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Ruin, solvency and reinsurance

“reinsurance plays an important role in reducing the risk in an insurance

portfolio.”

Goovaerts & Vyncke (2004). Reinsurance Forms in Encyclopedia of Actuarial
Science.

“reinsurance s able to offer additional underwriting capacity for cedants, but also

to reduce the probability of a direct insurer’s ruin .”

Engelmann & Kipp (1995). Reinsurance. in Encyclopaedia of Financial
Engineering and Risk Management.
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Proportional Reinsurance (Quota-Share)

claim loss X : aX paid by the cedant, (1 — «) X paid by the reinsurer,
premium P : aP kept by the cedant, (1 — «) P transfered to the reinsurer,

Nonproportional Reinsurance (Excess-of-Loss)

claim loss X : min{ X, u} paid by the cedant, max{0, X — u} paid by the
reinsurer,

premium P : P, kept by the cedant, P — P, transfered to the reinsurer,
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Proportional versus nonproportional reinsurance

Proportional reinsurance (QS) Nonproportional reinsurance (XL)

O reinsurer O reinsurer
B cedent B cedent

claim 1 claim 2 claim 3 claim 4 claim 5 claim 1 claim 2 claim 3 claim 4 claim 5

FI1G. 1 — Reinsurance mechanism for claims indemnity, proportional versus non-

proportional treaties.
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Mathematical framework

Classical Cramér-Lundberg framework :

e claims arrival is driven by an homogeneous Poisson process, Ny ~ P(\t),

durations between consecutive arrivals T; 1, — T; are independent E()),
e claims size X1, ---,X,, - are i.i.d. non-negative random variables,
independent of claims arrival.
Ny

Let Y; = Z X; denote the aggregate amount of claims during period |0, t].
i=1
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Premium
The pure premium required over period [0, t] is

m = E(Y;) = E(N)E(X)

Note that more general premiums can be considered, e.g.
e safety loading proportional to the pure premium, m; = [1 + A] - E(Y3),
e safety loading proportional to the variance, 7y = E(Y;) + A - Var(Y;),

safety loading proportional to the standard deviation, m, = E(Y;) + A - /Var(Y;)

1
entropic premium (exponential expected utility) 7 = — log (E(eayt)),
e
E(X - ex¥t)
E(exYt) ~
Wang distorted premium 7y = / O (N (P(Y; > x)) + \) du,
0

Esscher premium m; =
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A classical solvency problem

Given a ruin probability target, e.g. 0.1%, on a give, time horizon T, find capital
u such that,

G(T,u) = 1—Plutrt>Y,vte0,T)
1 —P(S; > 0vt € [0,T])
P(inf{S;} < 0) = 0.1%,

where S; = u + 7wt — Y; denotes the insurance company surplus.
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A classical solvency problem

After reinsurance, the net surplus is then

N,
S =u+ 70t 3" X[,
=1

N1
where 7 = (Z X;e)) and

=1

Xz-(e) — 0.X;, 6 € |0,1], for quota share treaties,
XZ.(Q) = min{f, X;}, 6 >0, for excess-of-loss treaties.




ARTHUR CHARPENTIER - OPTIMAL REINSURANCE WITH RUIN PROBABILITY TARGET

Classical answers : using upper bounds

Instead of targeting a ruin probability level, Centeno (1986) and Chapter 9 in
Dickson (2005) target an upper bound of the ruin probability.

In the case of light tailed claims, let v denote the “adjustment coeflicient”,

defined as the unique positive root of

A+ 71y = AMx (7v), where Mx(t) = E(exp(tX)).

The Lundberg inequality states that
0 < $(T,u) < (00, u) < exp[—yu] = Yo ().

Gerber (1976) proposed an improvement in the case of finite horizon (1" < o).
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Classical answers : using approximations u — 00
de Vylder (1996) proposed the following approximation, assuming that
E(|X|%) < oo,

1 B0

Yav ( )N1+9,6X 1re

) quand u — o0

Beekman (1969) considered
Vi (u) 50 1 —T (u)] quand u — oo
where I' is the c.d.f. of the I'(«, 8) distribution

4
s —1) 9) et 5= 2.0 <m2+<
3Ims
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Classical answers : using approximations u — o0

Rényi - see Grandell (2000) - proposed an exponential approximation of the

convoluted distribution function

1 210
YR (u) ~ exp (— e ) quand u — o0

In the case of subexponential claims

VYsE (u) ~ —
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Classical answers : using approximations u — o0

CL dV B R SE

Exponential yes yes yes yes no
Gamma yes yes yes yes no
Weibull no yes yes yes B €]0,1]

Lognormal no yes yes yes yes
Pareto no a >3 a >3 o> 2 yes

Burr no ay>3 ay>3 ay>2 yes




ARTHUR CHARPENTIER - OPTIMAL REINSURANCE WITH RUIN PROBABILITY TARGET

Proportional reinsurance (QS)

With proportional reinsurance, if 1 — « is the ceding ratio,

i = (1 — a)u+ aS;

Reinsurance can always decrease ruin probability.

Assuming that there was ruin (without reinsurance) before time 7', if the insurance had
ceded a proportion 1 — o™ of its business, where

* Uu

& T u—mf{S,,te[0,T]}

there would have been no ruin (at least on the period [0, T1).

- 1
~ u—min{S;,t € [0,T]}

(min{S;,t € [0,T]} < 0) + 1(min{S:,t € [0,T]} > 0),

V(T u, ) = P(T,u) - Pla™ < a).




ARTHUR CHARPENTIER - OPTIMAL REINSURANCE WITH RUIN PROBABILITY TARGET

Proportional reinsurance (QS)

Impact of proportional reinsurance in case of ruin

Time (one year)

FI1G. 2 — Proportional reinsurance used to decrease ruin probability, the plain line is
the brut surplus, and the dotted line the cedant surplus with a reinsurance treaty.




ARTHUR CHARPENTIER - OPTIMAL REINSURANCE WITH RUIN PROBABILITY TARGET

Proportional reinsurance (QS)

In that case, the algorithm to plot the ruin probability as a function of the reinsurance

share is simply the following

RUIN <- 0O; ALPHA <- NA
for(i in 1:Nb.Simul){

T <- rexp(N,lambda); T <- T[cumsum(T)<1]; n <- length(T)

X <- r.claims(n); S <- u+premium*cumsum(T)-cumsum (X)

if (min(S)<0) { RUIN <- RUIN +1

ALPHA <- c(ALPHA,u/(u-min(8))) }

+

rate <- seq(0,1,by=.01); proportion <- rep(NA,length(rate))
for(i in 1l:length(rate)){
proportion[il=sum(ALPHA<rate[i])/length(ALPHA)
+
plot (rate,proportion*RUIN/Nb.Simul)
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Proportional reinsurance (QS)

—— Pareto claims
—— Exponential claims
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F1G. 3 — Ruin probability as a function of the cedant’s share.
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Proportional reinsurance (QS)
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F1G. 4 — Ruin probability as a function of the cedant’s share.
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Nonproportional reinsurance (QS)

With nonproportional reinsurance, if d > 0 is the priority of the reinsurance contract,

the surplus process for the company is

Ny
SiY =u+ 7Pt = "min{X;,d} where 7'V = E(S{”) = E(N1) - E(min{X;, d}).

=1

Here the problem is that it is possible to have a lot of small claims (smaller than d), and
to have ruin with the reinsurance cover (since p{* < p and min{X;,d} = X; for all 5 if
claims are no very large), while there was no ruin without the reinsurance cover (see

Figure 5).
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Proportional reinsurance (QS)

Impact of nonproportional reinsurance in case of nhonruin

Time (one year)

F1G. 5 — Case where nonproportional reinsurance can cause ruin, the plain line is

the brut surplus, and the dotted line the cedant surplus with a reinsurance treaty.
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Proportional reinsurance
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F1G. 6 — Monte Carlo computation of ruin probabilities, where n = 10, 000 trajec-
tories are generated for each deductible, with a 95% confidence interval.
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