Archimax Copulas

Arthur Charpentier

charpentier.arthur@uqam.ca

http://freakonometrics.hypotheses.org/

based on joint work with

A.-L. Fougères, C. Genest and J. Nešlehová

MARCH 2014, CIMAT, GUANAJUATO, MEXICO.

Agenda

- Copulas
- Standard copula families
- Elliptical distributions (and copulas)
- Archimedean copulas
- Extreme value distributions (and copulas)
- Archimax copulas
- $\circ\,$ Archimax copulas in dimension 2
- $\circ\,$ Archimax copulas in dimension $d\geq 3$

Copulas, in dimension d = 2

Definition 1

A copula in dimension 2 is a c.d.f on $[0, 1]^2$, with margins $\mathcal{U}([0, 1])$.

Thus, let $C(u, v) = \mathbb{P}(U \le u, V \le v)$, where $0 \le u, v \le 1$, then

- $\bullet \ C(0,x)=C(x,0)=0 \quad \forall x\in [0,1],$
- $C(1,x) = C(x,1) = x \quad \forall x \in [0,1],$

• and some *increasingness* property

Copulas, in dimension d = 2

Definition 2

A copula in dimension 2 is a c.d.f on $[0,1]^2$, with margins $\mathcal{U}([0,1])$.

Thus, let
$$C(u, v) = \mathbb{P}(U \leq u, V \leq v)$$
,
where $0 \leq u, v \leq 1$, then

•
$$C(0, x) = C(x, 0) = 0 \quad \forall x \in [0, 1],$$

•
$$C(1, x) = C(x, 1) = x \quad \forall x \in [0, 1],$$

• If
$$0 \le u_1 \le u_2 \le 1, \ 0 \le v_1 \le v_2 \le 1$$

 $C(u_2, v_2) + C(u_1, v_1) \ge C(u_1, v_2) + C(u_2, v_1)$

(concept of 2-increasing function in \mathbb{R}^2)

see
$$C(u, v) = \int_0^v \int_0^u \underbrace{c(x, y)}_{\geq 0} dx dy$$
 with the density notation

Copulas, in dimension $d \ge 2$

The concept of d-increasing function simply means that

 $\mathbb{P}(a_1 \leq U_1 \leq b_1, ..., a_d \leq U_d \leq b_d) = \mathbb{P}(\boldsymbol{U} \in [\boldsymbol{a}, \boldsymbol{b}]) \geq 0$

where $U = (U_1, ..., U_d) \sim C$ for all $a \leq b$ (where $a_i \leq bi$). Definition 3

Function $h : \mathbb{R}^d \to \mathbb{R}$ is *d*-increasing if for all rectangle $[a, b] \subset \mathbb{R}^d$, $V_h([a, b]) \ge 0$, where

$$V_{h}\left(\left[\boldsymbol{a},\boldsymbol{b}\right]\right) = \Delta_{\boldsymbol{a}}^{\boldsymbol{b}}h\left(\boldsymbol{t}\right) = \Delta_{a_{d}}^{b_{d}}\Delta_{a_{d-1}}^{b_{d-1}}...\Delta_{a_{2}}^{b_{2}}\Delta_{a_{1}}^{b_{1}}h\left(\boldsymbol{t}\right)$$
(1)

and for all *t*, with

$$\Delta_{a_i}^{b_i} h\left(\boldsymbol{t}\right) = h\left(t_1, \dots, t_{i-1}, b_i, t_{i+1}, \dots, t_n\right) - h\left(t_1, \dots, t_{i-1}, a_i, t_{i+1}, \dots, t_n\right).$$
(2)

Copulas, in dimension $d \ge 2$

Definition 4

A copula in dimension d is a c.d.f on $[0, 1]^d$, with margins $\mathcal{U}([0, 1])$.

Theorem 1 1. If C is a copula, and $F_1, ..., F_d$ are univariate c.d.f., then

$$F(x_1, ..., x_n) = C(F_1(x_1), ..., F_d(x_d)) \ \forall (x_1, ..., x_d) \in \mathbb{R}^d$$
(3)

is a multivariate c.d.f. with $F \in \mathcal{F}(F_1, ..., F_d)$.

2. Conversely, if $F \in \mathcal{F}(F_1, ..., F_d)$, there exists a copula *C* satisfying (3). This copula is usually not unique, but it is if $F_1, ..., F_d$ are absolutely continuous, and then,

$$C(u_1, ..., u_d) = F(F_1^{-1}(u_1), ..., F_d^{-1}(u_d)), \ \forall (u_1, ..., u_d) \in [0, 1]^d$$
(4)

where quantile functions $F_1^{-1}, ..., F_n^{-1}$ are generalized inverse (left cont.) of F_i 's.

If $\boldsymbol{X} \sim F$, then $\boldsymbol{U} = (F_1(X_1), \cdots, F_d(X_d)) \sim C$.

Survival (or dual) copulas

Theorem 2 1. If C^* is a copula, and $\overline{F}_1, ..., \overline{F}_d$ are univariate s.d.f., then

$$\overline{F}(x_1, ..., x_n) = C^{\star}(\overline{F}_1(x_1), ..., \overline{F}_d(x_d)) \ \forall (x_1, ..., x_d) \in \mathbb{R}^d$$
(5)

is a multivariate s.d.f. with $F \in \mathcal{F}(F_1, ..., F_d)$.

2. Conversely, if $F \in \mathcal{F}(F_1, ..., F_d)$, there exists a copula C^* satisfying (5). This copula is usually not unique, but it is if $F_1, ..., F_d$ are absolutely continuous, and then,

$$C^{\star}(u_1, ..., u_d) = \overline{F}(\overline{F}_1^{-1}(u_1), ..., \overline{F}_d^{-1}(u_d)), \ \forall (u_1, ..., u_d) \in [0, 1]^d$$
(6)

where quantile functions $F_1^{-1}, ..., F_n^{-1}$ are generalized inverse (left cont.) of F_i 's. If $\mathbf{X} \sim F$, then $\mathbf{U} = (F_1(X_1), \cdots, F_d(X_d)) \sim C$ and $\mathbf{1} - \mathbf{U} \sim C^*$.

Benchmark copulas

Definition 5

The independent copula C^{\perp} is defined as

$$C^{\perp}(u_1,...,u_n) = u_1 \times \cdots \times u_d = \prod_{i=1}^d u_i.$$

Definition 6

The comonotonic copula C^+ (the Fréchet-Hoeffding upper bound of the set of copulas) is the copula defined as $C^+(u_1, ..., u_d) = \min\{u_1, ..., u_d\}$.

Spherical distributions

Definition 7
Random vector X as a spherical distribution if

 $\boldsymbol{X} = \boldsymbol{R} \cdot \boldsymbol{U}$

where R is a positive random variable and U is uniformly distributed on the unit sphere of \mathbb{R}^d , with $R \perp U$.

E.g. $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{0}, \mathbb{I}).$

Those distribution can be non-symmetric, see Hartman & Wintner (AJM, 1940) or Cambanis, Huang & Simons (JMVA, 1979))

Elliptical distributions

Definition 8
Random vector X as a elliptical distribution if

$$\boldsymbol{X} = \boldsymbol{\mu} + \boldsymbol{R} \cdot \boldsymbol{A} \cdot \boldsymbol{U}$$

where R is a positive random variable and U is uniformly distributed on the unit sphere of \mathbb{R}^d , with $R \perp U$, and where A satisfies $AA' = \Sigma$.

E.g.
$$\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

Elliptical distribution are popular in finance, see e.g. Jondeau, Poon & Rockinger (FMPM, 2008)

Archimedean copula

Definition 9

If $d \ge 2$, an Archimedean generator is a function $\phi : [0, 1] \rightarrow [0, \infty)$ such that ϕ^{-1} is *d*-completely monotone (i.e. ψ is *d*-completely monotone if ψ is continuous and $\forall k = 0, 1, ..., d, (-1)^k d^k \psi(t)/dt^k \ge 0$). Definition 10

Copula C is an Archimedean copula is, for some generator ϕ ,

$$C(u_1, ..., u_d) = \phi^{-1}[\phi(u_1) + ... + \phi(u_d)], \forall u_1, ..., u_d \in [0, 1].$$

Exemple1

 $\phi(t) = -\log(t)$ yields the independent copula C^{\perp} .

 $\phi(t) = [-\log(t)]^{\theta}$ yields Gumbel copula C_{θ} (note that $\psi(t) = \phi^{-1}(t) = \exp[-t^{1/\theta}]$).

Archimedean copula, exchangeability and frailties

Consider residual life times $X = (X_1, \dots, X_d)$ conditionally independent given some latent factor Θ , and such that $\mathbb{P}(X_i > x_i | \Theta = \theta) = \overline{B}_i(x_i)^{\theta}$. Then

$$\overline{F}(\boldsymbol{x}) = \mathbb{P}(\boldsymbol{X} > \boldsymbol{x}) = \psi\left(-\sum_{i=1}^{n} \log \overline{F}_{i}(x_{i})\right)$$

where ψ is the Laplace transform of Θ , $\psi(t) = \mathbb{E}(e^{-t\Theta})$. Thus, the survival copula of X is Archimedean, with generator $\phi = \psi^{-1}$. See Oakes (JASA, 1989).

Conditional independence, continuous risk factor

Conditional independence, continuous risk factor

80

100

Stochastic representation of Archimedean copulas

Consider some strictly positive random variable Rindependent of U, uniform on the simplex of \mathbb{R}^d . The survival copula of $X = R \cdot U$ is Archimedean, and its generator is the inverse of Williamson dtransform,

$$\phi^{-1}(t) = \int_x^\infty \left(1 - \frac{x}{t}\right)^{d-1} \mathrm{d}F_R(t).$$

Note that $R \stackrel{\mathcal{L}}{=} \phi(U_1) + \dots + \phi(U_d)$.

See Nešlehová & McNeil (AS, 2009).

Archimedean copula and distortion

Definition 11

Function $h: [0,1] \to [0,1]$ defined as $h(t) = \exp[-\phi(t)]$ is called a distortion function.

Genest & Rivest (SPL, 2001), Morillas (M, 2005) considered distorted copulas (also called *multivariate probability integral transformation*) Definition 12

Let h be some distortion function, and C a copula, then

$$C_h(u_1, ..., u_d) = h^{-1}(C(h(u_1), \cdots, h(u_d)))$$

is a copula.

Exemple2 If $C = C^{\perp}$, then C_h^{\perp} is the Archimedean copula with generator $\phi(t) = -\log h(t)$. Nested Archimedean copula, and hierarchical structures Consider $C(u_1, \dots, u_d)$ defined as

$$\phi_1^{-1}[\phi_1[\phi_2^{-1}(\phi_2[\cdots\phi_{d-1}^{-1}[\phi_{d-1}(u_1)+\phi_{d-1}(u_2)]+\cdots+\phi_2(u_{d-1}))]+\phi_1(u_d)]$$

where ϕ_i 's are generators. Then *C* is a copula if $\phi_i \circ \phi_{i-1}^{-1}$ is the inverse of a Laplace transform, and is called fully nested Archimedean copula. Note that partial nested copulas can also be considered,

(Univariate) extreme value distributions

Central limit theorem, $X_i \sim F$ i.i.d. $\frac{\overline{X}_n - b_n}{a_n} \stackrel{\mathcal{L}}{\to} S$ as $n \to \infty$ where S is a non-degenerate random variable.

Fisher-Tippett theorem, $X_i \sim F$ i.i.d., $\frac{X_{n:n} - b_n}{a_n} \xrightarrow{\mathcal{L}} M$ as $n \to \infty$ where M is a non-degenerate random variable.

Then

$$\mathbb{P}\left(\frac{X_{n:n} - b_n}{a_n} \le x\right) = F^n(a_n x + b_n) \to G(x) \text{ as } n \to \infty, \forall x \in \mathbb{R}$$

i.e. F belongs to the max domain of attraction of G, G being an extreme value distribution : the limiting distribution of the normalized maxima.

$$-\log G(x) = (1 + \xi x)_{+}^{-1/\xi}$$

(Multivariate) extreme value distributions

Assume that $\boldsymbol{X}_i \sim F$ i.i.d.,

$$F^n(\boldsymbol{a}_n\boldsymbol{x} + \boldsymbol{b}_n) \to G(\boldsymbol{x}) \text{ as } n \to \infty, \forall \boldsymbol{x} \in \mathbb{R}^d$$

i.e. F belongs to the max domain of attraction of G, G being an (multivariate) extreme value distribution : the limiting distribution of the normalized componentwise maxima,

$$X_{n:n} = (\max\{X_{1,i}\}, \cdots, \max\{X_{d,i}\})$$

$$-\log G(\boldsymbol{x}) = \mu([\boldsymbol{0}, \boldsymbol{\infty}) \setminus [\boldsymbol{0}, \boldsymbol{x}]), \forall \boldsymbol{x} \in \mathbb{R}^d_+$$

where μ is the exponent measure. It is more common to use the stable tail dependence function ℓ defined as

$$\ell(\boldsymbol{x}) = \mu([\boldsymbol{0}, \boldsymbol{\infty}) ackslash [\boldsymbol{0}, \boldsymbol{x}^{-1}]), orall \boldsymbol{x} \in \mathbb{R}^d_+$$

i.e.

$$-\log G(\boldsymbol{x}) = \ell(-\log G_1(x_1), \cdots, \log G_d(x_d)), \ \forall \boldsymbol{x} \in \mathbb{R}^d$$

Note that there exists a finite measure H on the simplex of \mathbb{R}^d such that

$$\ell(x_1, \cdots, x_d) = \int_{\mathcal{S}_d} \max\{\omega_1 x_1, \cdots, \omega_d x_d\} dH(\omega_1, \cdots, \omega_d)$$

for all $(x_1, \dots, x_d) \in \mathbb{R}^d_+$, and $\int_{\mathcal{S}_d} \omega_i dH(\omega_1, \dots, \omega_d) = 1$ for all $i = 1, \dots, n$. Definition 13

Copula $C : [0,1]^d \to [0,1]$ is an multivariate extreme value copula if and only if there exists a stable tail dependence function such that ℓ

$$C_{\ell}(u_1, \cdots, u_d) = \exp[-\ell(-\log u_1, \cdots, -\log u_d)]$$

Assume that $\boldsymbol{U}_i \sim \Gamma$ i.i.d.,

$$\Gamma^{n}(\boldsymbol{u}^{\frac{1}{n}}) = \Gamma^{n}(u_{1}^{\frac{1}{n}}, \cdots, u_{d}^{\frac{1}{n}}) \to C_{\ell}(\boldsymbol{u}) \text{ as } n \to \infty, \forall \boldsymbol{x} \in \mathbb{R}^{d}$$

i.e. Γ belongs to the max domain of attraction of C_{ℓ} , C_{ℓ} being an (multivariate) extreme value copula, $\Gamma \in \text{MDA}(C_{\ell})$.

The stable tail dependence function $\ell(\cdot)$

Observe that

$$n\left[1 - C\left(1 - \frac{x_1}{n}, \cdots, 1 - \frac{x_d}{n}\right)\right] \to \underbrace{-\log\left[\Gamma(e^{-x_1}, \cdots, e^{-x_1})\right]}_{=\ell(\mathbf{x})} \overset{\circ}{=}$$

Exemple3

Gumbel copula, $\theta \in [1, +\infty]$,

$$\ell_{\theta}(x_1, \cdots, x_d) = (x_1^{\theta} + \cdots + x_d^{\theta})^{1/\theta} = \|\boldsymbol{x}\|_{\theta} \ \forall \boldsymbol{x} \in \mathbb{R}^d_+$$

Function $\ell(\cdot)$ statisfies

The stable tail dependence function $\ell(\cdot)$

Function $\ell(\cdot)$ is homogeneous, $\ell(t \cdot \boldsymbol{x}) = t \cdot \ell(\boldsymbol{x}) \ \forall t \in \mathbb{R}_+.$

 \longrightarrow consider the restriction of $\ell(\cdot)$ on the unit simplex Δ_{d-1} ,

$$\ell(\boldsymbol{x}) = \|\boldsymbol{x}\|_1 \cdot \ell\left(\frac{x_1}{\|\boldsymbol{x}\|}, \cdots, \frac{x_d}{\|\boldsymbol{x}\|}\right) = \|\boldsymbol{x}\|_1 \cdot A(\omega_1, \cdots, \omega_{d-1})$$

where $A(\cdot)$ is Pickands dependence function. Observe that

$$\max\{\omega_1, \cdots, \omega_{d-1}, \omega_d\} \le A(\omega_1, \cdots, \omega_{d-1}) \le 1, \quad \forall \boldsymbol{\omega} \in \Delta_{d-1}$$

What do we have in dimension 2?

C is an Archimedean copula if $C=C_\phi$

$$C_{\phi}(u,v) = \phi^{-1} [\phi(u) + \phi(v)]$$

C is an extreme value copula if $C = C_A = C_\ell$

$$\begin{cases} C_A(u,v) = \exp\left(\log[uv]A\left(\frac{\log[v]}{\log[uv]}\right)\right)\\ C_\ell(u,v) = \exp[-\ell(-\log u, -\log v)] \end{cases}$$

where $A: [0,1] \rightarrow [1/2,1]$ is Pickands dependence function, convex, with

$$\max\{\omega, 1-\omega\} \le A(\omega) \le 1, \forall \omega \in [0,1].$$

Exemple4 $A(\omega) = 1$ yields the independent copula, C^{\perp} .

What do we have in dimension 2?

Exemple5

$$\phi(t) = [-\log(t)]^{\theta}$$
 yields Gumbel copula C_{θ} .

$$A(\omega) = \left[\omega^{\theta} + (1-\omega)^{\theta}\right]^{1/\theta}$$
 yields Gumbel copula C_{θ} .

Definition 14

C is an Archimax copula (from Capéerà, Fougères & Genest (JMVA, 2000)) if $C=C_{\phi,A}$

$$C_{\phi,A}(u,v) = \phi^{-1} \left[[\phi(u) + \phi(v)] A \left(\frac{\phi(u)}{\phi(u) + \phi(v)} \right) \right]$$

Note that there is a frailty type construction, see C. (K, 2006) : given Θ , X has (survival) copula C_A , Θ has Laplace transform ϕ^{-1} .

Note that $C_{\phi,A}$ is the distorted version of copula C_A .

What do we have in dimension $d \ge 3$?

Definition 15

C is an Archimax copula (from C., Fougères, Genest & Nešlehová (JMVA, 2014)) if $C = C_{\phi,\ell}$

$$C_{\phi,\ell}(u_1,\cdots,u_d) = \phi^{-1} \left[\ell(\phi(u_1) + \cdots + \phi(u_d)) \right]$$

This function *is* a copula function.

Stochastic representation of Archimax copulas Theorem 3

 $C_{\phi,\ell}$ is the survival copula of $X = T/\Theta$ where Θ has Laplace transform ϕ^{-1} , independent of random vector T satisfying

$$\mathbb{P}(\boldsymbol{T} > \boldsymbol{t}) = \exp[-\ell(\boldsymbol{t})] = C_{\ell}(e^{-\boldsymbol{t}}).$$

(see also Li (JMVA, 2009) and Marshall & Olkin (JASA, 1988)).

Limiting behavior of Archimax copulas

One can wonder what would be the max-domain of attraction of that copula?

 $C_{\phi,\ell} \in \mathrm{MDA}(C_{\ell^{\star}})$

If $\psi = \phi^{-1}$ is such that $\psi(1-s)$ is regularly varying at 0 with index $\theta \in [1, +\infty]$, then $C_{\phi,\ell}$ belongs to the max domain of attraction of

$$C_{\ell^{\star}}(u_1, \cdots, u_d) = \exp\left[-\ell^{\frac{1}{\theta}} \left(|\log(u_1)|^{\theta}, \cdots, |\log(u_d)|^{\theta}\right)\right]$$

(see also C. & Segers (JMVA, 2009) and Larsson & Nešlehová (AAP, 2011) in the case of Archimedean copulas).

forthcoming book (April 2014), Computational Actuarial Science with R

for additional information
http://freakonometrics.hypotheses.org/

The R Series

Computational Actuarial Science with R

Arthur Charpentier

CAC Press Torochine Com