Unifying standard multivariate copulas families (with tail dependence properties)

Arthur Charpentier
charpentier.arthur@uqam.ca
http ://freakonometrics.hypotheses.org/
inspired by some joint work (and discussion) with
A.-L. Fougères, C. Genest, J. Nešlehová, J. Segers

UQĀM .illQuantact
 Université du Québec à Montréal

January 2013, H.E.C. Lausanne

Agenda

- Standard copula families
- Elliptical distributions (and copulas)
- Archimedean copulas
- Extreme value distributions (and copulas)
- Tail dependence
- Tail indexes
- Limiting distributions
- Other properties of tail behavior

Copulas

Definition 1

A copula in dimension d is a c.d.f on $[0,1]^{d}$, with margins $\mathcal{U}([0,1])$.
Theorem 1 1. If C is a copula, and F_{1}, \ldots, F_{d} are univariate c.d.f., then

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{n}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right) \forall\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

is a multivariate c.d.f. with $F \in \mathcal{F}\left(F_{1}, \ldots, F_{d}\right)$.
2. Conversely, if $F \in \mathcal{F}\left(F_{1}, \ldots, F_{d}\right)$, there exists a copula C Satisfying 11. This copula is usually not unique, but it is if F_{1}, \ldots, F_{d} are absolutely continuous, and then,

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{d}\right)=F\left(F_{1}^{-1}\left(u_{1}\right), \ldots, F_{d}^{-1}\left(u_{d}\right)\right), \quad \forall\left(u_{1},, \ldots, u_{d}\right) \in[0,1]^{d} \tag{2}
\end{equation*}
$$

where quantile functions $F_{1}^{-1}, \ldots, F_{n}^{-1}$ are generalized inverse (left cont.) of F_{i} 's.
If $\boldsymbol{X} \sim F$, then $\boldsymbol{U}=\left(F_{1}\left(X_{1}\right), \cdots, F_{d}\left(X_{d}\right)\right) \sim C$.

Benchmark copulas

Definition 2

The independent copula C^{\perp} is defined as

$$
C^{\perp}\left(u_{1}, \ldots, u_{n}\right)=u_{1} \times \cdots \times u_{d}=\prod_{i=1}^{d} u_{i}
$$

Definition 3

The comonotonic copula C^{+}(the Fréchet-Hoeffding upper bound of the set of copulas) is the copuladefined as $C^{+}\left(u_{1}, \ldots, u_{d}\right)=\min \left\{u_{1}, \ldots, u_{d}\right\}$.

Spherical distributions

Definition 4
Random vector \boldsymbol{X} as a spherical distribution if

$$
\boldsymbol{X}=R \cdot \boldsymbol{U}
$$

where R is a positive random variable and \boldsymbol{U} is uniformly distributed on the unit sphere of \mathbb{R}^{d}.
E.g. $\boldsymbol{X} \sim \mathcal{N}(\mathbf{0}, \mathbb{I})$.

Those distribution can be non-symmetric, see Hartman \& Wintner (AJM, 1940) or Cambanis, Huang \& Simons (JMVA, 1979))

Elliptical distributions

Definition 5

Random vector \boldsymbol{X} as a elliptical distribution if

$$
\boldsymbol{X}=\boldsymbol{\mu}+R \cdot \boldsymbol{A} \cdot \boldsymbol{U}
$$

where \boldsymbol{A} satisfies $\boldsymbol{A} \boldsymbol{A}^{\prime}=\boldsymbol{\Sigma}$.
E.g. $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Elliptical distribution are popular in finance, see e.g. Jondeau, Poon \& Rockinger (FMPM, 2008)

Archimedean copula

Definition 6

If $d \geq 2$, an Archimedean generator is a function $\phi:[0,1] \rightarrow[0, \infty)$ such that ϕ^{-1} is d-completely monotone (i.e. ψ is d-completely monotone if ψ is continuous and $\left.\forall k=0,1, \ldots, d,(-1)^{k} d^{k} \psi(t) / d t^{k} \geq 0\right)$.
Definition 7
Copula C is an Archimedean copula is, for some generator ϕ,

$$
C\left(u_{1}, \ldots, u_{d}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\ldots+\phi\left(u_{d}\right)\right), \forall u_{1}, \ldots, u_{d} \in[0,1] .
$$

Function $h(t)=\exp [-\phi(t)]$ (i.e. $h^{-1}(t)=\phi(-\log [t])$ is called a multiplicative generator of copula C,

$$
C\left(u_{1}, \ldots, u_{d}\right)=h^{-1}\left(h\left(u_{1}\right) \times \cdots \times h\left(u_{d}\right)\right), \forall u_{1}, \ldots, u_{d} \in[0,1] .
$$

Stochastic representation of Archimedean copulas

 see Nešlehová \& McNeil (AS, 2009).
Archimedean copula, exchangeability and frailties

Consider residual life times $\boldsymbol{X}=\left(X_{1}, \cdots, X_{d}\right)$ conditionally independent given some latent factor Θ, and such that $\mathbb{P}\left(X_{i}>x_{i} \mid \Theta\right)=\bar{B}_{i}\left(x_{i}\right)^{\theta}$. Then

$$
\bar{F}(\boldsymbol{x})=\mathbb{P}(\boldsymbol{X}>\boldsymbol{x})=\psi\left(-\sum_{i=1}^{n} \log \bar{F}_{i}\left(x_{i}\right)\right)
$$

Conditional independence, continuous risk factor

Conditional independence, continuous risk factor
where ψ is the Laplace transform of $\Theta, \psi(t)=\mathbb{E}\left(e^{-t \Theta}\right)$. Thus, the survival copula of \boldsymbol{X} is Archimedean, with generator $=\psi^{-1}$.
See Oakes (JASA, 1989).

Nested Archimedean copula, and hierarchical structures

Consider $C\left(u_{1}, \cdots, u_{d}\right)$ defined as

$$
\phi_{1}^{-1}\left[\phi_{1}\left[\phi_{2}^{-1}\left(\phi_{2}\left[\cdots \phi_{d-1}^{-1}\left[\phi_{d-1}\left(u_{1}\right)+\phi_{d-1}\left(u_{2}\right)\right]+\cdots+\phi_{2}\left(u_{d-1}\right)\right)\right]+\phi_{1}\left(u_{d}\right)\right]\right.
$$

where ϕ_{i} 's are generators. Then C is a copula if $\phi_{i} \circ \phi_{i-1}^{-1}$ is the inverse of a Laplace transform, and is called fully nested Archimedean copula. Note that partial nested copulas can also be considered,

(Univariate) extreme value distributions

Central limit theorem, $X_{i} \sim F$ i.i.d. $\frac{\bar{X}_{n}-b_{n}}{a_{n}} \xrightarrow{\mathcal{L}} S$ as $n \rightarrow \infty$ where S is a non-degenerate random variable.
Fisher-Tippett theorem, $X_{i} \sim F$ i.i.d., $\frac{X_{n: n}-b_{n}}{a_{n}} \xrightarrow{\mathcal{L}} M$ as $n \rightarrow \infty$ where M is a non-degenerate random variable.

Then

$$
\mathbb{P}\left(\frac{X_{n: n}-b_{n}}{a_{n}} \leq x\right)=F^{n}\left(a_{n} x+b_{n}\right) \rightarrow G(x) \text { as } n \rightarrow \infty, \forall x \in \mathbb{R}
$$

i.e. F belongs to the max domain of attraction of G, G being an extreme value distribution : the limiting distribution of the normalized maxima.

$$
-\log G(x)=(1+\xi x)_{+}^{-1 / \xi}
$$

(Multivariate) extreme value distributions

Assume that $\boldsymbol{X}_{i} \sim F$ i.i.d.,

$$
F^{n}\left(\boldsymbol{a}_{n} \boldsymbol{x}+\boldsymbol{b}_{n}\right) \rightarrow G(\boldsymbol{x}) \text { as } n \rightarrow \infty, \forall \boldsymbol{x} \in \mathbb{R}^{d}
$$

i.e. F belongs to the max domain of attraction of G, G being an (multivariate) extreme value distribution : the limiting distribution of the normalized componentwise maxima,

$$
\begin{gathered}
\boldsymbol{X}_{n: n}=\left(\max \left\{X_{1, i}\right\}, \cdots, \max \left\{X_{d, i}\right\}\right) \\
-\log G(\boldsymbol{x})=\mu([\mathbf{0}, \boldsymbol{\infty}) \backslash[\mathbf{0}, \boldsymbol{x}]), \forall \boldsymbol{x} \in \mathbb{R}_{+}^{d}
\end{gathered}
$$

where μ is the exponent measure. It is more common to use the stable tail dependence function ℓ defined as

$$
\ell(\boldsymbol{x})=\mu\left([\mathbf{0}, \boldsymbol{\infty}) \backslash\left[\mathbf{0}, \boldsymbol{x}^{-1}\right]\right), \forall \boldsymbol{x} \in \mathbb{R}_{+}^{d}
$$

i.e.

$$
-\log G(\boldsymbol{x})=\ell\left(-\log G_{1}\left(x_{1}\right), \cdots, \log G_{d}\left(x_{d}\right)\right) \forall \boldsymbol{x} \in \mathbb{R}^{d}
$$

Note that there exists a finite measure H on the simplex of \mathbb{R}^{d} such that

$$
\ell\left(x_{1}, \cdots, x_{d}\right)=\int_{\mathcal{S}_{d}} \max \left\{\omega_{1} x_{1}, \cdots, \omega_{d} x_{d}\right\} d H\left(\omega_{1}, \cdots, \omega_{d}\right)
$$

for all $\left(x_{1}, \cdots, x_{d}\right) \in \mathbb{R}_{+}^{d}$, and $\int_{\mathcal{S}_{d}} \omega_{i} d H\left(\omega_{1}, \cdots, \omega_{d}\right)=1$ for all $i=1, \cdots, n$.
Definition 8
Copula $C:[0,1]^{d} \rightarrow[0,1]$ is an multivariate extreme value copula if and only if there exists a stable tail dependence function such that ℓ

$$
C\left(u_{1}, \cdots, u_{d}\right)=\exp \left[-\ell\left(-\log u_{1}, \cdots,-\log u_{d}\right)\right]
$$

Assume that $\boldsymbol{U}_{i} \sim C$ i.i.d.,

$$
C^{n}\left(\boldsymbol{u}^{\frac{1}{n}}\right)=C^{n}\left(u_{1}^{\frac{1}{n}}, \cdots, u_{d}^{\frac{1}{n}}\right) \rightarrow \Gamma(\boldsymbol{u}) \text { as } n \rightarrow \infty, \forall \boldsymbol{x} \in \mathbb{R}^{d}
$$

i.e. C belongs to the max domain of attraction of Γ, Γ being an (multivariate) extreme value copula.

What do we have in dimension 2 ?

C is an Archimedean copula if $C(u, v)=\psi\left(\psi^{-1}(u)+\psi^{-1}(v)\right)$
C is an extreme value copula if $C(u, v)=\psi\left(\psi^{-1}(u)+\psi^{-1}(v)\right)$
C is an Archimax copula (from Capéera, Fougères and Genest (...)) if $C(u, v)=\psi\left(\psi^{-1}(u)+\psi^{-1}(v)\right)$

Quantifying tail dependence, in dimension 2?

Venter (2002) suggested to visualize tail concentration functions, Definition 9
For the lower tail, define

$$
L(z)=\frac{\mathbb{P}(U<z, V<z)}{z}=\frac{C(z, z)}{z}=\mathbb{P}(U<z \mid V<z)=\mathbb{P}(V<z \mid U<z)
$$

and for the upper tail

$$
R(z)=\frac{\mathbb{P}(U>z, V>z)}{1-z}=\mathbb{P}(U>z \mid V>z)
$$

Joe (1999) defined tail dependence coefficients from lower and upper limits, respectively (if those limits exist)

$$
\lambda_{U}=R(1)=\lim _{z \rightarrow 1} R(z) \text { et } \lambda_{L}=L(0)=\lim _{z \rightarrow 0} L(z)
$$

Quantifying tail dependence, in dimension 2?

Definition 10

Let (X, Y) denote a random vector in \mathbb{R}^{2}. Define tail dependence indices in the lower (L) and upper (U) tails as

$$
\lambda_{L}=\lim _{u \downarrow 0} \mathbb{P}\left(X \leq F_{X}^{-1}(u) \mid Y \leq F_{Y}^{-1}(u)\right) \in[0,1],
$$

and

$$
\lambda_{U}=\lim _{u \uparrow 1} \mathbb{P}\left(X>F_{X}^{-1}(u) \mid Y>F_{Y}^{-1}(u)\right) \in[0,1] .
$$

Proposition 1
Let (X, Y) denote a random vector with copula C, then

$$
\lambda_{L}=\lim _{u \downarrow 0} \frac{C(u, u)}{u} \text { and } \lambda_{U}=\lim _{u \downarrow 0} \frac{C^{\star}(u, u)}{u} .
$$

Quantifying tail dependence, in dimension 2?

Exemple1

For Archimedean copulas (see Nelsen (2007), C. \& Segers (JMVA, 2008)),

$$
\lambda_{U}=2-\lim _{x \rightarrow 0} \frac{1-\phi^{-1}(2 x)}{1-\phi^{-1}(x)} \text { and } \lambda_{L}=\lim _{x \downarrow 0} \frac{\phi^{-1}(2 \phi(x))}{x}=\lim _{x \downarrow \infty} \frac{\phi^{-1}(2 x)}{\phi^{-1}(x)} .
$$

Ledford and Tawn (B, 1996) suggested an alternative approach : assume that $X \stackrel{\mathcal{L}}{=} Y$.

- assuming independence, $\mathbb{P}(X>t, Y>t)=\mathbb{P}(X>t) \times \mathbb{P}(Y>t)=\mathbb{P}(X>t)^{2}$,
- assuming comonotonicity, $\mathbb{P}(X>t, Y>t)=\mathbb{P}(X>t)=\mathbb{P}(X>t)^{1}$,

Thus, assume that one has $\mathbb{P}(X>t, Y>t) \sim \mathbb{P}(X>t)^{\eta}$ as $t \rightarrow \infty$, where $\eta \in[1,2]$ will be a tail dependence index.

Quantifying tail dependence, in dimension 2?

Following Coles, Heffernan \& Tawn (E, 1999) define
Definition 11
Let

$$
\bar{\chi}_{U}(z)=\frac{2 \log (1-z)}{\log C^{\star}(z, z)}-1 \text { et } \bar{\chi}_{L}(z)=\frac{2 \log (1-z)}{\log C(z, z)}-1
$$

Then $\eta_{U}=\left(1+\lim _{z \rightarrow 0} \bar{\chi}_{U}(z)\right) / 2$ and $\eta_{L}=\left(1+\lim _{z \rightarrow 0} \bar{\chi}_{L}(z)\right) / 2$ are respectively tail indices in the upper and lower tail, respectively.

Exemple2

If (X, Y) has a Gumbel copula, with (unit) Fréchet margins

$$
\mathbb{P}(X \leq x, Y \leq y)=\exp \left(-\left(x^{-\alpha}+y^{-\alpha}\right)^{1 / \alpha}\right), \text { where } \alpha \geq 0, \forall x, y \geq 0
$$

then $\eta_{U}=1$ while $\eta_{L}=1 / 2^{\alpha}$.
For a Gaussian copula with correlation $r \eta_{U}=\eta_{L}=(1+r) / 2$.

Quantifying tail dependence, in dimension 2?

Quantifying tail dependence, in dimension 2?

Can describe tail dependence in dimension $d \geq 2$?

Oh \& Patton (2012) defined a crash dependence index (related to a measure in Embrechts, et al., 2000) :
let $N_{u}=\sum_{i=1}^{d} \mathbf{1}\left(X_{i} \leq F_{i}^{-1}(u)\right)$, define

$$
\pi_{u, k}=\frac{\mathbb{E}\left[N_{n} \mid N_{u} \geq k\right]-k}{d-k}
$$

(Source : Oh \& Patton (2012))

