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Agenda of the talk

Solvency II : CP 71 and the one year horizon
Solvency II : new way of looking at the ‘uncertainty’
o From MSE to MSEP (MSE of prediction)

o From MSEP to MSEPC (conditional MSEP)

o CDR, claims development result

From Mack (1993) to Merz & Wiithrich (2009)
Updating Poisson-ODP bootstrap technique

one year ultimate

China ladder | Merz & Withrich (2008) Mack (1993)
GLM-+boostrap X Hacheleister & Stanard (1975)
England & Verrall (1999)
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‘one year horizon for the reserve risk’

AISAM-ACME study on non-life
long tail liabilities

Reserve risk and risk margin assessment under
Solvency II

17 October 2007
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‘one year horizon for the reserve risk’

4 The concept of the one year horizon for the reserve
risk

The uncertainty measurement of reserves in the balance sheet (called risk margin in
the Solvency II framework) and the reserve risk do not have the same time horizon.
[t seems important to underline this point because it may be a source of confusion
when the calibration is discussed.

4.1.2The reserve risk captures uncertainty over a one year period

4.1.2.1 The Solvency II draft Directive framework
The SCR has the following definition?:

“The SCR comesponds to the economic capital a (rejinsurance undertaking
needs to hold in order to limit the probability of ruin to 0.5%, i.e. ruin would
occur once every 200 years (see Article 100). The SCR is calculated using
Value-at-Risk techniques, either in accordance with the standard formula, or
using an intermal model: all potential losses, including adverse revaluation of
assets and liabilities over the next 12 months are to be assessed. The SCR
reflects the true risk profile of the undertaking, taking account of all
quantifiable risks, as well as the net impact of risk mitigation technigues.”
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‘one year horizon for the reserve risk’

development years .
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‘one year horizon for the reserve risk’

Process error Estimation error Prediction error
(intrisic volatilitity) (model error) (total)

Whole 7  Variation Whole

run-off : (%) run-off
horizon

participant n®1 (WCp1) 434%  -6% | 2.10% 510% 4.70%  -8%
participant n®1 (WCp2) 123%  -17% | 1.45% 207% 1.79%  -14%
(

participant n°2 (GL1} 1.90%  -57% | 6.60% 7.90% 3.60% @ -54%
participant n°2 (GL2) 250%  -48% | 6.80% 8.30% 4.10%  -51%
participant n°3 (GL) 254%  -45% | 6.15% 7.70% 3.78%  -51%
participant n°5 (GL) 2.03% 9.19% 10.58% 5.36%  -49%
participant n°5 (WCp) 5.56% 5.51% 8.84% 6.53%  -26%
participant n°g (GL) 4.80% 11.60% 13.50% B.20%  -39%
participant n®10 (GL) 3.77% 3.62% 6.21% 4.93%  -21%
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‘one year horizon for the reserve risk’

-CEIOPS Consultation Paper No. 71

rittee of European CEIOPS-CP-71-09

Is e1du|:plt|:.-1.l

Pensions Supervis 2 November 2009

Draft CEIOPS’ Advice for
Level 2 Implementing Measures on
Solvency II:

SCR Standard Formula
Calibration of non-life underwriting risk
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‘one year horizon for the reserve risk’

Method 4

3.242 This approach is consistent with the undertaking specific estimate
assumptions from the Technical Specifications for QIS4 for premium risk.

3.243 This method involves a three stage process:

a. Involves by undertaking calculating the mean squared error of
prediction of the claims development result over the one year.

o The mean squared errors are calculated using the approach detailed
in "Modelling The Claims Development Result For Solvency
Purposes” by Michael Merz and Mario V Wuthrich, Casualty Actuarial
Society E-Forum, Fall 2008.

o Furthermore, in the claims triangles:

o cumulative payments C; in different accident years i are
independent

o for each accident year, the cumulative payments (C ;); are a Markov
process and there are constants f; and s, such that E(C;|C ,.,)=fC ;.
and Var(Ci;|Ci;-1)=5;Ci;-1.
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Standard models in IBNR models
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e Factor models Y; ; = ¢(A4;, Bj)
e expert opinion and the Bayesian approach




ARTHUR CHARPENTIER, IBNR AND ONE-YEAR UNCERTAINTY

Standard models in IBNR models

e Chain Ladder Ci,j+1 — /\j : C@j
e Factor models and GLM’s (ODP-bootstrap), E(Y; ;|F) = ¢(A4;, B;)
e expert opinion and the Bayesian approach
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Standard models in IBNR models

e Chain Ladder and Mack (1993) E(C; j+1|F) = X; - Ci 4
e Factor models and GLM’s (ODP-bootstrap), E(Y; ;|F) = ¢(A4;, B;)
e expert opinion and the Bayesian approach
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Notations for triangle type data

e X, ; denotes incremental payments, with delay 7, for claims occurred year ¢,
e (; ; denotes cumulated payments, with delay j, for claims occurred year %,
Cij=Xio+ Xig+-+ X,

0 1 2 3 4 5 4 5
3209 39 17 7 21 4435 4456
3367 37 24 10 4730
3871 53 22
4239
4929
5217

e J, denotes information available at time ¢,

— {(Ci,j)70§i+j St}:{(Xi,j)aoéi"i"j St}




ARTHUR CHARPENTIER, IBNR AND ONE-YEAR UNCERTAINTY

Notations for triangle type data

e X, ; denotes incremental payments, with delay 7, for claims occurred year ¢,
e (; ; denotes cumulated payments, with delay j, for claims occurred year %,
Cii=Xio+Xi1+ -+ X5,

0 1 2 3 4 5 0 3 4 5
3209 39 17 7 21 3209 4428 4435 4456
3367 37 24 10 3367 4720 4730
3871 53 22 3871 5420
4239 4239
4929 4929
5217 5217

e 7.* denotes partial information available at time ¢, based on the first k years,

only

FF={(Ci;),0<i+j<ti<k}={(Xi;),0<i+j<ti<k}
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Chain Ladder estimation

3 4 5 3 5
4428 4435 4456 4428 4456
4720 4730 4720 4752.4
5420 5420 5455.8
6046.15 6086.1

6901.5 6947.1
7318.3 7366.7

with the following link ratios

0 1 2 3 4 n
>‘j 1,38093 1,01143 1,00434 1,00186 1,00474 1,0000

One the triangle has been completed, we obtain the amount of reserves, with
respectively 22, 36, 66, 153 and 2150 per accident year, i.e. the total is 2427.
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How to quantify uncertainty in Solvecny II

In Solvency II, uncertainty is quantified as a dispersion measure (variance or

quantile) of changes in prediction, with one year of additional information.

The best estimate at time ¢ is R, = E(Cuo|F;) while it become, at time ¢ + 1

Riy1 = E(Coo|Fip1).

The goal is to estimate

E <[E(COO‘~7:75+1) _ E(left)]zurt)
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Quantifying uncertainty in odds/tails games

In statistics, the mean squared error is a standard measure to quantify the

uncertainty of an estimator, i.e.

mse(d) = E ([5— 9} 2)

In order to formalize the prediction process in claims reserving consider the

following simpler case.

Let {x1,--- ,x,} denote an i.i.d. B(p) sample. We want to predict
Sp=Xni1+ -+ Xpan. Let Sy = 9¥0(Xna1, -, Xnan) = h - pn, denote the
natural predictor for S, at time n.

Since S}, is a random variable (6§ was a constant) define

mse(,Sy) = E ([ngh ~E(S1) 2)
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Note that

AN

msep(,Sh) 1D ([né\h — E(Sh)} 2) +E ([E(Sh) — Sh]Z)
—  mse(,S,) + Var(Sy,)

where the first term is a process error and the second term a estimation error.

It is also possible to calculate the information given the information available at

time n, i.e. a conditional msep,

R N 2
msepc,, (nSp) = E <|:nSh — Sh} U:n>

AN AN

denoted E(msepc,, (»,S,)) = msep(,Sh).
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What are we looking for ?

In Solvency II requirements,

AN

CDRn—i—l — [nSh] - [xn—l—l + n+1§h—1]

This defines a martingale since
and what is required is to estimate

msepc,,(CDRy11)

—_—

i.e. find msepc,(CDR,+1).
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What are we looking for 7

msepc,, (r, S,)=E ([ﬂgh — Sh}2|.7:n)

i T |
10 145 20
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What are we looking for 7

n-+1
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What are we looking for 7

msepc,(CD R 1)

= msepc,, ([ X1 + n~|—l§h—1} - {ngh-])

10

| |
1% 20
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Having an estimator of the uncertainty

Let us continue with our repeated tails/heads game. Let p,, = [x1 + - -

so that
p(1—p)

Var(p,) = -

~ R h?
mse(,,S) = mse(h - pp,) = h? - mse(py,) = ;p(l — D),

. h? nh + h?
msep(nSn) = nhp(l —p) + —p(1 —p) = ———p(1 = p)

h(n+ h)

n

p(1—p).
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Having an estimator of the uncertainty

Thus, this quantity can be estimated as

msep(nsh) — n pn(l _ﬁn)

while the mse estimator was

., A h? .
mse(nsh> — ;pn(l _pn)

Looking at the msepc at time n, we have

msepcn(ngh) = Var(S|F,) + mse(ngh\fn)
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Having an estimator of the uncertainty

Looking at the msepc at time n, we have

msepcn(ngh) = Var(S|F,) + mse(ngh‘fn)

Var(S|F,) Var(X,i1 + -+ Xponlzr, -, 2n)
Var(Xn—I—l T Xn—i—h) — hp(l —p)

and

. N2
mse(, Sp|Fn) = (E(Sh|.7:n) — nSh)

which can be written

msepcn(ngh) = hp(1 —p) + h* (p — ﬁn)2
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Having an estimator of the uncertainty

This quantity can be estimated as

~
/\

msepcn(nSh) — hﬁn(l - ﬁn) + 0.

i.e. we keep only the variance process term.

Mack (1993) suggested to use partial information to estimate the second term.
Define D = {X;,i < n} and By = {X;,7 < n,i < k} with &£ < n. Define

—k, O

msepe,, (nSh) = hpn(1 — Bn) + h% (B — P)’°
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The one year horizon uncertainty

In Solvency II, insurance companies are requiered to estimate the msepc, at time

n, of the difference between X, . + n+1§(h_1) and ng(h).

Those two quantities estimate the same things, at different dates,

° ng(h) is a predictor for 53, at time n

o X, 11+ n+1§(h_1) is a predictor for S, at time n + 1,

If we admit that we are looking for the following quantity (as in Merz &
Wiithrich (2008))

msepc, = K ([Xn+1 +(h—1) pnt1—h ]%]2 |fn)

n+1

h —h_1*
msepc,, = K ([n il Xpy1 + - i)\n] |Fn>
n —+
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Updating an estimator, an econometric introduction

If Bn = (X;%Xn)_l XY, denotes the OLS estimate, if a new observation

becomes available (Y11, n11), then

(X/an) - Ln41

1+ 25,44 (X;Xn)_l Ln+1

— Bn + (yn—l—l — :C;L—l—l/Bn)

A~ A~ _1

IBn—I—l — IBn + (X;ﬂH_an—i—l) Ln+1 (yn-l—l o aj;z—i—lﬂn)

The CDR for a new observation X = x is then

AN

CDR, = 2'([B,41 — B

CDR, = (X!, Xpni1)

/ AN
Tp+1 (yn+1 - $n+15)
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Mack’s ultimate uncertainty

As shown in Mack (1993),

R ~ n—1 6'\? 1 1
msep(R;) = C; o Z 2\ 3 + z
' i,J J

J=n—1i+1

where S; is the sum of cumulated payments on accident years before year n — j,

Finally, it is possible also to derive an estimator for the aggregate msep (all

accident years)

n—1 ~92

mn
msep g msep )+ 207;2,00 g Ck.n E 2]
k=141 j=n—1i+1 )\ S
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Mack’s ultimate uncertainty

> library(ChainLadder)

> source("http://perso.univ-rennesl.fr/arthur.charpentier/bases.R")
> MackChainLadder (PAID)

MackChainLadder (Triangle = PAID)

Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)
4,456 .000 4,456 0. 0.000 NaN
4,730 .995 4,752 22. 0.639 0.0285
5,420 .993 5,456 35. 2.503 0.0699
6,020 .989 6,086 66 . 5.046 0.0764
6,794 .978 6,947 1563. 31.332 0.2047
5,217 0.708 7,367 2,149. . 449 0.0318

Totals
Latest: 32,637.00
Ultimate: 35,063.99
IBNR: 2,426.99
Mack S.E.: 79.30
CV(IBNR): 0.03

AN

i.e. msepcg(R) = 79.30.
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Merz & Wiithrich’s one year uncertainty

Based on some martingale properties, one can prove that
E(CDR;(n+ 1)|F,) =0

(neither boni nor mali can be expected).

Further, it can be proved that (CDR;(n + 1)),,’s are non correlated, and thus

msepc, (CDR;(n + 1)) = Var(CDR;(n + 1)|F,) = E(CDR;(n + 1)2|F,)

Merz & Wiithrich (2008) proved that the one year horizon error can be estimated
with a formula similar to Mack (1993)

AN

msepe,,(CDR;(n + 1)) = 2oy (Tin + A;,)

2
~92 n—1
_ On—it+1 n Z (Onjﬂ,j)
n — -~
2 n+1 n+1
)\n—i—i—ls Sj

n—i+l  j=n—i+2
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j=n—i+2 (

Merz & Wiithrich (2008) mentioned that this term can be approximated as

=2

AN

n—1 2 2
T On—i+1 Cn—j—i—l,j 0
L, o~ —|_ +1
2 S
J

o )\ 2 L
n—z’+1Cz,n—z+1 j=n—i+2 >‘an—.7+1,3

using a simple development of [[(1 + u;) = 1 + > u;, but which is valid only if u;

is extremely small, i.e.

2

= << Cp_jir

o
2
)‘j
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Implementing Merz& Withrich’s formula

> source("http://perso.univ-rennesl.fr/arthur.charpentier/merz-wuthrich-triangle.R")
> MSEP_Mack_MW(PAID,O0)
MSEP Mack MSEP observable approche MSEP observable exacte
.0000000 0.000000 .000000
.6393379 1.424131 .315292
.5025153 2.543508 .543508
.0459004 4.476698 .476698
.3319292 30.915407 .915407
. 4489667 60.832875 .832898
.2954414 72.574735 .572700
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Implementing Merz& Withrich’s formula

Could Merz & Wiithrich’s formula end up with more uncertainty than Mack’s

> Triangle = read.table("http://perso.univ-rennesl.fr/arthur.charpentier/
+ GAV-triangle.csv",sep=";") /1000000
> MSEP_Mack_MW(Triangle,0)

MSEP Mack MSEP observable approche MSEP observable exacte

.00000000
.01245974
.20943114
.25800338
.06529740
.42939329
.66964613

0.
. 1296922
.2141365
.1980723
.0484895
.0661173
.3015524

0000000

.0000000
.1526059
.2144196
.1987730
.06552561
.3757940
.5861066
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GLM log-Poisson in triangles

Recall that we while to estimate

2 ~ ~

E(R — R)?) = |E(R) —E(R)| + Var(R— R) ~ Var(R) + Var(R)

Classically, consider a log-Poisson model, were incremental payments satisty

Xij ~ P(ui;) where p; ; = expln; ;| = exply + o + ;]
Using the delta method, we get that asymptotically

AN

Var(X; ;) = Var(p; ;) =

where, since we consider a log link,
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i.e., with an ODP distribution (i.e. Var(X; ; = ¢E(X; ;),

AN

Xi,j]Q) SRR ﬁ?,j - Var(n; ;)

(jOV()(@j,)(kJ)thﬁkJ 'ﬁ%J 'Ckﬂf(ﬁﬁjaﬁkJ)
Thus, since the overall amount of reserves satisfies

> @iy + B Var(n) .
i+j5—1>n

an <- 6; ligne = rep(l:an, each=an); colonne = rep(l:an, an)
passe = (ligne + colonne - 1)<=an; np = sum(passe)

futur = (ligne + colonne - 1)> an; nf = sum(passe)

INC=PAID

INC[,2:6]=PAID[,2:6]-PAID[,1:5]

Y = as.vector (INC)

lig = as.factor(ligne); col = as.factor(colonne)

CL <- glm(Y"lig+col, family=quasipoisson)

Y2=Y; Y2[is.na(Y)]=.001

vV V V V VvV V V VvV V
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CL2 <- glm(Y2~1lig+col, family=quasipoisson)

YP = predict(CL)

p = 2%6-1;

phi.P = sum(residuals(CL, "pearson") ~2)/(np-p)

Sig = vcov(CL)

X = model.matrix(CL2)

Cov.eta = X/*/Sigl*/t (X)

mu.hat = exp(predict(CL,newdata=data.frame(lig,col)))*futur
pe2 = phi.P * sum(mu.hat) + t(mu.hat) %%/ Cov.eta %*/ mu.hat

>
>
>
>
>
>
>
>
>
>

cat ("Total reserve =", sum(mu.hat), "prediction error =", sqrt(pe2),"\n")
Total reserve = 2426.985 prediction error = 131.7726

i.e. E(R— R) = 131.77.




ARTHUR CHARPENTIER, IBNR AND ONE-YEAR UNCERTAINTY

Bootstrap and unccertainty

Bootstrap is now a standard nonparametric technique used to quantify

uncertainty.

In the linear model, Y (z) = E(Y|X = x) = z'3 while Y(z)=E(Y|X = x) +¢,

and the uncertainty is related to

Var(Y (z)) = Var(z’8) = z'Var(B)z

Var(Y (z)) = Var(z'B + &) ~ Var(Y (z)) + 52

To derive confidence interval or quantiles of Y (z) or Y (x) we need further

assuming, like a distribution for residuals &

Instead of giving an analytic formula, monte carlo simulations can be used. The

idea is to generate samples

AN

(XY ), i=1,n)y or (X5 V(X)) +ed)i=1,..,n)
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Bootstrap and unccertainty
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Bootstraping errors ?

Parametric generation : if Z has distribution F(-), then F~!(Random) is
randomdly distributed according to F'(-).

Nonparametric generation : we do not know F'(+), it is still possible to estimate it

F(z) = % > 1(X <)

Then ‘ L
ﬁn_l(u) = X,., where z <u< '
n n

where X;.,, denotes the order statistics,

Xl:n S X2:n S e S Xn—l:n S Xn:n

AN

1
F'(Random) = X; with probability — for all i.
n
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Parametric versus nonparametric random generation

/
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Parametric versus nonparametric random generation
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Bootstrap and ultimate uncertainty

From triangle of incremental payments, (Y; ;) assume that

Y;; ~ P(Yi;) where Y; ; = exp(L; + Cj)

AN

1. Estimate parameters L; and @-, define Pearson’s (pseudo) residuals

— _ YL)J o }/;'a]
&ij =

P

Y

2. Generate pseudo triangles on the past, {i + 7 < t}

Vi =Y, + 85/ Yy

3. (re)Estimate parameters L* and 6*, and derive expected payments for the
g j

A‘k
future, Y;*;.

- Z?ifj

13>t
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is the best estimate.

4. Generate a scenario for future payments, Y;*; e.g. from a Poisson distribution

PY)

It = Z Y7

i+j>t

One needs to repeat steps 2-4 several times to derive a distribution for R.
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Bootstrap and GLM log-Poisson in triangles
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Bootstrap and GLM log-Poisson in triangles

If we repeat it 50,000 times, we obtain the following distribution for the mse.

o
—
Q
o
o
=
Q
o
o)
o
-
o
©
o
<
o
<
o
<
o
N
o
Q
o
o
S)
<
o

msep of overall reserves
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Bootstrap and one year uncertainty

2. Generate pseudo triangles on the past and next year {i +j <t+ 1}

* —_— /\. . /* /\- .
i, =Yi;+¢&; \/ Yi;

3. Estimate parameters E: and 6;, on the past, {i +j < t}, and derive expected

payments for the future, 2*3

R= Y 7

i+j>t

4. Estimate parameters ZZ* and (7;, on the past and next year, {i +j <t+ 1},

and derive expected payments for the future, Y7;.

Et—l—l = Z

i+j>t

5. Calculate CDR as CDszitH — fit.
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Ultimate versus one year uncertainty

ultimate (R — E(R)) versus one year uncertainty,
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Bootstrap and GLM log-Poisson in triangles
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Bootstrap and GLM log-Poisson in triangles
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Why a Poisson model for IBNR 7
Hachemeister & Stanard (1975), Kremer (1985) and Mack(1991) proved that

with a log-Poisson regression model on incremental payments, the sum of

predicted payments corresponds to the Chain Ladder estimator.

Recall that Y; ; ~ P(L; + C;), i.e.
we consider two factors, line L; and column C}
we assume that E(Y; ;|F) = exp|L; + C}] (since the link function is log)
we assume further that Var(Y; ;|F) = exp|L; + C;] = E(Y; ; (since we consider

a Poisson regression)
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Why a Poisson model for IBNR 7

Adding additional factors is complex (too many parameters, and need to forecast

a calendar factor, if any).

Changing the link function is not usual, and having a multiplicative model yield

to natural interpretations,
Why not changing the distribution (i.e. the variance function) ?

— consider Tweedie models.
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Tweedie models

Assume here that the variance function is Var(Y) = @E(Y )P for some p € |0, 1].

p = 1 is obtained with a Poisson model, p = 2 with a Gamma model.

If p € (1,2), we obtain a compound Poisson distribution.
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Best estimate and Tweedie parameter
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Best estimate and Tweedie parameter
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Best estimate and Tweedie parameter
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Best estimate and Tweedie parameter

Best estimate amount of reserve with Tweedie power p, with the 95% quantile
and the 99.5% quantile

Reserves

Tweedie power




