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Copulas

Definition 1
A copula in dimension d is a c.d.f on [0, 1]¢, with margins 2/([0, 1]).

Theorem 1 1. If Cis a copula, and I, ..., F; are univariate c.d.f., then
(1, s n) = C(FL(21), o Fa(2a)) Y21, o 24) € RO 1)

is a multivariate c.d.f. with F' € F(F1y, ..., Fy).

2. Conversely, if I’ € F(F1y,..., Fy), there exists a copula C' Satisfying . This copula
1s usually not unique, but it is if F7, ..., F,; are absolutely continuous, and then,

C(u,oyug) = F(F7 (1) oo, F7 N (ua)), Y(ug,,.ug) €0, 1] (2)

where quantile functions Fl_l, ..., F-1 are generalized inverse (left cont.) of F}’s.

If X ~ F, then U = (F\(X1), -, Fy(Xq)) ~ C.
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Benchmark copulas

Definition 2
The independent copula C' is defined as

d
C’L(ul,...,un) = Uy X - X Ug = I_IuZ
i=1

Definition 3
The comonotonic copula C'T (the Fréchet-Hoeffding upper bound of the set of copulas)

is the copuladefined as C™ (uq, ..., ug) = min{uy, ..., uq}.
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Spherical distributions

Definition 4
Random vector X as a spherical distribution if

X=R-U

where R 1s a positive random variable and U 1s uniformly distri-

buted on the unit sphere of R¢.

E.g. X ~ N(0,1).

Those distribution can be non-symmetric, see Hartman & Wintner (AJM, 1940)
or Cambanis, Huang & Simons (JMVA, 1979))
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Elliptical distributions

Definition 5
Random vector X as a elliptical distribution 1f

X=p+R-A-U

where A satisfies AA' = 3.

Eg X ~N(u,X).

Elliptical distribution are popular in finance, see e.g. Jondeau, Poon & Rockinger
(FMPM, 2008)
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Archimedean copula

Definition 6
If d > 2, an Archimedean generator is a function ¢ : [0, 1] — [0, c0) such that ¢~ is
d-completely monotone (i.e. 1) is d-completely monotone if ¢ is continuous and

Vk =0,1,....d, (=1)kdk(t) /dtF > 0).
Definition 7
Copula ' 1s an Archimedean copula is, for some generator ¢,

Cur,...;uq) = ¢ (p(ur) + ... + d(uq)), Vui, ..., uqg € [0, 1].

Function h(t) = exp[—o¢(t)] (i.e. h=1(t) = ¢(—loglt]) is called a multiplicative
generator of copula C,

C(uy, ..., uq) - X h(ug)), Yuy,...,uqg € [0,1].
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Stochastic representation of Archimedean copulas

see Neslehova & McNeil (AS, 2009).
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Archimedean copula, exchangeability and frailties

Conditional independence, continuous risk factor

Consider residual life times X = (Xq,---,Xy) conditio-

nally independent given some latent factor ©, and such that

n

Flo)=P(X >x)=1¢ (- » logFy(x;)

1=1

where 1 is the Laplace transform of ©, 1(t) = E(e™t®).
Thus, the survival copula of X is Archimedean, with gene- --
rator = L.

See Oakes (JASA, 1989).

o
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Nested Archimedean copula, and hierarchical structures

Consider C(u1,- -+ ,uq) defined as
61 [D1[n (Dol - 97ty [Pa1(wr) + Ga—i1(u)] + - - + P2(ug—1))] + P1(uq)]

where ¢,’s are generators. Then C' is a copula if ¢; o gbi__ll is the inverse of a

Laplace transform, and is called fully nested Archimedean copula. Note that

partial nested copulas can also be considered,

P1

P2
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(Univariate) extreme value distributions

X, —b
Central limit theorem, X; ~ F iid. —/—~ X S asn — oo where S is a
Qn

non-degenerate random variable.

Xn'n T bn
Fisher-Tippett theorem, X, ~ F'i.i.d., '
29

L .
s M as n — oo where M is a

non-degenerate random variable.

Then

Xn'n o bn
IP( ' gx):F"(anx+bn)—>G(9€) as n — 0o,V € R
29

i.e. F' belongs to the max domain of attraction of G, G being an extreme value

distribution : the limiting distribution of the normalized maxima.

—log G(z) = (1 + &x)/*
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(Multivariate) extreme value distributions
Assume that X, ~ F ii.d.,
F'(a,x +b,) = G(x) as n — oo, Va € R

i.e. F' belongs to the max domain of attraction of GG, G being an (multivariate)
extreme value distribution : the limiting distribution of the normalized

componentwise maxima,

Xn:n = (maX{Xl,i}, < ,maX{Xd,i})

—log G(z) = ([0, 00)\[0, z]), V& € R}

where 1 is the exponent measure. It is more common to use the stable tail

dependence function ¢ defined as

((z) = p([0,00)\[0, 7)), V& € RY
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—log G(x) = ¢(—log Gi(x1), - ,log Gg(zq))Ve € R?

Note that there exists a finite measure H on the simplex of R? such that

f(,ﬁl}l, C 7xd) — maX{w1$17 T ,CUdCCd}dH(Wl, T ,Wd)
Sd

for all (x1,---,z4) € RZ, and dewidH(wl,--- ,wg)=1foralli=1,--- n.
Definition 8
Copula C : [0, 1] — [0, 1] is an multivariate extreme value copula if and only if there

exists a stable tail dependence function such that ¢

Clur,- -+ yug) = exp[—f(~logui, - - , — log ug)

Assume that U; ~ C i.i.d.,

1

C"™(u ):C”(uf,--- ,ul) — (u) as n — oo, Vo € R

i.e. C' belongs to the max domain of attraction of I', I' being an (multivariate)

extreme value copula.
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What do we have in dimension 2 ?

C is an Archimedean copula if C(u,v) = ¥ (" (u) + ¢~ (v))
C is an extreme value copula if C(u,v) = ¥(¢¥ =1 (u) + ¢~ 1(v))

C' is an Archimax copula (from Capéera, Fougeres and Genest (...)) if

Clu,v) =P~ u) + ¥ (v))
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Quantifying tail dependence, in dimension 2 ?

Venter (2002) suggested to visualize tail concentration functions,
Definition 9
For the lower tail, define
PU <z, V < C(z,
W<zV<z_ C&E2 _pyover =PV <2U<2),

Z zZ

and for the upper tail

R(z) = P<U>1’i‘;>z> —P(U > 2|V > 2).

Joe (1999) defined tail dependence coefficients from lower and upper limits,

respectively (if those limits exist)

Ay = R(l) = lim R(Z) et \f, = L(O) = lim L( )

z—1 z—0
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Quantifying tail dependence, in dimension 2 7
Definition 10

Let (X,Y") denote a random vector in R?. Define tail dependence indices in the lower
(L) and upper (U) tails as

— hﬁ)lp (X < Fy'(u)|Y < Fy ' (u) € ]0,1],

Ay = 11%11@ (X > F¢' (w)|Y > Fy ' (u) €]0,1].

Proposition 1
Let (X,Y') denote a random vector with copula C, then

C'(u,u)

C* (u, u) |

ul 0 u ul0 U

A7, = lim and Ay = lim
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Quantifying tail dependence, in dimension 2 7

Exemple
For Archimedean copulas (see Nelsen (2007), C. & Segers (JMVA, 2008)),

o 197 (22) O (20(x) ¢ (22)
A _2_};13%) 1 — ¢ 1(x) and Az —1551(’)1 x _};il?o ¢~1(x)

Ledford and Tawn (B, 1996) suggested an alternative approach : assume that
L
X =Y.

— assuming independence, P(X >t,Y > ) =P(X > t) x P(Y > t) =P(X > t)2,
— assuming comonotonicity, P(X >t,Y >t)=P(X >t) =P(X > 75)17

Thus, assume that one has P(X > ¢,V >¢) ~P(X > t)" as t — oo, where
n € [1,2] will be a tail dependence index.
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Quantifying tail dependence, in dimension 27

Following Coles, Heffernan & Tawn (E, 1999) define

Definition 11

Let
~ 2log(1 — z)

—1

—letxp(z) = log C'(z, 2)

Then ny = (1 4+ lim, 0 Xy (2))/2 and nr = (1 4+ lim,_,¢ X (2))/2 are respectively tail
indices 1n the upper and lower tail, respectively.

Exemple2
If (X,Y) has a Gumbel copula, with (unit) Fréchet margins

P(X < z,Y <y) =exp(—(z~% + 3y~ )Y, where a > 0,Vz,y >0

then ny = 1 while n, = 1/2°,

For a Gaussian copula with correlation r ny = np = (1 +1r)/2.
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Quantifying tail dependence, in dimension 2 ?

Gaussian copula L and R concentration functions Student t copula L and R concentration functions

STUDENT (df=3)

GAUSSIAN

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 . . . . . . 0.0 0.2 0.4 0.6 0.8 1.0

L function (lower tails) R function (upper tails) L function (lower tails) R function (upper tails)

Clayton copula L and R concentration functions Gumbel copula L and R concentration functions

CLAYTON

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 . . . . . . 0.0 0.2 0.4 0.6 0.8 1.0

L function (lower tails) R function (upper tails) L function (lower tails) R function (upper tails)
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Quantifying tail dependence, in dimension 2 ?

Gaussian copula Chi dependence functions Student t copula Chi dependence functions

STUDENT (df=3)
GAUSSIAN

T
0.2 0.4 0.6 0.8 . . . . . . . . 0.2 0.4

lower tails upper tails lower tails upper tails

Clayton copula Chi dependence functions Gumbel copula Chi dependence functions

CLAYTON

GUMBEL

T T
0.2 0.4 0.6 0.8 . . . . . . . . 0.2 0.4 0.6 0.8

lower tails upper tails lower tails upper tails
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Can describe tail dependence in dimension d > 27

Expected proportion of remaining stocks that will crash,
conditional on observing j crashes, q=1/66

—&— Data

Oh & Patton (2012) defined a crash de- 4f — — Normal copula

Skew t-t factor copula
I ©0% confidence interval

pendence index (related to a measure in
Embrechts, et al., 2000) :

let N, = 300 (X, < F M (w),

define

o
[N}
(3

o
N

c
O
b=
(o]
Q
O
j =
o

15 20
Number of observed crashes (j)

(Source : Oh & Patton (2012))




