Econometrics: Learning from 'Statistical Learning' Techniques

Arthur Charpentier (Université de Rennes 1 & UQàM)

Centre for Central Banking Studies Bank of England, London, UK, May 2016

http://freakonometrics.hypotheses.org

Econometrics: Learning from 'Statistical Learning' Techniques Arthur Charpentier (Université de Rennes 1 & UQàM)

Professor, Economics Department, Univ. Rennes 1
In charge of Data Science for Actuaries program, IA
Research Chair actinfo (Institut Louis Bachelier)
(previously Actuarial Sciences at UQàM & ENSAE Paristech actuary in Hong Kong, IT & Stats FFSA)
PhD in Statistics (KU Leuven), Fellow Institute of Actuaries
MSc in Financial Mathematics (Paris Dauphine) & ENSAE
Editor of the freakonometrics.hypotheses.org's blog
Editor of Computational Actuarial Science, CRC

The R Series

Computational Actuarial Science with R

Agenda

"the numbers have no way of speaking for themselves. We speak for them. $[\cdots]$ Before we demand more of our data, we need to demand more of ourselves " from Silver (2012).

- (big) data
- econometrics & probabilistic modeling
- algorithmics & statistical learning
- different perspectives on classification
- boostrapping, PCA & variable section

see Berk (2008), Hastie, Tibshirani & Friedman (2009), but also Breiman (2001)

Statistical Science 2001, Vol. 16, No. 3, 199–231

Statistical Modeling: The Two Cultures

The Algorithmic Modeling Culture

Data and Models

From $\{(y_i, x_i)\}$, there are different stories behind, see Freedman (2005)

- the **causal story** : $x_{j,i}$ is usually considered as independent of the other covariates $x_{k,i}$. For all possible \boldsymbol{x} , that value is mapped to $m(\boldsymbol{x})$ and a noise is attached, ε . The goal is to recover $m(\cdot)$, and the residuals are just the difference between the response value and $m(\boldsymbol{x})$.
- the conditional distribution story : for a linear model, we usually say that Y given $\mathbf{X} = \mathbf{x}$ is a $\mathcal{N}(m(\mathbf{x}), \sigma^2)$ distribution. $m(\mathbf{x})$ is then the conditional mean. Here $m(\cdot)$ is assumed to really exist, but no causal assumption is made, only a conditional one.
- the explanatory data story : there is no model, just data. We simply want to summarize information contained in \boldsymbol{x} 's to get an accurate summary, close to the response (i.e. $\min\{\ell(\boldsymbol{y}, m(\boldsymbol{x}))\}$) for some loss function ℓ .

See also Varian (2014)

Data, Models & Causal Inference

We cannot differentiate data and model that easily.

After an operation, should I stay at hospital, or go back home ? as in Angrist & Pischke (2008),

(health | hospital) - (health | stayed home) [observed]

should be written

(health | hospital) – (health | had stayed home) [treatment effect]

+ (health | had stayed home) - (health | stayed home)

Need randomization to solve selection bias.

selection bias

Econometric Modeling

Data $\{(y_i, \boldsymbol{x}_i)\}$, for $i = 1, \dots, n$, with $\boldsymbol{x}_i \in \mathcal{X} \subset \mathbb{R}^p$ and $y_i \in \mathcal{Y}$.

A model is a $m : \mathcal{X} \mapsto \mathcal{Y}$ mapping

- regression, $\mathcal{Y} = \mathbb{R}$ (but also $\mathcal{Y} = \mathbb{N}$)
- classification, $\mathcal{Y} = \{0, 1\}, \{-1, +1\}, \{\bullet, \bullet\}$ (binary, or more)

Classification models are based on two steps,

• score function, $s(\boldsymbol{x}) = \mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x}) \in [0, 1]$

• classifier $s(\boldsymbol{x}) \to \widehat{y} \in \{0, 1\}.$

High Dimensional Data (not to say 'Big Data')

See Bühlmann & van de Geer (2011) or Koch (2013), X is a $n \times p$ matrix

Portnoy (1988) proved that maximum likelihood estimators are asymptotically normal when $p^2/n \to 0$ as $n, p \to \infty$. Hence, massive data, when $p > \sqrt{n}$.

More intersting is the **sparcity** concept, based not on p, but on the effective size. Hence one can have p > n and convergent estimators.

High dimension might be scary because of **curse of dimensionality**, see Bellman (1957). The volume of the unit sphere in \mathbb{R}^p tends to 0 as $p \to \infty$, i.e.space is sparse.

Computational & Nonparametric Econometrics

Linear Econometrics: estimate $g: \mathbf{x} \mapsto \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$ by a linear function.

Nonlinear Econometrics: consider the approximation for some **functional basis**

$$g(\boldsymbol{x}) = \sum_{j=0}^{\infty} \omega_j g_j(\boldsymbol{x}) \text{ and } \widehat{g}(\boldsymbol{x}) = \sum_{j=0}^{\boldsymbol{h}} \omega_j g_j(\boldsymbol{x})$$

or consider a **local model**, on the neighborhood of \boldsymbol{x} ,

$$\widehat{g}(x) = \frac{1}{n_{\boldsymbol{x}}} \sum_{i \in \mathcal{I}_{\boldsymbol{x}}} y_i, \text{ with } \mathcal{I}_{\boldsymbol{x}} = \{ \boldsymbol{x} \in \mathbb{R}^p : \| \boldsymbol{x}_i - \boldsymbol{x} \| \leq \boldsymbol{h} \},$$

see Nadaraya (1964) and Watson (1964).

Here h is some tunning parameter: not estimated, but chosen (optimaly).

1

Econometrics & Probabilistic Model

The primary goal in a regression analysis is to understand, as far as possible with the available data, how the conditional distribution of the response y varies across subpopulations determined by the possible values of the predictor or predictors. Since this is the central idea, it will be helpful to have a conve-from Cook & Weisberg (1999), see also Haavelmo (1965).

$$(Y|\boldsymbol{X} = \boldsymbol{x}) \sim \mathcal{N}(\mu(\boldsymbol{x}), \sigma^2) \text{ with } \mu(\boldsymbol{x}) = \beta_0 + \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta}, \text{ and } \boldsymbol{\beta} \in \mathbb{R}^p.$$

Linear Model: $\mathbb{E}[Y|X = x] = \beta_0 + x^T \beta$ Homoscedasticity: $\operatorname{Var}[Y|X = x] = \sigma^2$.

Conditional Distribution and Likelihood

$$(Y|\boldsymbol{X} = \boldsymbol{x}) \sim \mathcal{N}(\mu(\boldsymbol{x}), \sigma^2) \text{ with } \mu(\boldsymbol{x}) = \beta_0 + \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta}, \text{ et } \boldsymbol{\beta} \in \mathbb{R}^p$$

The log-likelihood is

$$\log \mathcal{L}(\beta_0, \boldsymbol{\beta}, \sigma^2 | \boldsymbol{y}, \boldsymbol{x}) = -\frac{n}{2} \log[2\pi\sigma^2] - \frac{1}{2\sigma^2} \underbrace{\sum_{i=1}^n (y_i - \beta_0 - \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta})^2}_{i=1}.$$

Set

$$(\widehat{\beta}_0, \widehat{\boldsymbol{\beta}}, \widehat{\sigma}^2) = \operatorname{argmax} \left\{ \log \mathcal{L}(\beta_0, \boldsymbol{\beta}, \sigma^2 | \boldsymbol{y}, \boldsymbol{x}) \right\}.$$

First order condition $X^{\mathsf{T}}[y - X\hat{\beta}] = 0$. If matrix X is a full rank matrix

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} = \boldsymbol{\beta} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\varepsilon}.$$

Asymptotic properties of $\widehat{\boldsymbol{\beta}}$,

$$\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{\mathcal{L}}{\rightarrow} \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) \text{ as } n \to \infty$$

 X_2

 $\widehat{\beta}_2 X_2$

Y

 $\widehat{\beta}_1 X_1$

 $\widehat{Y} = \widehat{\beta}_1 X_1 + \widehat{\beta}_2 X_2$

 X_1

Geometric Perspective

Define the orthogonal projection on \mathcal{X} ,

$$\Pi_{\boldsymbol{X}} = \boldsymbol{X} [\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}]^{-1} \boldsymbol{X}^{\mathsf{T}}$$

$$\widehat{y} = \underbrace{X[X^{\mathsf{T}}X]^{-1}X^{\mathsf{T}}}_{\Pi_{\boldsymbol{X}}} y = \Pi_{\boldsymbol{X}}y.$$

Pythagoras' theorem can be writen

$$\|y\|^{2} = \|\Pi_{X}y\|^{2} + \|\Pi_{X^{\perp}}y\|^{2} = \|\Pi_{X}y\|^{2} + \|y - \Pi_{X}y\|^{2}$$

which can be expressed as

Geometric Perspective

Define the angle θ between \boldsymbol{y} and $\Pi_{\mathcal{X}}\boldsymbol{y}$,

$$R^{2} = \frac{\|\Pi_{\mathcal{X}} \boldsymbol{y}\|^{2}}{\|\boldsymbol{y}\|^{2}} = 1 - \frac{\|\Pi_{\mathcal{X}^{\perp}} \boldsymbol{y}\|^{2}}{\|\boldsymbol{y}\|^{2}} = \cos^{2}(\theta)$$

see Davidson & MacKinnon (2003)

$$oldsymbol{y} = eta_0 + oldsymbol{X}_1oldsymbol{eta}_1 + oldsymbol{X}_2oldsymbol{eta}_2 + arepsilon$$

If $oldsymbol{y}_2^{\star} = \Pi_{\mathcal{X}_1^{\perp}}oldsymbol{y}$ and $oldsymbol{X}_2^{\star} = \Pi_{\mathcal{X}_1^{\perp}}oldsymbol{X}_2$, then
 $\widehat{oldsymbol{eta}}_2 = [oldsymbol{X}_2^{\star \mathsf{T}}oldsymbol{X}_2^{\star}]^{-1}oldsymbol{X}_2^{\star \mathsf{T}}oldsymbol{y}_2^{\star}$
 $oldsymbol{X}_2^{\star} = oldsymbol{X}_2$ if $oldsymbol{X}_1 \perp oldsymbol{X}_2$,
Frisch-Waugh theorem.

From Linear to Non-Linear

$$\widehat{y} = X \widehat{\beta} = \underbrace{X[X^{\mathsf{T}}X]^{-1}X^{\mathsf{T}}}_{H} y$$
 i.e. $\widehat{y}_i = h_{x_i}^{\mathsf{T}} y$,

with - for the linear regression - $h_x = X[X^T X]^{-1}x$.

One can consider some smoothed regression, see Nadaraya (1964) and Watson (1964), with some smoothing matrix S

$$\widehat{m}_h(x) = \mathbf{s}_x^{\mathsf{T}} \mathbf{y} = \sum_{i=1}^n s_{x,i} y_i \text{ withs } s_{x,i} = \frac{K_h(x - x_i)}{K_h(x - x_1) + \dots + K_h(x - x_n)}$$

for some kernel $K(\cdot)$ and some bandwidth h > 0.

From Linear to Non-Linear

$$T = \frac{\|\boldsymbol{S}\boldsymbol{y} - \boldsymbol{H}\boldsymbol{y}\|}{\operatorname{trace}([\boldsymbol{S} - \boldsymbol{H}]^{\mathsf{T}}[\boldsymbol{S} - \boldsymbol{H}])}$$

can be used to test for linearity, Simonoff (1996). trace(S) is the equivalent number of parameters, and n - trace(S) the degrees of freedom, Ruppert *et al.* (2003).

Nonlinear Model, but Homoscedastic - Gaussian

•
$$(Y|\boldsymbol{X} = \boldsymbol{x}) \sim \mathcal{N}(\mu(\boldsymbol{x}), \sigma^2)$$

• $\mathbb{E}[Y|\boldsymbol{X} = \boldsymbol{x}] = \mu(\boldsymbol{x})$

Conditional Expectation

from Angrist & Pischke (2008), $x \mapsto \mathbb{E}[Y|X = x]$.

Exponential Distributions and Linear Models

$$f(y_i|\theta_i,\phi) = \exp\left(\frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i,\phi)\right) \text{ with } \theta_i = h(\boldsymbol{x}_i^\mathsf{T}\boldsymbol{\beta})$$

Log likelihood is expressed as

$$\log \mathcal{L}(\boldsymbol{\theta}, \phi | \boldsymbol{y}) = \sum_{i=1}^{n} \log f(y_i | \theta_i, \phi) = \frac{\sum_{i=1}^{n} y_i \theta_i - \sum_{i=1}^{n} b(\theta_i)}{a(\phi)} + \sum_{i=1}^{n} c(y_i, \phi)$$

and first order conditions

$$\frac{\partial \log \mathcal{L}(\boldsymbol{\theta}, \phi | \boldsymbol{y})}{\partial \boldsymbol{\beta}} = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}^{-1} [\boldsymbol{y} - \boldsymbol{\mu}] = \boldsymbol{0}$$

as in Müller (2001), where W is a weight matrix, function of β . We usually specify the **link** function $g(\cdot)$ defined as

$$\widehat{y} = m(\boldsymbol{x}) = \mathbb{E}[Y|\boldsymbol{X} = \boldsymbol{x}] = g^{-1}(\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}).$$

Exponential Distributions and Linear Models

Note that $\boldsymbol{W} = \operatorname{diag}(\nabla g(\hat{\boldsymbol{y}}) \cdot \operatorname{Var}[\boldsymbol{y}])$, and set

$$\boldsymbol{z} = g(\widehat{\boldsymbol{y}}) + (\boldsymbol{y} - \widehat{\boldsymbol{y}}) \cdot \nabla g(\widehat{\boldsymbol{y}})$$

the the maximum likelihood estimator is obtained iteratively

$$\widehat{\boldsymbol{\beta}}_{k+1} = [\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_k^{-1} \boldsymbol{X}]^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_k^{-1} \boldsymbol{z}_k$$

Set $\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta}_{\infty}$, so that

$$\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{\mathcal{L}} \mathcal{N}(\mathbf{0}, I(\boldsymbol{\beta})^{-1})$$

with $I(\boldsymbol{\beta}) = \phi \cdot [\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{\infty}^{-1} \boldsymbol{X}].$ Note that $[\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{k}^{-1} \boldsymbol{X}]$ is a $p \times p$ matrix.

Exponential Distributions and Linear Models

Generalized Linear Model:

• $(Y|X = x) \sim \mathcal{L}(\theta_x, \varphi)$

•
$$\mathbb{E}[Y|\boldsymbol{X} = \boldsymbol{x}] = h^{-1}(\boldsymbol{\theta}_{\boldsymbol{x}}) = g^{-1}(\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta})$$

e.g. $(Y|\boldsymbol{X} = \boldsymbol{x}) \sim \mathcal{P}(\exp[\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}]).$

Use of maximum likelihood techniques for inference.

Actually, more a moment condition than a distribution assumption.

Goodness of Fit & Model Choice

From the variance decomposition

total variance

residual variance exp

explained variance

and define

$$R^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} - \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

More generally

Deviance
$$(\boldsymbol{\beta}) = -2\log[\mathcal{L}] = 2\sum_{i=1}^{\infty} (y_i - \widehat{y}_i)^2 = \text{Deviance}(\widehat{\boldsymbol{y}})$$

The null deviance is obtained using $\hat{y}_i = \overline{y}$, so that

$$R^{2} = \frac{\text{Deviance}(\overline{y}) - \text{Deviance}(\widehat{y})}{\text{Deviance}(\overline{y})} = 1 - \frac{\text{Deviance}(\widehat{y})}{\text{Deviance}(\overline{y})} = 1 - \frac{\text{D}}{\text{D}}$$

Goodness of Fit & Model Choice

One usually prefers a penalized version

$$\bar{R}^2 = 1 - (1 - R^2)\frac{n - 1}{n - p} = R^2 - \underbrace{(1 - R^2)\frac{p - 1}{n - p}}_{\text{penalty}}$$

See also **Akaike** criteria AIC = Deviance + 2 $\cdot p$

or **Schwarz**, $BIC = Deviance + \log(n) \cdot p$

In high dimension, consider a corrected version

$$AICc = Deviance + 2 \cdot p \cdot \frac{n}{n - p - 1}$$

Stepwise Procedures

Forward algorithm

1. set
$$j_1^{\star} = \underset{j \in \{\emptyset, 1, \cdots, n\}}{\operatorname{argmin}} \{AIC(\{j\})\}$$

2. set
$$j_2^{\star} = \underset{j \in \{\emptyset, 1, \cdots, n\} \setminus \{j_1^{\star}\}}{\operatorname{argmin}} \{AIC(\{j_1^{\star}, j\})\}$$

3. ... until $j^* = \emptyset$

Backward algorithm

1. set
$$j_1^{\star} = \underset{j \in \{\emptyset, 1, \cdots, n\}}{\operatorname{argmin}} \{AIC(\{1, \cdots, n\} \setminus \{j\})\}$$

2. set $j_2^{\star} = \underset{j \in \{\emptyset, 1, \cdots, n\} \setminus \{j_1^{\star}\}}{\operatorname{argmin}} \{AIC(\{1, \cdots, n\} \setminus \{j_1^{\star}, j\})\}$
3. ... until $j^{\star} = \emptyset$

Econometrics & Statistical Testing

Standard test for $H_0: \beta_k = 0$ against $H_1: \beta_k \neq 0$ is **Student-**t est $t_k = \widehat{\beta}_k / \operatorname{se}_{\widehat{\beta}_k}$,

Use the *p*-value $\mathbb{P}[|T| > |t_k|]$ with $T \sim t_{\nu}$ (and $\nu = \text{trace}(H)$).

In high dimension, consider the FDR (False Discovery Ratio).

With $\alpha = 5\%$, 5% variables are wrongly significant.

If p = 100 with only 5 significant variables, one should expect also 5 false positive, i.e. 50% FDR, see Benjamini & Hochberg (1995) and Andrew Gelman's talk.

Under & Over-Identification

Under-identification is obtained when the true model is $y = \beta_0 + \boldsymbol{x}_1^\mathsf{T} \boldsymbol{\beta}_1 + \boldsymbol{x}_2^\mathsf{T} \boldsymbol{\beta}_2 + \varepsilon$, but we estimate $y = \beta_0 + \boldsymbol{x}_1^\mathsf{T} \boldsymbol{b}_1 + \eta$.

Maximum likelihood estimator for \boldsymbol{b}_1 is

$$\widehat{\boldsymbol{b}}_{1} = (\boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{y}$$

$$= (\boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} [\boldsymbol{X}_{1,i} \boldsymbol{\beta}_{1} + \boldsymbol{X}_{2,i} \boldsymbol{\beta}_{2} + \varepsilon]$$

$$= \boldsymbol{\beta}_{1} + \underbrace{(\boldsymbol{X}_{1}' \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{2} \boldsymbol{\beta}_{2}}_{\boldsymbol{\beta}_{12}} + \underbrace{(\boldsymbol{X}_{1}^{\mathsf{T}} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\mathsf{T}} \varepsilon}_{\boldsymbol{\nu}_{i}}$$

so that $\mathbb{E}[\hat{b}_1] = \beta_1 + \beta_{12}$, and the bias is null when $X_1^{\mathsf{T}} X_2 = \mathbf{0}$ i.e. $X_1 \perp X_2$, see Frisch-Waugh).

Over-identification is obtained when the true model is $y = \beta_0 + \boldsymbol{x}_1^{\mathsf{T}} \boldsymbol{\beta}_1 \varepsilon$, but we fit $y = \beta_0 + \boldsymbol{x}_1^{\mathsf{T}} \boldsymbol{b}_1 + \boldsymbol{x}_2^{\mathsf{T}} \boldsymbol{b}_2 + \eta$.

Inference is unbiased since $\mathbb{E}(\boldsymbol{b}_1) = \boldsymbol{\beta}_1$ but the estimator is not efficient.

Statistical Learning & Loss Function

Here, no probabilistic model, but a **loss function**, ℓ . For some set of functions $\mathcal{M}, \mathcal{X} \to \mathcal{Y}$, define

$$m^{\star} = \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \sum_{i=1}^{n} \ell(y_i, m(\boldsymbol{x}_i)) \right\}$$

Quadratic loss functions are interesting since

$$\overline{y} = \underset{m \in \mathbb{R}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \frac{1}{n} [y_i - m]^2 \right\}$$

which can be writen, with some underlying probabilistic model

$$\mathbb{E}(Y) = \operatorname*{argmin}_{m \in \mathbb{R}} \left\{ \|Y - m\|_{\ell_2}^2 \right\} = \operatorname*{argmin}_{m \in \mathbb{R}} \left\{ \mathbb{E}\left([Y - m]^2 \right) \right\}$$

For $\tau \in (0, 1)$, we obtain the **quantile regression** (see Koenker (2005))

$$m^{\star} = \operatorname*{argmin}_{m \in \mathcal{M}_0} \left\{ \sum_{i=1}^n \ell_{\tau}(y_i, m(\boldsymbol{x}_i)) \right\} \operatorname{avec} \ell_{\tau}(x, y) = |(x - y)(\tau - \mathbf{1}_{x \le y})|$$

Boosting & Weak Learning

$$m^{\star} = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \ell(y_i, m(\boldsymbol{x}_i)) \right\}$$

is hard to solve for some very large and general space \mathcal{M} of $\mathcal{X} \to \mathcal{Y}$ functions. Consider some iterative procedure, where we learn from the errors,

$$m^{(k)}(\cdot) = \underbrace{m_1(\cdot)}_{\sim \boldsymbol{y}} + \underbrace{m_2(\cdot)}_{\sim \boldsymbol{\varepsilon}_1} + \underbrace{m_3(\cdot)}_{\sim \boldsymbol{\varepsilon}_2} + \cdots + \underbrace{m_k(\cdot)}_{\sim \boldsymbol{\varepsilon}_{k-1}} = m^{(k-1)}(\cdot) + m_k(\cdot).$$

Formely $\boldsymbol{\varepsilon}$ can be seen as $\nabla \ell$, the gradient of the loss.

Boosting & Weak Learning

It is possible to see this algorithm as a gradient descent. Not

$$\underbrace{f(\boldsymbol{x}_k)}_{\langle f, \boldsymbol{x}_k \rangle} \sim \underbrace{f(\boldsymbol{x}_{k-1})}_{\langle f, \boldsymbol{x}_{k-1} \rangle} + \underbrace{(\boldsymbol{x}_k - \boldsymbol{x}_{k-1})}_{\alpha_k} \underbrace{\nabla f(\boldsymbol{x}_{k-1})}_{\langle \nabla f, \boldsymbol{x}_{k-1} \rangle}$$

but some kind of dual version

$$\underbrace{f_k(\boldsymbol{x})}_{\langle f_k, \boldsymbol{x} \rangle} \sim \underbrace{f_{k-1}(\boldsymbol{x})}_{\langle f_{k-1}, \boldsymbol{x} \rangle} + \underbrace{(f_k - f_{k-1})}_{a_k} \underbrace{\star}_{\langle f_{k-1}, \nabla \boldsymbol{x} \rangle}$$

where \star is a gradient is some functional space.

$$m^{(k)}(\boldsymbol{x}) = m^{(k-1)}(\boldsymbol{x}) + \operatorname*{argmin}_{f \in \mathcal{F}} \left\{ \sum_{i=1}^{n} \ell(y_i, m^{(k-1)}(\boldsymbol{x}) + f(\boldsymbol{x})) \right\}$$

for some simple space \mathcal{F} so that we define some **weak learner**, e.g. step functions (so called stumps)

Boosting & Weak Learning

Standard set \mathcal{F} are stumps functions but one can also consider splines (with non-fixed knots).

One might add a **shrinkage** parameter to learn even more weakly, i.e. set $\varepsilon_1 = y - \alpha \cdot m_1(\boldsymbol{x})$ with $\alpha \in (0, 1)$, etc.

Big Data & Linear Model

Consider some linear model $y_i = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon_i$ for all $i = 1, \cdots, n$.

Assume that ε_i are i.i.d. with $\mathbb{E}(\varepsilon) = 0$ (and finite variance). Write

Assuming $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbb{I})$, the maximum likelihood estimator of $\boldsymbol{\beta}$ is $\widehat{\boldsymbol{\beta}} = \operatorname{argmin}\{\|\boldsymbol{y} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta}\|_{\ell_2}\} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$

... under the assumption that $X^{\mathsf{T}}X$ is a full-rank matrix.

What if $\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}$ cannot be inverted? Then $\widehat{\boldsymbol{\beta}} = [\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}]^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$ does not exist, but $\widehat{\boldsymbol{\beta}}_{\boldsymbol{\lambda}} = [\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \boldsymbol{\lambda}\mathbb{I}]^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$ always exist if $\boldsymbol{\lambda} > 0$.

Ridge Regression & Regularization

The estimator $\hat{\boldsymbol{\beta}} = [\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \lambda \mathbb{I}]^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$ is the **Ridge** estimate obtained as solution of

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} [y_i - \beta_0 - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}]^2 + \frac{\lambda}{1^{\mathsf{T}} \boldsymbol{\beta}^2} \right\}$$

for some tuning parameter λ . One can also write

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}; \|\boldsymbol{\beta}\|_{\ell_2} \leq s} \{ \|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T} \boldsymbol{\beta}\|_{\ell_2} \}$$

There is a Bayesian interpretation of that regularization, when β has some prior $\mathcal{N}(\beta_0, \tau \mathbb{I})$.

Over-Fitting & Penalization

Solve here, for some norm $\|\cdot\|$,

$$\min\left\{\sum_{i=1}^{n}\ell(y_{i},\beta_{0}+\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|\right\}=\min\left\{\operatorname{objective}(\boldsymbol{\beta})+\operatorname{penality}(\boldsymbol{\beta})\right\}.$$

Estimators are **no longer unbiased**, but might have a smaller mse.

Consider some i.id. sample $\{y_1, \dots, y_n\}$ from $\mathcal{N}(\theta, \sigma^2)$, and consider some estimator proportional to \overline{y} , i.e. $\hat{\theta} = \alpha \overline{y}$. $\alpha = 1$ is the maximum likelihood estimator.

Note that

$$\operatorname{mse}[\widehat{\theta}] = \underbrace{(\alpha - 1)^2 \mu^2}_{\operatorname{bias}[\widehat{\theta}]^2} + \underbrace{\frac{\alpha^2 \sigma^2}{n}}_{\operatorname{Var}[\widehat{\theta}]}$$

and
$$\alpha^{\star} = \mu^2 \cdot \left(\mu^2 + \frac{\sigma^2}{n}\right)^{-1} < 1.$$

$$(\widehat{\beta}_0, \widehat{\boldsymbol{\beta}}) = \operatorname{argmin} \left\{ \sum_{i=1}^n \ell(y_i, \beta_0 + \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta}) + \lambda \| \boldsymbol{\beta} \| \right\},$$

can be seen as a **Lagrangian** minimization problem

$$(\widehat{\beta}_0, \widehat{\beta}) = \operatorname*{argmin}_{\beta; \|\beta\| \le s} \left\{ \sum_{i=1}^n \ell(y_i, \beta_0 + \boldsymbol{x}^{\mathsf{T}} \beta) \right\}$$

LASSO & Sparcity

In severall applications, p can be (very) large, but a lot of features are just noise: $\beta_j = 0$ for many *j*'s. Let *s* denote the number of **relevent features**, with $s \ll p$, cf Hastie, Tibshirani & Wainwright (2015),

 $s = \operatorname{card}{S}$ where $S = {j; \beta_j \neq 0}$

The true model is now $y = X_{\mathcal{S}}^{\mathsf{T}} \beta_{\mathcal{S}} + \varepsilon$, where $X_{\mathcal{S}}^{\mathsf{T}} X_{\mathcal{S}}$ is a full rank matrix.

LASSO & Sparcity

Evoluation of $\hat{\beta}_{\lambda}$ as a function of log λ in various applications

In-Sample & Out-Sample

Write $\widehat{\boldsymbol{\beta}} = \widehat{\boldsymbol{\beta}}((\boldsymbol{x}_1, y_1), \cdots, (\boldsymbol{x}_n, y_n))$. Then (for the linear model)

Deviance
$$_{\mathsf{IS}}(\widehat{\boldsymbol{\beta}}) = \sum_{i=1}^{n} [y_i - \boldsymbol{x}_i^\mathsf{T} \widehat{\boldsymbol{\beta}}((\boldsymbol{x}_1, y_1), \cdots, (\boldsymbol{x}_n, y_n))]^2$$

Withe this "in-sample" deviance, we cannot use the central limit theorem

$$\frac{\text{Deviance}_{\mathsf{IS}}(\widehat{\boldsymbol{\beta}})}{n} \not \to \mathbb{E}\left([Y - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta}]\right)$$

Hence, we can compute some "out-of-sample" deviance

Deviance
$$_{OS}(\widehat{\boldsymbol{\beta}}) = \sum_{i=n+1}^{m+n} [y_i - \boldsymbol{x}_i^{\mathsf{T}} \widehat{\boldsymbol{\beta}}((\boldsymbol{x}_1, y_1), \cdots, (\boldsymbol{x}_n, y_n)]^2$$

In-Sample & Out-Sample

Observe that there are connexions with Akaike penaly function

Deviance $_{\mathsf{IS}}(\widehat{\boldsymbol{\beta}})$ – Deviance $_{\mathsf{OS}}(\widehat{\boldsymbol{\beta}}) \approx 2 \cdot \text{degrees of freedom}$

From Stone (1977), minimizing AIC is closed to cross validation,

From Shao (1997) minimizing BIC is closed to k-fold cross validation with $k = n/\log n$.

Overfit, Generalization & Model Complexity

Complexity of the model is the degree of the polynomial function

Cross-Validation

See Jacknife technique Quenouille (1956) or Tukey (1958) to reduce the bias.

If $\{y_1, \dots, y_n\}$ is an i.id. sample from F_{θ} , with estimator $T_n(\boldsymbol{y}) = T_n(y_1, \dots, y_n)$, such that $\mathbb{E}[T_n(\boldsymbol{Y})] = \theta + O(n^{-1})$, consider

$$\widetilde{T}_{n}(\boldsymbol{y}) = \frac{1}{n} \sum_{i=1}^{n} T_{n-1}(\boldsymbol{y}_{(i)}) \text{ avec } \boldsymbol{y}_{(i)} = (y_{1}, \cdots, y_{i-1}, y_{i+1}, \cdots, y_{n}).$$

Then $\mathbb{E}[\widetilde{T}_n(\mathbf{Y})] = \theta + O(n^{-2}).$

Similar idea in leave-one-out cross validation

$$\operatorname{Risk} = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \widehat{m}_{(i)}(\boldsymbol{x}_i))$$

Rule of Thumb vs. Cross Validation

$$\widehat{m}^{[h^{\star}]}(x) = \widehat{\beta}_{0}^{[x]} + \widehat{\beta}_{1}^{[x]}x \text{ with } (\widehat{\beta}_{0}^{[x]}, \widehat{\beta}_{1}^{[x]}) = \operatorname*{argmin}_{(\beta_{0}, \beta_{1})} \left\{ \sum_{i=1}^{n} \omega_{h^{\star}}^{[x]} [y_{i} - (\beta_{0} + \beta_{1}x_{i})]^{2} \right\}$$

set
$$\mathbf{h}^{\star} = \operatorname{argmin}\left\{\operatorname{mse}(h)\right\}$$
 with $\operatorname{mse}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[y_i - \widehat{m}_{(i)}^{[h]}(x_i)\right]^2$

Exponential Smoothing for Time Series

Consider some exponential smoothing filter, on a time series (x_t) , $\hat{y}_{t+1} = \alpha \hat{y}_t + (1-\alpha)y_t$, then consider

$$\alpha^{\star} = \operatorname{argmin} \left\{ \sum_{t=2}^{T} \ell(\widehat{y}_t, y_t) \right\},$$

see Hyndman et al. (2003).

Cross-Validation

Consider a partition of $\{1, \dots, n\}$ in k groups with the same size, $\mathcal{I}_1, \dots, \mathcal{I}_k$, and set $\mathcal{I}_{\overline{j}} = \{1, \dots, n\} \setminus \mathcal{I}_j$. Fit $\widehat{m}_{(j)}$ on $\mathcal{I}_{\overline{j}}$, and

$$\operatorname{Risk} = \frac{1}{k} \sum_{j=1}^{k} \operatorname{Risk}_{j} \text{ where } \operatorname{Risk}_{j} = \frac{k}{n} \sum_{i \in \mathcal{I}_{j}} \ell(y_{i}, \widehat{m}_{(j)}(\boldsymbol{x}_{i}))$$

Randomization is too important to be left to chance!

Consider some **bootstraped** sample, $\mathcal{I}_b = \{i_{1,b}, \cdots, i_{n,b}\}$, with $i_{k,b} \in \{1, \cdots, n\}$ Set $n_i = \mathbf{1}_{i \notin \mathcal{I}_1} + \cdots + \mathbf{1}_{i \notin v_B}$, and fit \hat{m}_b on \mathcal{I}_b

$$\operatorname{Risk} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_i} \sum_{b:i \notin I_b} \ell(y_i, \widehat{m}_b(\boldsymbol{x}_i))$$

Probability that *i*th obs. is not selection $(1 - n^{-1})^n \rightarrow e^{-1} \sim 36.8\%$, see training / validation samples (2/3-1/3). If U

If U

Bootstrap

From Efron (1987), generate samples from $(\Omega, \mathcal{F}, \mathbb{P}_n)$

$$\widehat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(y_i \le y) \text{ and } \widehat{F}_n(y_i) = \frac{\operatorname{rank}(y_i)}{n}$$

$$V \sim \mathcal{U}([0,1]), \ F^{-1}(U) \sim F$$

$$(1, \dots, n-1, n)$$

on
$$\left\{\frac{1}{n}, \cdots, \frac{n-1}{n}, 1\right\}$$
.

Consider some **boostraped sample**,

- either $(y_{i_k}, x_{i_k}), i_k \in \{1, \cdots, n\}$

- or
$$(\widehat{y}_k + \widehat{\varepsilon}_{i_k}, \boldsymbol{x}_k), i_k \in \{1, \cdots, n\}$$

Classification & Logistic Regression

Generalized Linear Model when Y has a **Bernoulli distribution**, $y_i \in \{0, 1\}$,

$$m(\boldsymbol{x}) = \mathbb{E}[Y|\boldsymbol{X} = \boldsymbol{x}] = \frac{e^{\beta_0 + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}}}{1 + e^{\beta_0 + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}}} = H(\beta_0 + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta})$$

Estimate (β_0, β) using maximum likelihood techniques

$$\mathcal{L} = \prod_{i=1}^{n} \left(\frac{e^{\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}}} \right)^{y_{i}} \left(\frac{1}{1 + e^{\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}}} \right)^{1-y_{i}}$$

Deviance
$$\propto \sum_{i=1}^{n} \left[\log(1 + e^{\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}}) - y_{i}\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta} \right]$$

Observe that

$$D_0 \propto \sum_{i=1}^n \left[y_i \log(\overline{y}) + (1 - y_i) \log(1 - \overline{y}) \right]$$

Classification Trees

To split $\{N\}$ into two $\{N_L, N_R\}$, consider

$$\mathcal{I}(N_L, N_R) = \sum_{x \in \{L, R\}} \frac{n_x}{n} \mathcal{I}(N_x)$$

e.g. Gini index (used originally in CART, see Breiman et al. (1984))

$$\operatorname{gini}(N_L, N_R) = -\sum_{x \in \{L, R\}} \frac{n_x}{n} \sum_{y \in \{0, 1\}} \frac{n_{x,y}}{n_x} \left(1 - \frac{n_{x,y}}{n_x}\right)$$

and the **cross-entropy** (used in C4.5 and C5.0)

entropy
$$(N_L, N_R) = -\sum_{x \in \{L,R\}} \frac{n_x}{n} \sum_{y \in \{0,1\}} \frac{n_{x,y}}{n_x} \log\left(\frac{n_{x,y}}{n_x}\right)$$

-0.14

-0.16

-0.18

-0.20

-0.14

-0.16

-0.18

-0.20

-0.14

-0.16

-0.18

-0.20

6

PVENT

10 12 14

Classification Trees

first split \leftarrow

second split \longrightarrow

-0.14

-0.16

-0.18

-0.20

500

900

1100

REPUL

700

Trees & Forests

Boostrap can be used to define the concept of margin,

margin_i =
$$\frac{1}{B} \sum_{b=1}^{B} \mathbf{1}(\widehat{y}_i^{(b)} = y_i) - \frac{1}{B} \sum_{b=1}^{B} \mathbf{1}(\widehat{y}_i^{(b)} \neq y_i)$$

Subsampling of variable, at each knot (e.g. \sqrt{k} out of k)

Concept of variable importance: given some random forest with M trees,

importance of variable
$$k$$
 $I(X_k) = \frac{1}{M} \sum_m \sum_t \frac{N_t}{N} \Delta \mathcal{I}(t)$

where the first sum is over all trees, and the second one is over all nodes where the split is done based on variable X_k .

Trees & Forests

See also discriminant analysis, SVM, neural networks, etc.

Model Selection & ROC Curves

Given a scoring function $m(\cdot)$, with $m(\boldsymbol{x}) = \mathbb{E}[Y|\boldsymbol{X} = \boldsymbol{x}]$, and a threshold $s \in (0, 1)$, set

$$\widehat{Y}^{(s)} = \mathbf{1}[m(\boldsymbol{x}) > \boldsymbol{s}] = \begin{cases} 1 \text{ if } m(\boldsymbol{x}) > \boldsymbol{s} \\ 0 \text{ if } m(\boldsymbol{x}) \leq \boldsymbol{s} \end{cases}$$

Define the confusion matrix as $N = [N_{u,v}]$

$$N_{u,v}^{(s)} = \sum_{i=1}^{n} \mathbf{1}(\widehat{y}_i^{(s)} = u, y_j = v) \text{ for } (u, v) \in \{0, 1\}.$$

	Y = 0	Y = 1	
$\widehat{Y}_s = 0$	TN_s	FN_s	$TN_s + FN_s$
$\widehat{Y}_s = 1$	FP_s	TP_s	$FP_s + TP_s$
	$TN_s + FP_s$	$FN_s + TP_s$	n

Model Selection & ROC Curves

ROC curve is

$$\operatorname{ROC}_{s} = \left(\frac{\operatorname{FP}_{s}}{\operatorname{FP}_{s} + \operatorname{TN}_{s}}, \frac{\operatorname{TP}_{s}}{\operatorname{TP}_{s} + \operatorname{FN}_{s}}\right) \text{ with } s \in (0, 1)$$

Model Selection & ROC Curves

In machine learning, the most popular measure is κ , see Landis & Koch (1977). Define N^{\perp} from N as in the chi-square independence test. Set

$$\begin{array}{l} \mathrm{total\ accuracy} = \frac{\mathrm{TP} + \mathrm{TN}}{n} \\ \mathrm{random\ accuracy} = \frac{\mathrm{TP}^{\perp} + \mathrm{TN}^{\perp}}{n} = \frac{[\mathrm{TN} + \mathrm{FP}] \cdot [\mathrm{TP} + \mathrm{FN}] + [\mathrm{TP} + \mathrm{FP}] \cdot [\mathrm{TN} + \mathrm{FN}]}{n^2} \\ \mathrm{and} \\ \kappa = \frac{\mathrm{total\ accuracy} - \mathrm{random\ accuracy}}{1 - \mathrm{random\ accuracy}}. \end{array}$$

See Kaggle competitions.

Reducing Dimension with PCA

Use **principal components** to reduce dimension (on centered and scaled variables): we want d vectors z_1, \dots, z_d such that

First Component is $\boldsymbol{z}_1 = \boldsymbol{X} \boldsymbol{\omega}_1$ where

$$oldsymbol{\omega}_1 = rgmax_{\|oldsymbol{\omega}\|=1} ig\{ \|oldsymbol{X}\cdotoldsymbol{\omega}\|^2 ig\} = rgmax_{\|oldsymbol{\omega}\|=1} ig\{ oldsymbol{\omega}^{\mathsf{T}}oldsymbol{X}^{\mathsf{T}}oldsymbol{X}oldsymbol{\omega} ig\} \ \|oldsymbol{\omega}\|=1$$

Second Component is $\boldsymbol{z}_2 = \boldsymbol{X} \boldsymbol{\omega}_2$ where

$$oldsymbol{\omega}_2 = rgmax_{\|oldsymbol{\omega}\|=1} \left\{ \|\widetilde{oldsymbol{X}}^{(1)}\cdotoldsymbol{\omega}\|^2
ight\}$$

with
$$\widetilde{\boldsymbol{X}}^{(1)} = \boldsymbol{X} - \underbrace{\boldsymbol{X}\boldsymbol{\omega}_1}_{\boldsymbol{z}_1}\boldsymbol{\omega}_1^\mathsf{T}.$$

Reducing Dimension with PCA

A regression on (the d) principal components, $y = z^{\mathsf{T}}b + \eta$ could be an interesting idea, unfortunatly, principal components have no reason to be correlated with y. First component was $z_1 = X\omega_1$ where

$$oldsymbol{\omega}_1 = rgmax_{\|oldsymbol{\omega}\|=1} ig\{ \|oldsymbol{X}\cdotoldsymbol{\omega}\|^2 ig\} = rgmax_{\|oldsymbol{\omega}\|=1} ig\{oldsymbol{\omega}^{\mathsf{T}}oldsymbol{X}^{\mathsf{T}}oldsymbol{X}oldsymbol{\omega}ig\} = rgmax_{\|oldsymbol{\omega}\|=1} ig\{oldsymbol{\omega}^{\mathsf{T}}oldsymbol{X}^{\mathsf{T}}oldsymbol{X}oldsymbol{\omega}ig\}$$

It is a non-supervised technique.

Instead, use **partial least squares**, introduced in Wold (1966). First component is $z_1 = X\omega_1$ where

$$\boldsymbol{\omega}_1 = \operatorname*{argmax}_{\|\boldsymbol{\omega}\|=1} \left\{ < \boldsymbol{y}, \boldsymbol{X} \cdot \boldsymbol{\omega} > \right\} = \operatorname*{argmax}_{\|\boldsymbol{\omega}\|=1} \left\{ \boldsymbol{\omega}^\mathsf{T} \boldsymbol{X}^\mathsf{T} \boldsymbol{y} \boldsymbol{y}^\mathsf{T} \boldsymbol{X} \boldsymbol{\omega} \right\}$$

(etc.)

Instrumental Variables

Consider some instrumental variable model, $y_i = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon_i$ such that

$$\mathbb{E}[Y_i|\boldsymbol{Z}] = \mathbb{E}[\boldsymbol{X}_i|\boldsymbol{Z}]^{\mathsf{T}}\boldsymbol{\beta} + \mathbb{E}[\varepsilon_i|\boldsymbol{Z}]$$

The estimator of $\boldsymbol{\beta}$ is

$$\widehat{\boldsymbol{eta}}_{\mathsf{IV}} = [\boldsymbol{Z}^{\mathsf{T}} \boldsymbol{X}]^{-1} \boldsymbol{Z}^{\mathsf{T}} \boldsymbol{y}$$

If $\dim(\mathbf{Z}) > \dim(\mathbf{X})$ use the Generalized Method of Moments,

 $\widehat{\boldsymbol{\beta}}_{\mathsf{GMM}} = [\boldsymbol{X}^{\mathsf{T}} \boldsymbol{\Pi}_{\boldsymbol{Z}} \boldsymbol{X}]^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{\Pi}_{\boldsymbol{Z}} \boldsymbol{y} ext{ with } \boldsymbol{\Pi}_{\boldsymbol{Z}} = \boldsymbol{Z} [\boldsymbol{Z}^{\mathsf{T}} \boldsymbol{Z}]^{-1} \boldsymbol{Z}^{\mathsf{T}}$

Instrumental Variables

Consider a standard two step procedure

1) regress columns of X on Z, $X = Z\alpha + \eta$, and derive predictions $\widehat{X} = \Pi_Z X$ 2) regress Y on \widehat{X} , $y_i = \widehat{x}_i^{\mathsf{T}} \beta + \varepsilon_i$, i.e.

$$\widehat{\boldsymbol{eta}}_{\mathsf{IV}} = [\boldsymbol{Z}^{\mathsf{T}} \boldsymbol{X}]^{-1} \boldsymbol{Z}^{\mathsf{T}} \boldsymbol{y}$$

See Angrist & Krueger (1991) with 3 up to 1530 instruments : 12 instruments seem to contain all necessary information.

Use LASSO to select necessary instruments, see Belloni, Chernozhukov & Hansen (2010)

Take Away Conclusion

Big data mythology

- $n \to \infty$: 0/1 law, everything is simplified (either true or false)
- $p \rightarrow \infty$: higher algorithmic complexity, need variable selection tools

Econometrics vs. Machine Learning

- probabilistic interpretation of econometric models (unfortunately sometimes misleading, e.g. *p*-value) can deal with non-i.id data (time series, panel, etc)
- machine learning is about predictive modeling and generalization algorithmic tools, based on bootstrap (sampling and sub-sampling), cross-validation, variable selection, nonlinearities, cross effects, etc

Importance of visualization techniques (forgotten in econometrics publications)