`(yi,m(k−1)(x) + f(x))
}

for some simple space F so that we define some weak learner, e.g. step
functions (so called stumps)

@freakonometrics 26



Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Boosting & Weak Learning
Standard set F are stumps functions but one can also consider splines (with
non-fixed knots).

One might add a shrinkage parameter to learn even more weakly, i.e. set
ε1 = y − α ·m1(x) with α ∈ (0, 1), etc.

@freakonometrics 27
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Big Data & Linear Model
Consider some linear model yi = xT

i β + εi for all i = 1, · · · , n.

Assume that εi are i.i.d. with E(ε) = 0 (and finite variance). Write
y1
...
yn


︸ ︷︷ ︸
y,n×1

=


1 x1,1 · · · x1,p
...

...
. . .

...
1 xn,1 · · · xn,p


︸ ︷︷ ︸

X,n×(p+1)


β0

β1
...
βp


︸ ︷︷ ︸
β,(p+1)×1

+


ε1
...
εn


︸ ︷︷ ︸
ε,n×1

.

Assuming ε ∼ N (0, σ2I), the maximum likelihood estimator of β is

β̂ = argmin{‖y −XTβ‖`2} = (XTX)−1XTy

... under the assumtption that XTX is a full-rank matrix.

What if XTX cannot be inverted? Then β̂ = [XTX]−1XTy does not exist, but
β̂λ = [XTX + λI]−1XTy always exist if λ > 0.

@freakonometrics 28
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Ridge Regression & Regularization
The estimator β̂ = [XTX + λI]−1XTy is the Ridge estimate obtained as
solution of

β̂ = argmin
β


n∑
i=1

[yi − β0 − xT
i β]2 + λ ‖β‖2`2︸ ︷︷ ︸

1Tβ2


for some tuning parameter λ. One can also write

β̂ = argmin
β;‖β‖`2≤s

{‖Y −XTβ‖`2}

There is a Bayesian interpretation of that regularization, when β has some prior
N (β0, τI).
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Over-Fitting & Penalization
Solve here, for some norm ‖ · ‖,

min
{

n∑
i=1

`(yi, β0 + xTβ) + λ‖β‖

}
= min

{
objective(β) + penality(β)

}
.

Estimators are no longer unbiased, but might have a smaller mse.

Consider some i.id. sample {y1, · · · , yn} from N (θ, σ2), and consider some
estimator proportional to y, i.e. θ̂ = αy. α = 1 is the maximum likelihood
estimator.

Note that
mse[θ̂] = (α− 1)2µ2︸ ︷︷ ︸

bias[θ̂]2

+ α2σ2

n︸ ︷︷ ︸
Var[θ̂]

and α? = µ2 ·
(
µ2 + σ2

n

)−1

< 1.
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(β̂0, β̂) = argmin
{

n∑
i=1

`(yi, β0 + xTβ) + λ‖β‖

}
,

can be seen as a Lagrangian minimization problem

(β̂0, β̂) = argmin
β;‖β‖≤s

{
n∑
i=1

`(yi, β0 + xTβ)
}

@freakonometrics 31
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LASSO & Sparcity
In severall applications, p can be (very) large, but a lot of features are just noise:
βj = 0 for many j’s. Let s denote the number of relevent features, with
s << p, cf Hastie, Tibshirani & Wainwright (2015),

s = card{S} where S = {j;βj 6= 0}

The true model is now y = XT
SβS + ε, where XT

SXS is a full rank matrix.

@freakonometrics 32
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LASSO & Sparcity
Evoluation of β̂λ as a function of log λ in various applications
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

In-Sample & Out-Sample
Write β̂ = β̂((x1, y1), · · · , (xn, yn)). Then (for the linear model)

Deviance IS(β̂) =
n∑
i=1

[yi − xT
i β̂((x1, y1), · · · , (xn, yn))]2

Withe this “in-sample” deviance, we cannot use the central limit theorem

Deviance IS(β̂)
n

6 → E
(

[Y −XTβ]
)

Hence, we can compute some “out-of-sample” deviance

Deviance OS(β̂) =
m+n∑
i=n+1

[yi − xT
i β̂((x1, y1), · · · , (xn, yn)]2
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

In-Sample & Out-Sample
Observe that there are connexions with Akaike penaly function

Deviance IS(β̂)−Deviance OS(β̂) ≈ 2 · degrees of freedom

From Stone (1977), minimizing AIC is
closed to cross validation,

From Shao (1997) minimizing BIC is
closed to k-fold cross validation with
k = n/ logn.
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Overfit, Generalization & Model Complexity
Complexity of the model is the degree of the polynomial function
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Cross-Validation
See Jacknife technique Quenouille (1956) or Tukey (1958) to reduce the bias.

If {y1, · · · , yn} is an i.id. sample from Fθ, with estimator Tn(y) = Tn(y1, · · · , yn),
such that E[Tn(Y )] = θ +O

(
n−1), consider

T̃n(y) = 1
n

n∑
i=1

Tn−1(y(i)) avec y(i) = (y1, · · · , yi−1, yi+1, · · · , yn).

Then E[T̃n(Y )] = θ +O
(
n−2).

Similar idea in leave-one-out cross validation

Risk = 1
n

n∑
i=1

`(yi, m̂(i)(xi))
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Rule of Thumb vs. Cross Validation

m̂[h?](x) = β̂
[x]
0 + β̂

[x]
1 x with (β̂[x]

0 , β̂
[x]
1 ) = argmin

(β0,β1)

{
n∑
i=1

ω
[x]
h? [yi − (β0 + β1xi)]2

}
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set h? = argmin
{
mse(h)

}
with mse(h) = 1

n

n∑
i=1

[
yi − m̂[h]

(i)(xi)
]2
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Exponential Smoothing for Time Series

Consider some exponential smoothing filter, on a
time series (xt), ŷt+1 = αŷt+(1−α)yt, then consider

α? = argmin
{

T∑
t=2

`(ŷt, yt)
}
,

see Hyndman et al. (2003).
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Cross-Validation
Consider a partition of {1, · · · , n} in k groups with the same size, I1, · · · , Ik, and
set Ij = {1, · · · , n}\Ij . Fit m̂(j) on Ij , and

Risk = 1
k

k∑
j=1

Riskj where Riskj = k

n

∑
i∈Ij

`(yi, m̂(j)(xi))
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Randomization is too important to be left to chance!
Consider some bootstraped sample, Ib = {i1,b, · · · , in,b}, with ik,b ∈ {1, · · · , n}

Set ni = 1i/∈I1 + · · ·+ 1i/∈vB
, and fit m̂b on Ib

Risk = 1
n

n∑
i=1

1
ni

∑
b:i/∈Ib

`(yi, m̂b(xi))

Probability that ith obs. is not selection (1− n−1)n → e−1 ∼ 36.8%,

see training / validation samples (2/3-1/3).
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Bootstrap
From Efron (1987), generate samples from (Ω,F ,Pn)

F̂n(y) = 1
n

n∑
i=1

1(yi ≤ y) and F̂n(yi) = rank(yi)
n

.

If U ∼ U([0, 1]), F−1(U) ∼ F

If U ∼ U([0, 1]), F̂−1
n (U) is uniform

on
{

1
n
, · · · , n− 1

n
, 1
}
.

Consider some boostraped sample,
- either (yik ,xik ), ik ∈ {1, · · · , n}
- or (ŷk + ε̂ik ,xk), ik ∈ {1, · · · , n}
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Classification & Logistic Regression
Generalized Linear Model when Y has a Bernoulli distribution, yi ∈ {0, 1},

m(x) = E[Y |X = x] = eβ0+xTβ

1 + eβ0+xTβ
= H(β0 + xTβ)

Estimate (β0,β) using maximum likelihood techniques

L =
n∏
i=1

(
ex

T
iβ

1 + ex
T
i
β

)yi (
1

1 + ex
T
i
β

)1−yi

Deviance ∝
n∑
i=1

[
log(1 + ex

T
iβ)− yixT

i β
]

Observe that

D0 ∝
n∑
i=1

[yi log(y) + (1− yi) log(1− y)]
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Classification Trees

To split {N} into two {NL, NR}, consider

I(NL, NR) =
∑

x∈{L,R}

nx
n
I(Nx)

e.g. Gini index (used originally in CART, see Breiman et al. (1984))

gini(NL, NR) = −
∑

x∈{L,R}

nx
n

∑
y∈{0,1}

nx,y
nx

(
1− nx,y

nx

)
and the cross-entropy (used in C4.5 and C5.0)

entropy(NL, NR) = −
∑

x∈{L,R}

nx
n

∑
y∈{0,1}

nx,y
nx

log
(
nx,y
nx

)
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Classification Trees
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Trees & Forests
Boostrap can be used to define the concept of margin,

margini = 1
B

B∑
b=1

1(ŷ(b)
i = yi)−

1
B

B∑
b=1

1(ŷ(b)
i 6= yi)

Subsampling of variable, at each knot (e.g.
√
k out of k)

Concept of variable importance: given some random forest with M trees,

importance of variable k I(Xk) = 1
M

∑
m

∑
t

Nt
N

∆I(t)

where the first sum is over all trees, and the second one is over all nodes where
the split is done based on variable Xk.
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Trees & Forests
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See also discriminant analysis, SVM, neural networks, etc.
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Model Selection & ROC Curves
Given a scoring function m(·), with m(x) = E[Y |X = x], and a threshold
s ∈ (0, 1), set

Ŷ (s) = 1[m(x) > s] =

 1 if m(x) > s

0 if m(x) ≤ s

Define the confusion matrix as N = [Nu,v]

N (s)
u,v =

n∑
i=1

1(ŷ(s)
i = u, yj = v) for (u, v) ∈ {0, 1}.

Y = 0 Y = 1

Ŷs = 0 TNs FNs TNs+FNs
Ŷs = 1 FPs TPs FPs+TPs

TNs+FPs FNs+TPs n
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Model Selection & ROC Curves
ROC curve is

ROCs =
(

FPs
FPs + TNs

,
TPs

TPs + FNs

)
with s ∈ (0, 1)
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Model Selection & ROC Curves
In machine learning, the most popular measure is κ, see Landis & Koch (1977).
Define N⊥ from N as in the chi-square independence test. Set

total accuracy = TP + TN
n

random accuracy = TP⊥ + TN⊥

n
= [TN+FP] · [TP+FN] + [TP+FP] · [TN+FN]

n2

and
κ = total accuracy− random accuracy

1− random accuracy .

See Kaggle competitions.
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Reducing Dimension with PCA
Use principal components to reduce dimension (on centered and scaled
variables): we want d vectors z1, · · · , zd such that

First Compoment is z1 = Xω1 where

ω1 = argmax
‖ω‖=1

{
‖X · ω‖2

}
= argmax
‖ω‖=1

{
ωTXTXω

}
Second Compoment is z2 = Xω2 where

ω2 = argmax
‖ω‖=1

{
‖X̃

(1)
· ω‖2

}
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with X̃
(1)

= X −Xω1︸ ︷︷ ︸
z1

ωT
1 .
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Reducing Dimension with PCA
A regression on (the d) principal components, y = zTb+ η could be an
interesting idea, unfortunatley, principal components have no reason to be
correlated with y. First compoment was z1 = Xω1 where

ω1 = argmax
‖ω‖=1

{
‖X · ω‖2

}
= argmax
‖ω‖=1

{
ωTXTXω

}
It is a non-supervised technique.

Instead, use partial least squares, introduced in Wold (1966). First
compoment is z1 = Xω1 where

ω1 = argmax
‖ω‖=1

{< y,X · ω >} = argmax
‖ω‖=1

{
ωTXTyyTXω

}
(etc.)
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Instrumental Variables
Consider some instrumental variable model, yi = xT

i β + εi such that

E[Yi|Z] = E[Xi|Z]Tβ + E[εi|Z]

The estimator of β is
β̂IV = [ZTX]−1ZTy

If dim(Z) > dim(X) use the Generalized Method of Moments,

β̂GMM = [XTΠZX]−1XTΠZy with ΠZ = Z[ZTZ]−1ZT
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Instrumental Variables
Consider a standard two step procedure

1) regress colums of X on Z, X = Zα+ η, and derive predictions X̂ = ΠZX

2) regress Y on X̂, yi = x̂T
i β + εi, i.e.

β̂IV = [ZTX]−1ZTy

See Angrist & Krueger (1991) with 3 up to 1530 instruments : 12 instruments
seem to contain all necessary information.

Use LASSO to select necessary instruments, see Belloni, Chernozhukov & Hansen
(2010)
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Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Take Away Conclusion
Big data mythology
- n→∞: 0/1 law, everything is simplified (either true or false)
- p→∞: higher algorithmic complexity, need variable selection tools

Econometrics vs. Machine Learning
- probabilistic interpretation of econometric models
(unfortunately sometimes misleading, e.g. p-value)
can deal with non-i.id data (time series, panel, etc)

- machine learning is about predictive modeling and generalization
algorithmic tools, based on bootstrap (sampling and sub-sampling),
cross-validation, variable selection, nonlinearities, cross effects, etc

Importance of visualization techniques (forgotten in econometrics publications)
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