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On risk dependence in QIS’s

The BSCR is determined as follows:

BSCR = \,’ZCorrSCR,.,C * SCR, « SCR, —min( |> CorrSCR, . « KC, « KC_,FDB)
where
CorrSCR; . the cells of the correlation matrix CorrSCR

SCR,, SCR. = capital charges for the individual SCR risks according to
the rows and columns of the correlation matrix CorrSCR

KC,, KC. risk mitigation effects for the individual SCR risks™’

and CorrSCR is defined as follows:

CorrSCR= SCRmke SCRyef
SCR ke 1
SCRyer
SCRiife
SCRhealth

SCR,,

http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPartl.PDF
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On risk dependence in QIS’s

The market sub-risks should be combined to an overall charge SCR . for
market risk using a correlation matrix as follows:

SCR,,. = [> CorrMkt, .  Mkt, e Mkt,

where

CorrMkt,. = the cells of the correlation matrix CorrMkt

Mkt,, Mkt capital charges for the individual market risks according
to the rows and columns of the correlation matrix
CorrMkt

and the correlation matrix CorrMkt is defined as:*®

CorrMkt MKt e MKt MKtprop Mkt.,
MKt e 1
Mkt 0
MKt 0.5
Mkt.,
MKkt onc
Mkt

http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPartl.PDF




ARTHUR CHARPENTIER - EXTREMES AND CORRELATION IN RISK MANAGEMENT

On risk dependence in QIS’s

CorrLife= | Lifépore | Lif€jong Lifey;. e | e Life,.,
Lifemort 1
Lifejong 0
Lifeg;s 0.5
Lifeapse 0

Lifeexp

LifeCAT

CorrMCR=
MCR ke
MCRiife
MCR,
MCRheaitn

http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPartl.PDF
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On risk dependence in QIS’s

The correlation matrix CorrLob,, is specified as follows:

CorrLob,= 2|34 |5|6|7|8|9
1: A (workers’ comp)
2: A (health)
3:A (other)H
4: M (3 party)

: M (other)

: MAT

> Fire

: 3" party liab

: credit

: legal exp.

: assistance

: misc.

: reins. (prop)

: reins. (cas)
: reins. (MAT)

http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPartl.PDF
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How to capture dependence in risk models ?

Is correlation relevant to capture dependence information 7
Consider (see MCNEIL, EMBRECHTS & STRAUMANN (2003)) 2 log-normal risks,

e X ~LN(0,1), i.e. X = exp(X™*) where X* ~ N (0, 1)

e Y ~ LN(0,0%),ie. Y = exp(Y*) where Y* ~ N (0, 0?)
Recall that corr(X*,Y™) takes any value in [—1, 41].

Since corr(X,Y )#corr(X*,Y™*), what can be corr(X,Y)?
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How to capture dependence in risk models ?
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F1G. 1 — Range for the correlation, cor(X,Y), X ~ LN(0,1) ,Y ~ LN(0,02).
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How to capture dependence in risk models ?
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Standard deviation, sigma

F1G. 2 — cor(X,Y), X ~ LN(0,1) .Y ~ LN(0,0?), Gaussian copula, r = 0.5.
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What about official actuarial documents ?

m ASSOCIATION ACTUARIELLE INTERNATIONALE

J¥Y INTERNATIONAL ACTUARIAL ASSOCIATION
IAA

MEASUREMENT OF LIABILITIES FOR INSURANCE CONTRACTS:

CURRENT ESTIMATE AND RISK MARGINS

24 March 2008

MEASUREMENT OF LIABILITIES FOR INSURANCE CONTRACTS:
CURRENT ESTIMATES AND RISK MARGINS —- MARCH 2008 RE-EXPOSURE DRAFT
IAA ad hoc Risk Margin Working Group

The diversification factors are based on the experience of a AA rated entity

with, on average, a positive risk profile. Diversification effects at a group
level are allocated on a marginal basis. The results for the risks are given in
Table B.6.

For the quantile method, it is assumed that the underlying risks are
independent (i.e., no tail correlation adjustment is needed at the 75% level).
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What about official actuarial documents ?

MEASUREMENT OF LIABILITIES FOR INSURANCE CONTRACTS:
CURRENT ESTIMATES AND RISK MARGINS - MARCH 2008 RE-EXPOSURE DRAFT
IAA ad hoc Risk Margin Working Group

APPENDIX C - Diversification

Technical approaches

In the Blue Book, the |AA proposes the use of copulas as the theoretically
correct method to calculate diversification effects. Indeed in general we can
say that the use of a “standard” correlation matrix is wrong. Copula
functions have the advantage that they can be used to accurately combine
other distributions than from the “normal family”. They also recognize
dependencies that change in the tail of the distributions.
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What about official actuarial documents ?

Severe incidents can impact risks that are normally independent. An
example: normally market risk and mortality risk will be independent. But in
case of a severe pandemic like the Spanish flu would happen with millions
of deaths worldwide this will certainly have economic consequences and will
also impact market risk, for example equity risk. In practice, combining
several distributions implies that the dependency in the tail is greater than
average risks. In applying copula functions this can be handled, while in a
standard correlation matrix this is not possible.

However, copula functions are rather complex to use, particularly in case a
large number of distributions have to be combined. A practical solution can
be to adjust the correlation matrix in such a way that the confidence level
we are interested in, the combined distribution results are reasonably
correct. The adjusted correlation factors are also called “tail-correlations”.
More background of this simplified approach can be found in Group
Consultatif (2005).
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What about regulatory technical documents ?

QIS3

Calibration of the underwriting risk,
market risk and MCR

IR CEIOPS

Committee of European
Insurance and Occupatlonal
Pensions Supervisors

CEIOPS- FS-14/07
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What about regulatory technical documents ?

In view of the insufficiency of currently available data, the setting of
these correlation coefficients will necessarily include a certain degree
of judgement. This is also true because, when selecting correlation
coefficients, allowance should be made for non-linear tail correlation,
which is not captured under a “pure” linear correlation approach.’ To
allow for this, the correlations used should be higher than simple
analysis of relevant data would indicate.

For example, two risk variables X and Y may have zero linear correlation, but may nonetheless be
dependent “in the tail” (i.e. in the occurrence of adverse events). In fact, such a situation is not
uncommon for variables related to insurance risk. In such cases, the correlation matrix used in the
standard formula to aggregate the risk capital charges for the two risks should be set to capture
such tail dependence, i.e. the related correlation coefficient should be set higher than zero.

Note that a similar assumption was made in QIS2 with respect to the dependence between

premium and reserve risk.
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What about regulatory technical documents ?

the setting of
these correlation coefficients will necessarily include a certain degree
of judgement.
allowance should be made for non-linear tail correlation,
which is not captured under a “pure” linear correlation approach.’ To
allow for this, the correlations used should be higher than simple
analysis of relevant data would indicate.

9 For example, two risk variables X and Y may have zero linear correlation, but may nonetheless be
dependent "“in the tail” (i.e. in the occurrence of adverse events).
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What about regulatory technical documents ?

non-linear tail correlation,

the correlations used should be higher than simple
analysis of relevant data would indicate.
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Motivations : dependence and copulas
Definition 1. A copula C is a joint distribution function on [0, 1], with
uniform margins on [0, 1].
Theorem 2. (Sklar) Let C be a copula, and Fy, ..., Fy be d marginal
distributions, then F(x) = C(Fi(x1),..., Fa(xq)) is a distribution function, with
FeF(Fy,...,Fy).

Conversely, if ' € F(Fy,...,Fy), there exists C such that
F(x) =C(Fi(x1),...,Fq(xq)). Further, if the F;’s are continuous, then C is
unique, and given by

F(F7 Y (uy), ..o, Fy (ug)) for all u; € [0,1]

We wnll then define the copula of F', or the copula of X.
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Copula density Level curves of the copula

\ ‘ , k\\\:

Fic. 3 — Graphical representation of a copula, C'(u,v) = P(U < u,V < wv).
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Copula density Level curves of the copula

L

1.5—/

N

0?C(u,v)
oudv

F1G. 4 — Density of a copula, c(u,v) =
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Some very classical copulas

e The independent copula C(u,v) = uv = C+(u,v).

The copula is standardly denoted II, P or C*, and an independent version of
(X,Y) will be denoted (X-+,Y ). It is a random vector such that X+ £ X and

yl £ Y, with copula C+.

In higher dimension, C+(u,...,uq) = U1 X ... X uq is the independent copula.
e The comonotonic copula C(u,v) = min{u,v} = CT(u,v).

The copula is standardly denoted M, or CT, and an comonotone version of
(X,Y) will be denoted (X+,Y+). It is a random vector such that X+ £ X and

Y+ £V, with copula C+.

(X,Y) has copula C* if and only if there exists a strictly increasing function h
such that Y = h(X), or equivalently (X,Y) = (F'(U), F: ' (U)) where U is
U([o, 1).




ARTHUR CHARPENTIER - EXTREMES AND CORRELATION IN RISK MANAGEMENT

Some very classical copulas

In higher dimension, C*(uq,...,uq) = min{u,...,uq} is the comonotonic

copula.

e The contercomotonic copula C'(u,v) = max{u+v — 1,0} = C~ (u,v).

The copula is standardly denoted W, or C~, and an contercomontone version of
(X,Y) will be denoted (X —,Y ™). It is a random vector such that X~ £ X and

y- £ Y, with copula C.

(X,Y) has copula C~ if and only if there exists a strictly decreasing function h
such that ¥ = h(X), or equivalently (X,Y) £ (Fx'(1-=0),F-1H(U)).

In higher dimension, C~(u1,...,uq) = max{u; + ...+ ug — (d — 1),0} is not a

copula.

But note that for any copula C,

C~(u,... ua) < Clus,...,ug) < CF(u, ..., ug)




ARTHUR CHARPENTIER - EXTREMES AND CORRELATION IN RISK MANAGEMENT

Frechet lower bound
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Scatterplot, Lower Fréchet—Hoeffding bound

Scatterplot, Indepedent copula random generation

Scatterplot, Upper Fréchet—Hoeffding bound

F1Gc. 5 — Contercomontonce, independent, and comonotone copulas.
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Elliptical (Gaussian and t) copulas

The idea is to extend the multivariate probit model, X = (X1,..., Xy) with
marginal B(p;) distributions, modeled as Y; = 1(X} < u;), where X™ ~ N (I, X).

e The Gaussian copula, with parameter a € (—1,1),

~(z? — 202y + )

1 & t(u) 2 (v)
C(u,v) = P — /_OO /_OO exp{ 21— a?) }d:z:dy.

Analogously the t-copula is the distribution of (T'(X),T(Y)) where T is the t-cdf,
and where (X,Y) has a joint t-distribution.

e The Student t-copula with parameter a € (—1,1) and v > 2,

2 — 20y + y?

1 ty(u)  ptt(v)
C — 1
() 2mv1 — a2 /_oo /_oo ( " 2(1 —a?)

dxdy.

)((V+2)/2)




ARTHUR CHARPENTIER - EXTREMES AND CORRELATION IN RISK MANAGEMENT

Archimedean copulas

e Archimedian copulas C(u,v) = ¢ 1 (¢(u) + ¢(v)), where ¢ is decreasing convex
(0,1), with ¢(0) = co and ¢(1) = 0.

Example 3. If ¢(t) = [—logt]®, then C is Gumbel’s copula, and if

p(t) =t~ — 1, C is Clayton’s. Note that Ct is obtained when ¢(t) = —logt.

The frailty approach : assume that X and Y are conditionally independent, given

the value of an heterogeneous component ©. Assume further that

P(X < 2[0 =0) = (Gx(z))’ and P(Y < 9|0 = 0) = (Gy(y))"

for some baseline distribution functions GG x and Gy. Then

F(z,y) =v@~ (Fx(2) + v~ (Fy (y))),

where 1) denotes the Laplace transform of 0, i.e. ¥ (t) = E(e~*®).
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Conditional independence, continuous risk factor Conditional independence, continuous risk factor

8

F1G. 6 — Continuous classes of risks, (X;,Y;) and (@71 (Fx(X;)), 21 Fy(Y;))).
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Some more examples of Archimedean copulas

P (t) range 0

%(t_e —1) [—1,0) U (0, c0) Clayton, CLAayTON (1978)

(1 — t)e [1: OO)
og 1—9(751—t) [—1,1) Ali-Mikhail-Haq

[1, co0) Gumbel, GUMBEL (1960), HOUGAARD (1986)
(—o0,0) U (0, c0) Frank, FRANK (1979), NELSEN (1987)

— log{1l — (1 — t)e} [1, c0) Joe, Frank (1981), Jor (1993)

— log{0t + (1 — 6)} (0, 1]
1# [1, c0)
+(0—-1)t

log(1 — 6 logt) (0, 1] BARNETT (1980), GUMBEL (1960)
log(2t_9 —1) (0, 1]

log(2 — te) (0,1/2]
(+ - 1)? [1, o0)

(1 — log t)e -1 (0, c0)
(¢=1/6 — 1)f 1, 00)
(1 —¢1/6)6 [1, o)

GENEST & GHOUDI (1994)
(& + 1@ -1 [0, o0)
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Extreme value copulas

e Extreme value copulas

log u
C = 1 1 A
(u,v) = exp |(logu + logv) <logu+logv>] :

where A is a dependence function, convex on [0, 1] with A(0) = A(1) =1, et
max{l —w,w} < A(w) <1 for all w € [0,1].

An alternative definition is the following : C is an extreme value copula if for all
z >0,

Cluy, ... uq) = Cu/?, ... ul/?)”.

Those copula are then called max-stable : define the maximum componentwise of
a sample X4,..., X, l.e. M; =max{X;1,...,Xin}

Remark more difficult to characterize when d > 3.
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On copula parametrization

e Gaussian, Student ¢ (and elliptical) copulas

Focuses on pairwise dependence through the correlation matrix,

(Xl\ ( 1 ri2 73 7“14\

X9 0 1 7ro3 194
X, ’ 1

™y L

Dependence in [0, 1]¢ «+— summarized in d(d + 1)/2 parameters,
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On copula parametrization
e Archimedean copulas

Initially, dependence in [0, 1]¢ «+— summarized in one functional parameters on

0, 1]. But appears less flexible because of exchangeability features.

Let U = (U17U27U37U4)7

C(u1,uz, us, us) = ¢7 ' [d1(u1) + d1(uz) + ¢1(us) + ¢1(ug)],
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On copula parametrization

e Archimedean copulas

Initially, dependence in [0, 1]¢ «+— summarized in one functional parameters on
0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)) Let U = (Ul, UQ, Ug, U4),

b5 (P2(ur) + d2(u2))
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On copula parametrization

e Archimedean copulas

Initially, dependence in [0, 1]¢ «+— summarized in one functional parameters on
0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)) Let U = (Ul, UQ, Ug, U4),

¢y ' (P2(ur) + Pa(u2)) ¢3 ' (¢3(u3) + P3(ua))
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On copula parametrization

e Archimedean copulas

Initially, dependence in [0, 1]¢ «+— summarized in one functional parameters on
0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)) Let U = (Ul, UQ, Ug, U4),

C(u1,uz,us, ug) = b3 ' (B2(u1) + d2(u2)) d3 ' (¢3(us) + @s(ua))]),

which, if ¢, is parametrized with parameter «;, can be summarized through
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On copula parametrization

e Archimedean copulas

Initially, dependence in [0, 1]¢ +— summarized in one functional parameters on

0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)) Let U = (Ul, UQ, Ug, U4>,

b5 (P2(ur) + d2(u2))
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On copula parametrization

e Archimedean copulas

Initially, dependence in [0, 1]¢ +— summarized in one functional parameters on

0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)) Let U = (Ul, UQ, Ug, U4>,

b5 (03 (03 ' (P2(ur) + d2(u2))] + ¢3(us))
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On copula parametrization

e Archimedean copulas

Initially, dependence in [0, 1]¢ +— summarized in one functional parameters on

0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see SAVU & TREDE
(2006) or MCNEIL (2007)) Let U = (Ul, UQ, U3, ),

C(u1,u2, us, us) = 03 ' (03 (03 (d2(w1) + Pa(uz))] + d3(us))

which, if ¢; is parametrized with parameter «;, can be summarized through

(4w w0

2 1 a3

1)
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On copula parametrization

e Extreme value copulas

Here, dependence in [0, 1]¢ «+— summarized in one functional parameters on

[0, 1],

Further, focuses only on first order tail dependence.
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Natural properties for dependence measures

Definition 4. x is measure of concordance if and only if k satisfies

o x is defined for every pair (X,Y) of continuous random variables,
—1<k(X,)Y) <+, k(X,X)=4+1 and v (X, —-X) = —1,
(X,Y)=kr(Y,X),
if X and'Y are independent, then k(X,Y) =0,
K(—X,Y)=r(X,-Y)=—kr(X,Y),
if (X1,Y1) 2pop (X2, Ys), then v (X1,Y1) < Kk (Xa,Ys),

if (X1,Y1),(X2,Y3),... is a sequence of continuous random vectors that

converge to a pair (X,Y) then k (X,,,Y,) — k(X,Y) as n — .
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Natural properties for dependence measures

If k is measure of concordance, then, if f and g are both strictly increasing, then
k(f(X),9(Y)) =k(X,Y). Further, x(X,Y) =1if Y = f(X) with f almost surely
strictly increasing, and analogously x(X,Y) = —1if Y = f(X) with f almost
surely strictly decreasing (see SCARSINT (1984)).

Rank correlations can be considered, i.e. Spearman’s p defined as

p(X,Y) = corr(Fx(X),Fy(Y)) = 12/0 /0 C(u,v)dudv — 3

and Kendall’s 7 defined as

(XY = 4/01 /OlC’(u,v)dC(u,v) Y
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Historical version of those coefficients

Similarly Kendall’s tau was not defined using copulae, but as the probability of
concordance, minus the probability of discordance, i.e.

T(X, Y) — 3[P((X1 — X2)(Y1 — YQ) > O) — P((Xl — XQ)(Yl — YQ) < O)],

where (X1, Y1) and (X3, Y2) denote two independent versions of (X,Y") (see
NELSEN (1999)).

4Q
n(n? —1)

between the rankings of X and Y (number of discordance).

Equivalently, 7(X,Y) =1 — where () is the number of inversions
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Concordant pairs Discordant pairs

) : @)

Fi1c. 7 — Concordance versus discordance.
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Alternative expressions of those coeflicients

Note that those coeflicients can also be expressed as follows

f[0,1]><[0,1] C(ua U) —Ct (u, ’U)dudv
f[O,l]x[O,l] Ct(u,v) — C+ (u, v)dudv

p(X,Y) =
(the normalized average distance between C' and C1), for instance.

The case of the Gaussian random vector
If (X,Y) is a Gaussian random vector with correlation r, then (KrRUSKAL (1958))

6 2
p(X,Y) = — arcsin (%) and 7(X,Y) = —arcsin (r).

7 7




ARTHUR CHARPENTIER - EXTREMES AND CORRELATION IN RISK MANAGEMENT

From Kendall’tau to copula parameters

Kendall’s T 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

.00
.00
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From Spearman’s rho to copula parameters

Spearman’s 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

.00
.00
.00 .11
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Fic. 8 — Simulations of Gumbel’s copula 8 = 1.2.
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F1G. 9 — Simulations of the Gaussian copula (6 = 0.95).
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Tail correlation and Solvency 11

4. Copulas versus the use of Tail correlation factors

The TAA proposes to use Copulas as the theoretically correct method to calculate
diversification effects. Indeed the use of a “standard”™ correlation matrix i1s wrong.
Copulas have the advantage that they can be used to accurately combine other
distributions than from the “Normal Family™” and that they can recognise
dependencies that change 1n the tail of the distribution.

Severe incidents can impact risks that are normally independent. Example: normally
market risk and mortality risk will be independent. But when a severe pandemic like
the Spanish Flu would happen with world-wide millions of deaths this will certamnly
have economic consequences and will also impact market risk (for example equity-

risk).

In practice combining several distributions implies that the dependency in the tail 1s
higher than on average.

A problem with the use of Copulas is that it 1s very complex in the case that a rather
large number of distributions have to be combined. Also there is generally limited
data available to estimate the copula function 1n the tail. Given these observations
many practitioners consider that a simpler approach can deliver acceptable results.
A more detailed explanation of Copulas can be found in Appendix A
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Tail correlation and Solvency 11

5. Estimation of tail-correlation factors

The estimation of the correlation between two risks under extreme circumstances 1s
subject to the same uncertainties as the selecting of copula functions. There will never
be enough data for a reliable estimation. By definition extreme situations will not
happen frequently. Extreme events that will happen n the future did not happen yet in
the past. The only possibility we have is the use of scientific evidence on
dependencies, based on semi-worse case events in the past and expert opinion and to
get an agreement between industry partners and the regulators.

2- Measures of dependence.

It 1s important to use copulas to get a better understanding (and so a measure) of the
kind of dependence that exists, especially in the tails (because its with the case of
extreme outcomes that we must worry!) of the joint distribution function, which can be

done through the tail dependence coefficient (/1) This method 1s preferable to using
only the simple linear correlation, which plays a central role in financial theory (as can

be seen m the CAPM), but which 1s only theoretically correct with elliptical
distributions (distributions whose density 1s constant on ellipsoids), such as the Normal.
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Strong tail dependence

JOE (1993) defined, in the bivariate case a tail dependence measure.

Definition 5. Let (X,Y) denote a random pair, the upper and lower tail

dependence parameters are defined, if the limit exist, as
A = limP(X < Fil(u) Y < By (u)),

u—0
lim P (U < |V < ) = lim 2%

u—0 u—0 U

m P (X > Fy' (u)|Y > Fy ' (u))

u—1

C* (u, u)

u—0 u—0 U

ImP(U >1—-u|V <1—-wu)=lim
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Gaussian copula L and R concentration functions

GAUSSIAN

0.0 0.2 0.4 0.6 0.8 1.0

L function (lower tails) R function (upper tails)

Fia. 10 — LL and R cumulative curves.
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Gumbel copula L and R concentration functions

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

L function (lower tails) R function (upper tails)

Fiag. 11 — LL and R cumulative curves.
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Clayton copula L and R concentration functions

CLAYTON

0.0 0.2 0.4 0.6 0.8 1.0

L function (lower tails) R function (upper tails)

Fia. 12 — L and R cumulative curves.
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Student t copula L and R concentration functions

STUDENT (df=5)

0.0 0.2 0.4 0.6 0.8 1.0

L function (lower tails) R function (upper tails)

Fia. 13 — LL and R cumulative curves.
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Student t copula L and R concentration functions

STUDENT (df=3)

0.0 0.2 0.4 0.6 0.8 1.0

L function (lower tails) R function (upper tails)

Fic. 14 — LL and R cumulative curves.
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Estimation of tail dependence

Calibrating the Standard Approach: Building Blocks
rJ C EA Annex to ECO 7032 5 February 2007

Insurers of Europe

Calibrating extreme events

Principle 8: The assumptions for extreme tail events are likely to require an element of judgement

In practice there is unlikely to be sufficient past data to set extreme tail values with confidence and hence this will
reguire an element of judgement.

One method to estimate the tail calibration would be to fit a mathematical formula to the credible data, which might
say be for the 25% to 75" percentiles and then to extrapolate using this formula.

An alternative approach might be to extrapolate using an assumed distribution (e.g. Nermal, Lognormal, etc) for the
point beyond which the past data has insufficient credibility. Different assumptions for this extrapolation process could
result in significantly different extreme tail values. The impact of these assumptions and the quantum of uncertainty
surrounding these assumptions need to be understood.
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Estimating (strong) tail dependence

P(X>Fy'(u),Y >F " (u)
P(Y > Fy' (u))

as for Hill’s estimator, a natural estimator for A is obtained with u =1 — k/n,

for u closed to 1,

Y

S U(X > Xken, Y > Yo gen)

S0 _
v % 2?21 1(}/1 > Yn—k:n) ’

~ 1 <&
)\§]k) — E Z ]-(Xz > Xn—k:nyy;l > Yn—kz:n)-
=1

~ 1 —
1=1
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Asymptotic convergence, how fast ?

(Upper) tail dependence, Gaussian copula, n=200 Log scale, (lower) tail dependence

<
—i

I I I
0.4 0.6 . . 0.005 0.050 0.500

Exceedance probability Exceedance probability (log scale)

F1G. 15 — Convergence of L and R functions, Gaussian copula, n = 200.
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Asymptotic convergence, how fast ?

(Upper) tail dependence, Gaussian copula, n=200 Log scale, (lower) tail dependence

<
—i

I I I
0.4 0.6 . . 0.005 0.050 0.500

Exceedance probability Exceedance probability (log scale)

F1G. 16 — Convergence of L and R functions, Gaussian copula, n = 2, 000.
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Asymptotic convergence, how fast ?

(Upper) tail dependence, Gaussian copula, n=200 Log scale, (lower) tail dependence

<
—i

I I I I
0.4 0.6 . . 0.005 0.050 0.500

Exceedance probability Exceedance probability (log scale)

. 17 — Convergence of L and R functions, Gaussian copula, n = 20, 000.
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Weak tail dependence

If X and Y are independent (in tails), for u large enough

P(X > Fy'(u),Y > Fyl(u) =P(X > Fy''(u) - P(Y > Fyl(u) = (1 —u)?,

or equivalently, log P(X > Fx'(u),Y > Fy,'(u)) = 2 - log(1 — u). Further, if X

and Y are comonotonic (in tails), for u large enough
P(X > Fy'(u),Y > Fy'(u) = P(X > Fy '(u) = (1 —u)’,

or equivalently, log P(X > Fy'(u),Y > Fy, ' (u)) = 1 -log(1 — u).
log(1 — u)

— limit of the ratio .
logP(Zy > F; Y (u), Zy > Fy 't (u))
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Weak tail dependence

CoLES, HEFFERNAN & TAWN (1999) defined

Definition 6. Let (X,Y) denote a random pair, the upper and lower tail

dependence parameters are defined, if the limit exist, as

_ log(u) , log(u)
N = lim — — = lim
u—=01logP(Z; < Fy "(u), Zy < Fy (u)) u—0log C(u,u)

)

, log(1 — u) , log(u)
ny = lim — — = lim :
u—1logP(Zy > Fy " (u), Zy > Fy "(u)) u—0log C*(u,u)
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Gaussian copula Chi dependence functions

GAUSSIAN

0.2 0.4 0.6 0.8

lower tails upper tails

Fi1G. 18 — ¥ functions.
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Gumbel copula Chi dependence functions

I I I
0.2 0.4 0.6 0.8

lower tails upper tails

19 — ¥ functions.
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Chi dependence functions
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EXTREMES AND CORRELATION
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Application in risk management : Loss-ALAE

L and R concentration functions Chi dependence functions

Gumbel copula Gumbel copula

T ' T T T ' T T
0.2 0.4 0.6 0.8 . . 0.2 0.4 0.6 0.8

L function (lower tails) R function (upper tails) lower tails upper tails

Fi1G. 23 — L and R cumulative curves, and x functions.




ARTHUR CHARPENTIER - EXTREMES AND CORRELATION IN RISK MANAGEMENT

Application in risk management : car-household
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Car claims

F1a. 24 — Motor and Household claims.
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Application in risk management : car-household

L and R concentration functions Chi dependence functions

Gumbel copula Gumbel copula

T ' T T T ' T T
0.4 0.6 0.8 . . 0.2 0.4 0.6 0.8

L function (lower tails) R function (upper tails) lower tails upper tails

F1G. 25 — L and R cumulative curves, and x functions.
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Case of Archimedean copulas

For an exhaustive study of tail behavior for Archimedean copulas, see
CHARPENTIER & SEGERS (2008).

e upper tail : function of ¢'(1) and 6; =

o ¢'(1) < 0 : tail independence
o ¢'(1) =0 and 6; = 1 : dependence in independence
o ¢'(1) =0 and #; > 1 : tail dependence

e lower tail : function of ¢(0) and 6y =
o ¢(0) < oo : tail independence

= o0 and 6y = 0 : dependence in independence

= oo and 0y > 0 : tail dependence
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Measuring risks ?

the pure premium as a technical benchmark

Pascal, Fermat, Condorcet, Huygens, d’Alembert in the XVIIIth century

proposed to evaluate the “produit scalaire des probabilités et des gains”,

< Pp,r>= ZPZI'Z:ZP(X:xZ)IZ EP(X),
1=1 1=1

based on the “regle des parties”.

For Quételet, the expected value was, in the context of insurance, the price that

guarantees a financial equilibrium.

From this idea, we consider in insurance the pure premium as Ep(X). As in
COURNOT (1843), “l’espérance mathématique est donc le juste prix des chances’
(or the “fair price” mentioned in FELLER (1953)).

Problem : Saint Peterburg’s paradox, i.e. infinite mean risks (cf. natural

catastrophes)
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the pure premium as a technical benchmark

For a positive random variable X, recall that Ep(X) = / P(X > x)dx.
0

Expected value

o
©
>
o
2
=
<
Qo
o
o
a

Loss value, X

F1G. 26 — Expected value Ep(X) = [zdFx(z) = [ P(X > z)dx.
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from pure premium to expected utility principle

R.(X) /u(aj)dP = /P(U(X) > x))dx
where u : [0,00) — [0, 00) is a utility function.
Example with an exponential utility, u(x) = [1 —

1

R.(X) = - log (Ep(e

i.e. the entropic risk measure.

See CRAMER, (1728), BERNOULLI (1738), VON NEUMANN & MORGENSTERN
(1944), ROCHET (1994)... etc.
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Distortion of values versus distortion of probabilities

Expected utility (power utility function)
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Loss value, X

. 27 — Expected utility [ u(x)dFx(z).
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Distortion of values versus distortion of probabilities

Expected utility (power utility function)
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Loss value, X

. 28 — Expected utility [ u(x)dFx(z).
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from pure premium to distorted premiums (Wang)

R, (X) = /:Edg 0P = /g(IP’(X > 2))dz

where ¢ : [0,1] — [0, 1] is a distorted function.

Example

o ifglx) =X >1—-a) R, (X)=VaR(X,a),

o if g(x) =min{x/(1 —«a),1} R,(X) =TVaR(X,a) (also called expected
shortfall), R,(X) = Ep(X|X > VaR(X, a)).

See D’ ALEMBERT (1754), SCHMEIDLER (1986, 1989), YAARI (1987), DENNEBERG

(1994)... etc.

Remark : R,(X) might be denoted E .p. But it is not an expected value since
Q = g o P is not a probability measure.




ARTHUR CHARPENTIER - EXTREMES AND CORRELATION IN RISK MANAGEMENT

Distortion of values versus distortion of probabilities

Distorted premium beta distortion function)
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Loss value, X

F1G. 29 — Distorted probabilities [ g(P(X > x))dz.
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Distortion of values versus distortion of probabilities

Distorted premium beta distortion function)
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Loss value, X

F1G. 30 — Distorted probabilities [ ¢(P(X > x))dz.
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some particular cases a classical premiums

The exponential premium or entropy measure : obtained when the agent

as an exponential utility function, i.e.

7 such that U(w — 7)) = Ep(U(w — S5)),U(x) = — exp(—ax),

1
ie. m= —logEp(e**).
o

Esscher’s transform (see Esscher ( 1936), Bithlmann ( 1980)),

m=Eg(X) = Elié;ie.ai) ),

for some a > 0, i.e.
aQ _ e
dP EP(GO‘X).

Wang’s premium (see Wang ( 2000)), extending the Sharp ratio concept

/OOO F(z)dz and 7 = /OOO (0 (F(x)) + \)da
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Risk measures

The two most commonly used risk measures for a random variable X (assuming

that a loss is positive) are, ¢ € (0, 1),
e Value-at-Risk (VaR),

VaR,(X) =inf{x e R,P(X > z) < a},

e Fxpected Shortfall (ES), Tail Conditional Expectation (TCE) or Tail
Value-at-Risk (TVaR)

TVaR,(X)=E(X|X >VaR,(X)),

ARTZNER, DELBAEN, EBER & HEATH (1999) : a good risk measure is
subadditive,

TVaR is subadditive, VaR is not subadditive (in general).
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Risk measures and diversification

Any copula C' is bounded by Frchet-Hoeffding bounds,

d
max {z:uZ — (d — 1),0} < C(ug,...,uq) < min{uy,...,uq}t,
i=1

and thus, any distribution F on F(Fy,..., Fy;) is bounded

max {Z Fi(x;) — (d — 1),0} < F(x1,...,2q) <min{Fi(z1),..., Fr(zq)}.

Does this means the comonotonicity is always the worst-case scenario ?

Given a random pair (X,Y), let (X—,Y ) and (XT,Y ™) denote

contercomonotonic and comonotonic versions of (X, YY), do we have

R(6(X™,Y7)) < R(6(XY)) < R(H(XT,Y)).
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Tchen’s theorem and bounding some pure premiums
If ¢ : R? — R is supermodular, i.e.

¢(x2,92) — O(r1,y2) — ¢(22,¥1) + P(21,91) > 0,

for any x1 < x9 and y; < yo, then if (X,Y) € F(Fx, Fy),

E(p(X7,Y7)) <E(p(X,Y)) <E(o(XT,YT)),

as proved in TCHEN (1981).
Example 7. the stop loss premium for the sum of two risks E(X +Y —d),) is

supermodular.
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Example 8. For the n-year joint-life annuzity,

n

Ay = z:kaED(Taj >kand T, > k)= vkkpxy.
k=1 k=1

xy:n '

_I_

¢ xy:n

< Qgqyn™ <a

max{xps + kpy — 1,0} ( lower Frchet bound ),

= ka min{xpy, kPy } ( upper Frchet bound ).
k=1
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Makarov’s theorem and bounding Value-at-Risk

In the case where R denotes the Value-at-Risk (i.e. quantile function of the P&L
distribution),

RO<RX™T+Y D)LR(X +Y)LR(XT +Y 1) <RT,

where e.g. R™ can exceed the comonotonic case. Recall that

R(X+Y)=VaR, [ X +Y]|= F)}_lﬂ,(q) = inf{z € R|Fxyy(x) > q}.

Proposition 9. Let (X,Y) € F(Fx, Fy) then for all s € R,
To- (Fx, Fy)(s) SP(X +Y <s) < pc-(Fx, Fy)(s),

7o (Fx, Fy)(s) = xSEER{C(FX (z), Fy (y)), x +y = s}

and, if C(u,v) = u+v— C(u,v),

po(Fx, Fy)(s) = x?;lefR{C’(Fx(x), Fy(y)),z +y = s}.
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Bornes de la VaR d’un portefeuille

| | |
0.4 0.6 0.8

Somme de 2 risques Gaussiens

F1G. 31 — Value-at-Risk for 2 Gaussian risks A/(0, 1).
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Bornes de la VaR d’un portefeuille

I I I I
0.92 0.94 0.96 0.98

Somme de 2 risques Gaussiens

F1G. 32 — Value-at-Risk for 2 Gaussian risks N (0, 1).
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Bornes de la VaR d’un portefeuille

I
0.4 0.6

Somme de 2 risques Gamma

F1G. 33 — Value-at-Risk for 2 Gamma risks G(3,1).
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Bornes de la VaR d’un portefeuille

I I I I
0.92 0.94 0.96 0.98

Somme de 2 risques Gamma

F1G. 34 — Value-at-Risk for 2 Gamma risks G(3,1).
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The more correlated, the more risky ?

Will the risk of the portfolio increase with correlation ?

Recall the following theoretical result :

Proposition 10. Assume that X and X' are in the same Fréchet space (i.e.
X; £ X!), and define

S=X1+--+X,and 8" =X]+ -+ X_.

If X < X' for the concordance order, then S <pvaer S’ for the stop-loss or
TVaR order.

A consequence is that if X and X' are exchangeable,

corr(Xy, Xj) < corr(X;, X)) = TVaR(S,p) < TVaR(S’,p), for all p € (0,1).

See MULLER & STOYEN (2002) for some possible extensions.
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The more correlated, the more risky ?

Consider
e ( lines of business,

e simply a binomial distribution on each line of business, with small loss
probability (e.g. m = 1/1000).
1 if there is a claim on line ¢

Let ,andS:X1+---+Xd.
0 if not

Will the correlation among the X;’s increase the Value-at-Risk of S'7

Consider a probit model, i.e. X; = 1(X} < u;), where X* ~ N (0,X), i.e. a
Gaussian copula.

Assume that ¥ = [o; ;] where 0; ; = p € [—1,1] when ¢ # j.
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The more correlated, the more risky ?

probability

0000 0002 0004 0006 0008 0010
Expected Shortfall (99.75%

T T T T T T
0 0.2 04 06 08 1

Correlation

o0

0

F1G. 35 — 99.75% TVaR (or expected shortfall) for Gaussian copulas.
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The more correlated, the more risky ?

300
| L1 1

probability

1

Expected Shortfall (99%)
50 100 150 200 250

|

0
I

0000 0002 0004 0006 0008 0010

T
0

T T T T T
8] 02 04 06 08 1

Correlation

8]

F1G. 36 — 99% TVaR (or expected shortfall) for Gaussian copulas.
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The more correlated, the more risky 7

What about other risk measures, e.g. Value-at-Risk ?

corr(Xy, Xj) < corr(X;, X5) # VaR(S,p) < VaR(S',p), for all p € (0,1).

(see e.g. MITTNIK & YENER (2008)).
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The more correlated, the more risky ?

probability

Value-at-Risk (99.75%)

0000 0002 0004 0006 0008 0010

T T
o4 06

Correlation

Fi1G. 37 — 99.75% VaR for Gaussian copulas.
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The more correlated, the more risky ?

probability
Value-at-Risk (99%)

0000 0002 0004 0006 0008 0010

T T

04 06 04 06

correlation Correlation

Fi1G. 38 — 99% VaR for Gaussian copulas.
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The more correlated, the more risky ?

What could be the impact of tail dependence ?

Previously, we considered a Gaussian copula, i.e. tail independence. What if there
was tail dependence ?

Consider the case of a Student t-copula, with v degrees of freedom.
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The more correlated, the more risky ?

degrees of freedom
Expected Shortfall (99.75%)

T T
04 06

correlation Correlation
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P
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400
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—
=

.39 — 99.75% TVaR (or expected shortfall) for Student t-copulas.
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The more correlated, the more risky ?
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. 40 — 99% TVaR (or expected shortfall) for Student t-copulas.
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The more correlated, the more risky ?
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F1G. 41 — 99.75% VaR for Student ¢-copulas.
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The more correlated, the more risky ?
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Fic. 42 — 99% VaR for Student ¢-copulas.
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Conclusion

e (standard) correlation is definitively not an appropriate tool to describe
dependence features,
o in order to fully describe dependence, use copulas,
o since major focus in risk management is related to extremal event, focus on
tail dependence meausres,
e which copula can be appropriate ?
o Elliptical copulas offer a nice and simple parametrization, based on pairwise
comparison,
o Archimedean copulas might be too restrictive, but possible to introduce
Hierarchical Archimedean copulas,
e Value-at-Risk might yield to non-intuitive results,
o need to get a better understanding about Value-at-Risk pitfalls,

o need to consider alternative downside risk measures (namely TVaR).




