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Agenda of the talk

• Solvency II : CP 71 and the one year horizon

• Solvency II : new way of looking at the ‘uncertainty’
◦ From MSE to MSEP (MSE of prediction)
◦ From MSEP to MSEPC (conditional MSEP)
◦ CDR, claims development result

• From Mack (1993) to Merz & Wüthrich (2009)
• Updating Poisson-ODP bootstrap technique

one year ultimate

China ladder Merz & Wüthrich (2008) Mack (1993)

GLM+boostrap x Hacheleister & Stanard (1975)

England & Verrall (1999)
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‘one year horizon for the reserve risk’
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Standard models in IBNR models

• Chain Ladder Ci,j+1 = λj · Ci,j and Mack
• Factor models Yi,j ∼ L(Ai, Bj) and GLM’s (ODP-bootstrap)
• and the Bayesian approach
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Standard models in IBNR models

• Chain Ladder Ci,j+1 = λj · Ci,j and Mack
• Factor models and GLM’s (ODP-bootstrap), E(Yi,j |F) = ϕ(Ai, Bj)
• expert opinion and the Bayesian approach
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Standard models in IBNR models

• Chain Ladder and Mack (1993) E(Ci,j+1|F) = λj · Ci,j

• Factor models and GLM’s (ODP-bootstrap), E(Yi,j |F) = ϕ(Ai, Bj)
• expert opinion and the Bayesian approach
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Notations for triangle type data

• Xi,j denotes incremental payments, with delay j, for claims occurred year i,
• Ci,j denotes cumulated payments, with delay j, for claims occurred year i,
Ci,j = Xi,0 +Xi,1 + · · ·+Xi,j ,

0 1 2 3 4 5

0 3209 1163 39 17 7 21

1 3367 1292 37 24 10

2 3871 1474 53 22

3 4239 1678 103

4 4929 1865

5 5217

et et

0 1 2 3 4 5

0 3209 4372 4411 4428 4435 4456

1 3367 4659 4696 4720 4730

2 3871 5345 5398 5420

3 4239 5917 6020

4 4929 6794

5 5217

• Ft denotes information available at time t, available at time t, based on the
first k years, only

Ft = {(Ci,j), 0 ≤ i+ j ≤ t} = {(Xi,j), 0 ≤ i+ j ≤ t}
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Notations for triangle type data

• Xi,j denotes incremental payments, with delay j, for claims occurred year i,
• Ci,j denotes cumulated payments, with delay j, for claims occurred year i,
Ci,j = Xi,0 +Xi,1 + · · ·+Xi,j ,

0 1 2 3 4 5

0 3209 1163 39 17 7 21

1 3367 1292 37 24 10

2 3871 1474 53 22

3 4239 1678 103

4 4929 1865

5 5217

et et

0 1 2 3 4 5

0 3209 4372 4411 4428 4435 4456

1 3367 4659 4696 4720 4730

2 3871 5345 5398 5420

3 4239 5917 6020

4 4929 6794

5 5217

• Ft
k denotes partial information available at time t, based on the first k years,

only

Ft
k = {(Ci,j), 0 ≤ i+ j ≤ t, i ≤ k} = {(Xi,j), 0 ≤ i+ j ≤ t, i ≤ k}
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Chain Ladder estimation

0 1 2 3 4 5

0 3209 4372 4411 4428 4435 4456

1 3367 4659 4696 4720 4730

2 3871 5345 5398 5420

3 4239 5917 6020

4 4929 6794

5 5217

et et

0 1 2 3 4 5

0 3209 4372 4411 4428 4435 4456

1 3367 4659 4696 4720 4730 4752.4

2 3871 5345 5398 5420 5430.1 5455.8

3 4239 5917 6020 6046.15 6057.4 6086.1

4 4929 6794 6871.7 6901.5 6914.3 6947.1

5 5217 7204.3 7286.7 7318.3 7331.9 7366.7

with the following link ratios

0 1 2 3 4 n

λj 1,38093 1,01143 1,00434 1,00186 1,00474 1,0000

One the triangle has been completed, we obtain the amount of reserves, with
respectively 22, 36, 66, 153 and 2150 per accident year, i.e. the total is 2427.
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How to quantify uncertainty in Solvecny II

In Solvency II, uncertainty is quantified as a dispersion measure (variance or
quantile) of changes in prediction, with one year of additional information.

The best estimate at time t is R̂t = E(C∞|Ft) while it become, at time t+ 1
R̂t+1 = E(C∞|Ft+1).

The goal is to estimate

E
(
[E(C∞|Ft+1)− E(C∞|Ft)]2|Ft

)
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Quantifying uncertainty in odds/tails games

In statistics, the mean squared error is a standard measure to quantify the
uncertainty of an estimator, i.e.

mse(θ̂) = E
([
θ̂ − θ

]2)
In order to formalize the prediction process in claims reserving consider the
following simpler case.

Let {x1, · · · , xn} denote an i.i.d. B(p) sample. We want to predict
Sh = Xn+1 + · · ·+Xn+h. Let nŜh = ψ(Xn+1, · · · , Xn+h) = h · p̂n denote the
natural predictor for Sh, at time n.

Since Sh is a random variable (θ was a constant) define

mse(nŜh) = E
([

nŜh − E(Sh)
]2)
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and

msep(nŜh) = E
([

nŜh − Sh

]2)
Note that

msep(nŜh) = E
([

nŜh − E(Sh)
]2)

+ E
(

[E(Sh)− Sh]2
)

= mse(nŜh) + Var(Sh)

where the first term is a process error and the second term a estimation error.

It is also possible to calculate the information given the information available at
time n, i.e. a conditional msep,

msepcn(nŜh) = E
([

nŜh − Sh

]2
|Fn

)
denoted E(msepcn(nŜh)) = msep(nŜh).
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What are we looking for ?

In Solvency II requirements,

CDRn+1 = [nŜh]− [xn+1 + n+1Ŝh−1]

This defines a martingale since

E(CDRn+1|Fn) = 0

and what is required is to estimate

msepcn(CDRn+1)

i.e. find m̂sepcn(CDRn+1).
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Having an estimator of the uncertainty

Let us continue with our repeated tails/heads game. Let p̂n = [x1 + · · ·+ xn]/n,
so that

Var(p̂n) =
p(1− p)

n

thus

mse(nŜh) = mse(h · p̂n) = h2 ·mse(p̂n) =
h2

n
p(1− p),

or

msep(nŜh) = nhp(1− p) +
h2

n
p(1− p) =

nh+ h2

n
p(1− p)

i.e.

msep(nŜh) =
h(n+ h)

n
p(1− p).
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Having an estimator of the uncertainty

Thus, this quantity can be estimated as

m̂sep(nŜh) =
h(n+ h)

n
p̂n(1− p̂n).

while the mse estimator was

m̂se(nŜh) =
h2

n
p̂n(1− p̂n)

Looking at the msepc at time n, we have

msepcn(nŜh) = Var(S|Fn) + mse(nŜh|Fn)
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Having an estimator of the uncertainty

Looking at the msepc at time n, we have

msepcn(nŜh) = Var(S|Fn) + mse(nŜh|Fn)

where

Var(S|Fn) = Var(Xn+1 + · · ·+Xn+h|x1, · · · , xn)

= Var(Xn+1 + · · ·+Xn+h) = hp(1− p)

and

mse(nŜh|Fn) =
(
E(Sh|Fn)− nŜh

)2

which can be written

msepcn(nŜh) = hp(1− p) + h2 (p− p̂n)2
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Having an estimator of the uncertainty

This quantity can be estimated as

m̂sepcn(nŜh) = hp̂n(1− p̂n) + 0.

i.e. we keep only the variance process term.

Mack (1993) suggested to use partial information to estimate the second term.
Define D = {Xi, i ≤ n} and Bk = {Xi, i ≤ n, i ≤ k} with k ≤ n. Define

m̂sepck
n(nŜh) = hp̂n(1− p̂n) + h2 (p̂n − p̂k)2
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The one year horizon uncertainty

In Solvency II, insurance companies are requiered to estimate the msepc, at time
n, of the difference between Xn+1 + n+1Ŝ(h−1) and nŜ(h).

Those two quantities estimate the same things, at different dates,
• nŜ(h) is a predictor for Sh at time n
• Xn+1 + n+1Ŝ(h−1) is a predictor for Sh at time n+ 1,
If we admit that we are looking for the following quantity (as in Merz &
Wüthrich (2008))

msepcn = E
(

[Xn+1 + (h− 1) · p̂n+1 − h · p̂n]2 |Fn

)
i.e.

msepcn = E

([
n+ h

n+ 1
Xn+1 +

n− h
n+ 1

p̂n

]2
|Fn

)

msepcn =
(n+ h)2

(n+ 1)2
p+

(n+ h)(n− h)
(n+ 1)2

p · p̂n +
(n− h)2

(n+ 1)2
p̂2

n
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Updating an estimator, an econometric introduction

If β̂n =
(
X ′nXn

)−1
X ′nY n denotes the OLS estimate, if a new observation

becomes available (yn+1, xn+1), then

β̂n+1 = β̂n +

(
X ′nXn

)−1
xn+1

1 + x′n+1

(
X ′nXn

)−1
xn+1

(
yn+1 − x′n+1β̂n

)
or

β̂n+1 = β̂n +
(
X ′n+1Xn+1

)−1
xn+1

(
yn+1 − x′n+1β̂n

)
The CDR for a new observation X = x is then

CDRn = x′([β̂n+1 − β̂n]

i.e.
CDRn = x′

(
X ′n+1Xn+1

)−1
xn+1

(
yn+1 − x′n+1β̂

)
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Mack’s ultimate uncertainty

As shown in Mack (1993),

m̂sep(R̂i) = Ĉ2
i,∞

n−1∑
j=n−i+1

σ̂2
j

λ̂2
j

(
1

Ĉi,j

+
1

Ŝj

)

where Sj is the sum of cumulated payments on accident years before year n− j,

Sj =
n−j∑
i=1

Ci,j .

Finally, it is possible also to derive an estimator for the aggregate msep (all
accident years)

m̂sep(R̂) =
∑

m̂sep(R̂i) + 2Ĉ2
i,∞

n∑
k=i+1

Ĉk,n

n−1∑
j=n−i+1

σ̂2
j

λ̂2
jSj
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Mack’s ultimate uncertainty

> library(ChainLadder)

> source("http://perso.univ-rennes1.fr/arthur.charpentier/bases.R")

> MackChainLadder(PAID)

MackChainLadder(Triangle = PAID)

Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)

1 4,456 1.000 4,456 0.0 0.000 NaN

2 4,730 0.995 4,752 22.4 0.639 0.0285

3 5,420 0.993 5,456 35.8 2.503 0.0699

4 6,020 0.989 6,086 66.1 5.046 0.0764

5 6,794 0.978 6,947 153.1 31.332 0.2047

6 5,217 0.708 7,367 2,149.7 68.449 0.0318

Totals

Latest: 32,637.00

Ultimate: 35,063.99

IBNR: 2,426.99

Mack S.E.: 79.30

CV(IBNR): 0.03

i.e. msepc6(R̂) = 79.30.
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Merz & Wüthrich’s one year uncertainty

Based on some martingale properties, one can prove that

E(CDRi(n+ 1)|Fn) = 0

(neither boni nor mali can be expected).

Further, it can be proved that (CDRi(n+ 1))n’s are non correlated, and thus

msepcn(CDRi(n+ 1)) = Var(CDRi(n+ 1)|Fn) = E(CDRi(n+ 1)2|Fn)

Merz & Wüthrich (2008) proved that the one year horizon error can be estimated
with a formula similar to Mack (1993)

m̂sepcn(CDRi(n+ 1)) = Ĉ2
i,∞

(
Γ̂i,n + ∆̂i,n

)
where

∆̂i,n =
σ̂2

n−i+1

λ̂2
n−i+1S

n+1
n−i+1

+
n−1∑

j=n−i+2

(
Cn−j+1,j

Sn+1
j

)2
σ̂2

j

λ̂2
jS

n
j
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and

Γ̂i,n =

(
1 +

σ̂2
n−i+1

λ̂2
n−i+1Ci,n−i+1

)
n−1∏

j=n−i+2

(
1 +

σ̂2
j

λ̂2
j [Sn+1

j ]2
Cn−j+1,j

)
− 1

Merz & Wüthrich (2008) mentioned that this term can be approximated as

Γ̂i,n ≈
σ̂2

n−i+1

λ̂2
n−i+1Ci,n−i+1

+
n−1∑

j=n−i+2

(
Cn−j+1,j

Sn+1
j

)2
σ̂2

j

λ̂2
jCn−j+1,j

using a simple development of
∏

(1 + ui) ≈ 1 +
∑
ui, but which is valid only if ui

is extremely small, i.e.
σ̂2

j

λ̂2
j

<< Cn−j+1,j
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Implementing Merz& Wüthrich’s formula

> source("http://perso.univ-rennes1.fr/arthur.charpentier/merz-wuthrich-triangle.R")

> MSEP_Mack_MW(PAID,0)

MSEP Mack MSEP observable approche MSEP observable exacte

1 0.0000000 0.000000 0.000000

2 0.6393379 1.424131 1.315292

3 2.5025153 2.543508 2.543508

4 5.0459004 4.476698 4.476698

5 31.3319292 30.915407 30.915407

6 68.4489667 60.832875 60.832898

7 79.2954414 72.574735 72.572700
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Implementing Merz& Wüthrich’s formula

Could Merz & Wüthrich’s formula end up with more uncertainty than Mack’s

> Triangle = read.table("http://perso.univ-rennes1.fr/arthur.charpentier/

+ GAV-triangle.csv",sep=";")/1000000

> MSEP_Mack_MW(Triangle,0)

MSEP Mack MSEP observable approche MSEP observable exacte

1 0.00000000 0.0000000 0.0000000

2 0.01245974 0.1296922 0.1526059

3 0.20943114 0.2141365 0.2144196

4 0.25800338 0.1980723 0.1987730

5 3.05529740 3.0484895 3.0655251

6 58.42939329 57.0561173 67.3757940

7 58.66964613 57.3015524 67.5861066
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GLM log-Poisson in triangles

Recall that we while to estimate

E([R− R̂]2) =
[
E(R)− E(R̂)

]2
+ Var(R− R̂) ≈ Var(R) + Var(R̂)

Classically, consider a log-Poisson model, were incremental payments satisfy

Xi,j ∼ P(µi,j) where µi,j = exp[ηi,j ] = exp[γ + αi + βj ]

Using the delta method, we get that asymptotically

Var(X̂i,j) = Var(µ̂i,j) ≈
∣∣∣∣∂µi,j

∂ηi,j

∣∣∣∣2 Var(η̂i,j)

where, since we consider a log link,

∂µi,j

∂ηi,j
= µi,j
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i.e., with an ODP distribution (i.e. Var(Xi,j = ϕE(Xi,j),

E
(

[Xi,j − X̂i,j ]2
)
≈ ϕ̂ · µ̂i,j + µ̂2

i,j · V̂ar(ηi,j)

and
Cov(Xi,j , Xk,l) ≈ µ̂i,j · µ̂k,l · Ĉov (η̂i,j , η̂k,l)

Thus, since the overall amount of reserves satisfies

E
(

[R− R̂]2
)
≈

∑
i+j−1>n

ϕ̂ · µ̂i,j + µ̂′V̂ar(η̂)µ̂.

> an <- 6; ligne = rep(1:an, each=an); colonne = rep(1:an, an)

> passe = (ligne + colonne - 1)<=an; np = sum(passe)

> futur = (ligne + colonne - 1)> an; nf = sum(passe)

> INC=PAID

> INC[,2:6]=PAID[,2:6]-PAID[,1:5]

> Y = as.vector(INC)

> lig = as.factor(ligne); col = as.factor(colonne)

> CL <- glm(Y~lig+col, family=quasipoisson)

> Y2=Y; Y2[is.na(Y)]=.001
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> CL2 <- glm(Y2~lig+col, family=quasipoisson)

> YP = predict(CL)

> p = 2*6-1;

> phi.P = sum(residuals(CL,"pearson")^2)/(np-p)

> Sig = vcov(CL)

> X = model.matrix(CL2)

> Cov.eta = X%*%Sig%*%t(X)

> mu.hat = exp(predict(CL,newdata=data.frame(lig,col)))*futur

> pe2 = phi.P * sum(mu.hat) + t(mu.hat) %*% Cov.eta %*% mu.hat

> cat("Total reserve =", sum(mu.hat), "prediction error =", sqrt(pe2),"\n")

Total reserve = 2426.985 prediction error = 131.7726

i.e. E(R̂−R) = 131.77.
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Bootstrap and unccertainty

Bootstrap is now a standard nonparametric technique used to quantify
uncertainty.

In the linear model, Ŷ (x) = E(Y |X = x) = x′β̂ while Y (x) = E(Y |X = x) + ε,
and the uncertainty is related to

Var(Ŷ (x)) = Var(x′β̂) = x′Var(β̂)x

Var(Y (x)) = Var(x′β̂ + ε̂) ≈ Var(Ŷ (x)) + σ̂2

To derive confidence interval or quantiles of Ŷ (x) or Y (x) we need further
assuming, like a distribution for residuals ε̂

Instead of giving an analytic formula, monte carlo simulations can be used. The
idea is to generate samples

{(X?
i , Y

?
i ), i = 1, ..., n} or {(X?

i , Ŷ (X?
i ) + ε?

i ), i = 1, ..., n}
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Bootstrap and unccertainty
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Bootstrap and unccertainty
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Bootstrap and unccertainty
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Bootstrap and unccertainty
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Bootstrap and unccertainty
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Bootstrap and unccertainty
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Bootstraping errors ?

Parametric generation : if Z has distribution F (·), then F−1(Random) is
randomdly distributed according to F (·).

Nonparametric generation : we do not know F (·), it is still possible to estimate it

F̂n(z) =
1
n

n∑
i=1

1(Xi ≤ x)

Then

F̂−1
n (u) = Xi:n where

i

n
≤ u < i+ 1

n

where Xi:n denotes the order statistics,

X1:n ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ Xn:n

Thus,

F̂−1
n (Random) = Xi with probability

1
n

for all i.

48



Arthur CHARPENTIER, IBNR and one-year uncertainty

Parametric versus nonparametric random generation
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Parametric versus nonparametric random generation
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Parametric versus nonparametric random generation
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Bootstrap and ultimate uncertainty

From triangle of incremental payments, (Yi,j) assume that

Yi,j ∼ P(Ŷi,j) where Ŷi,j = exp(L̂i + Ĉj)

1. Estimate parameters L̂i and Ĉj , define Pearson’s (pseudo) residuals

ε̂i,j =
Yi,j − Ŷi,j√

Ŷi,j

2. Generate pseudo triangles on the past, {i+ j ≤ t}

Y ?
i,j = Ŷi,j + ε̂?

i,j

√
Ŷi,j

3. (re)Estimate parameters L̂?
i and Ĉ?

j , and derive expected payments for the
future, Ŷ ?

i,j .

R̂ =
∑

i+j>t

Ŷ ?
i,j
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is the best estimate.

4. Generate a scenario for future payments, Y ?
i,j e.g. from a Poisson distribution

P(Ŷ ?
i,j)

R =
∑

i+j>t

Y ?
i,j

One needs to repeat steps 2-4 several times to derive a distribution for R.
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Bootstrap and GLM log-Poisson in triangles
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Bootstrap and GLM log-Poisson in triangles
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Bootstrap and GLM log-Poisson in triangles
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Bootstrap and GLM log-Poisson in triangles
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Bootstrap and GLM log-Poisson in triangles

If we repeat it 50,000 times, we obtain the following distribution for the mse.
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Bootstrap and one year uncertainty

2. Generate pseudo triangles on the past and next year {i+ j ≤ t+ 1}

Y ?
i,j = Ŷi,j + ε̂?

i,j

√
Ŷi,j

3. Estimate parameters L̂?
i and Ĉ?

j , on the past, {i+ j ≤ t}, and derive expected
payments for the future, Ŷ ?

i,j .

R̂t =
∑

i+j>t

Ŷi,j

4. Estimate parameters L̂?
i and Ĉ?

j , on the past and next year, {i+ j ≤ t+ 1},
and derive expected payments for the future, Ŷ ?

i,j .

R̂t+1 =
∑

i+j>t

Ŷi,j

5. Calculate CDR as CDR=R̂t+1 − R̂t.
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Ultimate versus one year uncertainty

ultimate (R− E(R)) versus one year uncertainty,
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Bootstrap and GLM log-Poisson in triangles
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Bootstrap and GLM log-Poisson in triangles
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Why a Poisson model for IBNR?

Hachemeister & Stanard (1975), Kremer (1985) and Mack(1991) proved that
with a log-Poisson regression model on incremental payments, the sum of
predicted payments corresponds to the Chain Ladder estimator.

Recall that Yi,j ∼ P(Li + Cj), i.e.
• we consider two factors, line Li and column Cj

• we assume that E(Yi,j |F) = exp[Li + Cj ] (since the link function is log)
• we assume further that Var(Yi,j |F) = exp[Li + Cj ] = E(Yi,j (since we consider

a Poisson regression)
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Why a Poisson model for IBNR?

Adding additional factors is complex (too many parameters, and need to forecast
a calendar factor, if any).

Changing the link function is not usual, and having a multiplicative model yield
to natural interpretations,

Why not changing the distribution (i.e. the variance function) ?

=⇒ consider Tweedie models.
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Tweedie models

Assume here that the variance function is V ar(Y ) = ϕE(Y )p for some p ∈ [0, 1].

p = 1 is obtained with a Poisson model, p = 2 with a Gamma model.

If p ∈ (1, 2), we obtain a compound Poisson distribution.

65



Arthur CHARPENTIER, IBNR and one-year uncertainty

Best estimate and Tweedie parameter
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Best estimate and Tweedie parameter
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Best estimate and Tweedie parameter
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Best estimate and Tweedie parameter

Best estimate amount of reserve with Tweedie power p, with the 95% quantile
and the 99.5% quantile
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