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“ it’s time to adopt modern Bayesian data analysis as standard procedure in our
scientific practice and in our educational curriculum. Three reasons:

1. Scientific disciplines from astronomy to zoology are moving to Bayesian analysis.
We should be leaders of the move, not followers.

2. Modern Bayesian methods provide richer information, with greater flexibility and
broader applicability than 20th century methods. Bayesian methods are
intellectually coherent and intuitive.
Bayesian analyses are readily computed with modern software and hardware.

3. Null-hypothesis significance testing (NHST), with its reliance on p values, has
many problems.
There is little reason to persist with NHST now that Bayesian methods are accessible
to everyone.

My conclusion from those points is that we should do whatever we can to encourage the
move to Bayesian data analysis.” John Kruschke,

(quoted in Meyers & Guszcza (2013))
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Bayes vs. Frequentist, inference on heads/tails

Consider some Bernoulli sample x = {x1, x2, · · · , xn}, where xi ∈ {0, 1}.

Xi’s are i.i.d. B(p) variables, fX(x) = px[1− p]1−x, x ∈ {0, 1}.

Standard frequentist approach

p̂ =
1

n

n∑
i=1

xi = argmin
{ n∏
i=1

fX(xi)︸ ︷︷ ︸
L(p;x)

}

From the central limit theorem
√
n

p̂− p√
p(1− p)

L→ N (0, 1) as n→∞

we can derive an approximated 95% confidence interval[
p̂± 1.96√

n

√
p̂(1− p̂)

]
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Bayes vs. Frequentist, inference on heads/tails

Example out of 1,047 contracts, 159 claimed a loss
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Small Data and Black Swans

Example [Operational risk] What if our sample
is x = {0, 0, 0, 0, 0} ?
How would we derive a confidence interval for p ?

“INA’s chief executive officer, dressed as Santa Claus,

asked an unthinkable question: Could anyone predict

the probability of two planes colliding in midair? Santa

was asking his chief actuary, L. H. Longley-Cook, to

make a prediction based on no experience at all. There

had never been a serious midair collision of commer-

cial planes. Without any past experience or repetitive

experimentation, any orthodox statistician had to an-

swer Santa’s question with a resounding no.”
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Bayes, the theory that would not die

Liu et al. (1996) claim that “Statistical methods
with a Bayesian flavor [...] have long been used in
the insurance industry”.

History of Bayesian statistics, the theory that would
not die by Sharon Bertsch McGrayne

“[Arthur] Bailey spent his first year in New York [in

1918] trying to prove to himself that ‘all of the fancy

actuarial [Bayesian] procedures of the casualty busi-

ness were mathematically unsound.’ After a year of in-

tense mental struggle, however, realized to his conster-

nation that actuarial sledgehammering worked” [...]
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Bayes, the theory that would not die

[...] “He even preferred it to the elegance of frequen-

tism. He positively liked formulae that described ‘ac-

tual data . . . I realized that the hard-shelled under-

writers were recognizing certain facts of life neglected

by the statistical theorists.’ He wanted to give more

weight to a large volume of data than to the frequen-

tists small sample; doing so felt surprisingly ‘logical

and reasonable’. He concluded that only a ‘suicidal’

actuary would use Fishers method of maximum likeli-

hood, which assigned a zero probability to nonevents.

Since many businesses file no insurance claims at all,

Fishers method would produce premiums too low to

cover future losses.”
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Bayes’s theorem

Consider some hypothesis H and some evidence E, then

PE(H) = P(H|E) =
P(H ∩ E)

P(E)
=

P(H) · P(E|H)

P(E)

Bayes rule, prior probability P(H)

versus posterior probability after receiving evidence E, PE(H) = P(H|E).

In Bayesian (parametric) statistics, H = {θ ∈ Θ} and E = {X = x}.

Bayes’ Theorem,

π(θ|x) =
π(θ) · f(x|θ)

f(x)
=

π(θ) · f(x|θ)∫
f(x|θ)π(θ)dθ

∝ π(θ) · f(x|θ)
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Small Data and Black Swans

Consider sample x = {0, 0, 0, 0, 0}.
Here the likelihood is (xi|θ) = θxi [1− θ]1−xi

f(x|θ) = θx
T1[1− θ]n−xT1

and we need a priori distribution π(·) e.g.
a beta distribution

π(θ) =
θα[1− θ]β

B(α, β)

π(θ|x) =
θα+xT1[1− θ]β+n−xT1

B(α+ xT1, β + n− xT1)
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On Bayesian Philosophy, Confidence vs. Credibility

for frequentists, a probability is a measure of the the frequency of repeated events

→ parameters are fixed (but unknown), and data are random

for Bayesians, a probability is a measure of the degree of certainty about values

→ parameters are random and data are fixed

“Bayesians : Given our observed data, there is a 95% probability that the true value of θ

falls within the credible region

vs. Frequentists : There is a 95% probability that when I compute a confidence interval

from data of this sort, the true value of θ will fall within it.” in Vanderplas (2014)

Example see Jaynes (1976), e.g. the truncated exponential
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is a 95% confidence interval
of a proportion ? Here x = 159 and n = 1047.

1. draw sets (x̃1, · · · , x̃n)k with Xi ∼ B(x/n)

2. compute for each set of values confidence
intervals

3. determine the fraction of these confidence
interval that contain x

→ the parameter is fixed, and we guarantee
that 95% of the confidence intervals will con-
tain it.
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On Bayesian Philosophy, Confidence vs. Credibility
Example What is 95% credible region of a pro-
portion ? Here x = 159 and n = 1047.

1. draw random parameters pk with from the
posterior distribution, π(·|x)

2. sample sets (x̃1, · · · , x̃n)k with Xi,k ∼ B(pk)

3. compute for each set of values means xk

4. look at the proportion of those xk

that are within this credible region
[Π−1(.025|x); Π−1(.975|x)]

→ the credible region is fixed, and we guarantee
that 95% of possible values of x will fall within it
it.
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Difficult concepts ? Difficult computations ?

We have a sample x = {x1, · · · , xd) i.i.d. from distribution fθ(·).

In predictive modeling, we need E(g(X)|x) =
∫
xfθ|x(x)dx where

fθ|x(x) = f(x|x) =

∫
f(x|θ) · π(θ|x)dθ

How can we derive π(θ|x) ?

Can we sample from π(θ|x) (use monte carlo technique to approximate the
integral) ?

Computations not that simple... until the 90’s : MCMC
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Markov Chain

Stochastic process, (Xt)t∈N?
, on some discrete space Ω

P(Xt+1 = y|Xt = x,Xt−1 = xt−1) = P(Xt+1 = y|Xt = x) = P (x, y)

where P is a transition probability, that can be stored in a transition matrix,
P = [Px,y] = [P (x, y)].

Observe that P(Xt+k = y|Xt = x) = Pk(x, y) where P k = [Pk(x, y)].

Under some condition, lim
n→∞

P n = Λ = [λT],

Problem given a distribution λ, is it possible to generate a Markov Chain that
converges to this distribution ?
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Bonus Malus and Markov Chains

Ex no-claim bonus, see Lemaire (1995).

Assume that the number of claims is
N ∼ P(10.536), so that P(N = 0) =

10%.
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Hastings-Metropolis

Back to our problem, we want to sample from π(θ|x)

i.e. generate θ1, · · · , θn, · · · from π(θ|x).

Hastings-Metropolis sampler will generate a Markov Chain (θt) as follows,

• generate θ1

• generate θ? and U ∼ U([0, 1]),

compute R =
π(θ?|x)

π(θt|x)

P (θt|θ?)
P (θ?|θt−1)

if U < R set θt+1 = θ?

if U ≥ R set θt+1 = θt

R is the acceptance ratio, we accept the new state θ? with probability min{1, R}.
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Hastings-Metropolis

Observe that

R =
π(θ?) · f(x|θ?)
π(θt) · f(x|θt)

P (θt|θ?)
P (θ?|θt−1)

In a more general case, we can have a Markov process, not a Markov chain.

E.g. P (θ?|θt) ∼ N (θt, 1)
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Using MCMC to generate Gaussian values

> metrop1 <- function(n=1000,eps=0.5){
+ vec <- vector("numeric", n)
+ x=0
+ vec[1] <- x
+ for (i in 2:n) {
+ innov <- runif(1,-eps,eps)
+ mov <- x+innov
+ aprob <- min(1,dnorm(mov)/dnorm(x))
+ u <- runif(1)
+ if (u < aprob)
+ x <- mov
+ vec[i] <- x
+ }
+ return(vec)}
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Using MCMC to generate Gaussian values

> plot.mcmc <- function(mcmc.out) {
+ op <- par(mfrow=c(2,2))
+ plot(ts(mcmc.out),col="red")
+ hist(mcmc.out,30,probability=TRUE,
+ col="light blue")
+ lines(seq(-4,4,by=.01),dnorm(seq(-4,4,
+ by=.01)),col="red")
+ qqnorm(mcmc.out)
+ abline(a=mean(mcmc.out),b=sd(mcmc.out))
+ acf(mcmc.out,col="blue",lag.max=100)
+ par(op) }

> metrop.out<-metrop1(10000,1)
> plot.mcmc(metrop.out)
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Heuristics on Hastings-Metropolis

In standard Monte Carlo, generate θi’s i.i.d., then

1

n

n∑
i=1

g(θi)→ E[g(θ)] =

∫
g(θ)π(θ)dθ

(strong law of large numbers).

Well-behaved Markov Chains (P aperiodic, irreducible, positive recurrent) can
satisfy some ergodic property, similar to that LLN. More precisely,

• P has a unique stationary distribution λ, i.e. λ = λ× P

• ergodic theorem
1

n

n∑
i=1

g(θi)→
∫
g(θ)λ(θ)dθ

even if θi’s are not independent.
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Heuristics on Hastings-Metropolis

Remark The conditions mentioned above are

• aperiodic, the chain does not regularly return to any state in multiples of
some k.

• irreducible, the state can go from any state to any other state in some finite
number of steps

• positively recurrent, the chain will return to any particular state with
probability 1, and finite expected return time

22



Arthur CHARPENTIER - Bayesian Techniques & Actuarial Sciences

MCMC and Loss Models

Example A Tweedie model, E(X) = µ and Var(X) = ϕ · µp. Here assume that ϕ
and p are given, and µ is the unknown parameter.

→ need a predictive distribution for µ given x.

Consider the following transition kernel (a Gamma distribution)

µ|µt ∼ G
(µt
α
, α
)

with E(µ|µt) = µt and CV(µ) =
1√
α
.

Use some a priori distribution, e.g. G (α0, β0).

23
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MCMC and Loss Models

• generate µ1

• at step t : generate µ? ∼ G
(
α−1µt, α

)
and U ∼ U([0, 1]),

compute R =
π(µ?) · f(x|µ?)
π(µt) · f(x|θt)

Pα(µt|θ?)
Pα(θ?|θt−1)

if U < R set θt+1 = θ?

if U ≥ R set θt+1 = θt

where

f(x|µ) = L(µ) =
n∏
i=1

f(xi|µ, p, ϕ),

f(x · |µ, p, ϕ) being the density of the Tweedie distribution, dtweedie function

(x, p, mu, phi) from library(tweedie).

24



Arthur CHARPENTIER - Bayesian Techniques & Actuarial Sciences

> p=2 ; phi=2/5
> set.seed(1) ; X <- rtweedie(50,p,10,phi)
> metrop2 <- function(n=10000,a0=10,
+ b0=1,alpha=1){
+ vec <- vector("numeric", n)
+ mu <- rgamma(1,a0,b0)
+ vec[1] <- mu
+ for (i in 2:n) {
+ mustar <- rgamma(1,vec[i-1]/alpha,alpha)
+ R=prod(dtweedie(X,p,mustar,phi)/dtweedie
+ (X,p,vec[i-1],phi))*dgamma(mustar,a0,b0)/
+ dgamma(vec[i-1],a0,b0)* dgamma(vec[i-1],
+ mustar/alpha,alpha)/dgamma(mustar,
+ vec[i-1]/alpha,alpha)
+ aprob <- min(1,R)
+ u <- runif(1)
+ ifelse(u < aprob,vec[i]<-mustar,
+ vec[i]<-vec[i-1]) }
+ return(vec)}
> metrop.output<-metrop2(10000,alpha=1)

25
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Gibbs Sampler
For a multivariate problem, it is possible to use Gibbs sampler.

Example Assume that the loss ratio of a company has a lognormal distribution,
LN(µ, σ2), .e.g

> LR <- c(0.958, 0.614, 0.977, 0.921, 0.756)

Example Assume that we have a sample x from a N (µ, σ2). We want the
posterior distribution of θ = (µ, σ2) given x . Observe here that if priors are
Gaussian N

(
µ0, τ

2
)
and the inverse Gamma distribution IG(a, b), them

µ|σ2,x ∼ N
(

σ2

σ2 + nτ2
µ0 +

nτ2

σ2 + nτ2
x,

σ2τ2

σ2 + nτ2

) 2∑
i=1

σ2|µ,x ∼ IG

(
n

2
+ a,

1

2

n∑
i=1

[xi − µ]2 + b

)
More generally, we need the conditional distribution of θk|θ−k,x, for all k.

> x <- log(LR)
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Gibbs Sampler

> xbar <- mean(x)
> mu <- sigma2=rep(0,10000)
> sigma2[1] <- 1/rgamma(1,shape=1,rate=1)
> Z <- sigma2[1]/(sigma2[1]+n*1)
> mu[1] <- rnorm(1,m=Z*0+(1-Z)*xbar,
+ sd=sqrt(1*Z))
> for (i in 2:10000){
+ Z <- sigma2[i-1]/(sigma2[i-1]+n*1)
+ mu[i] <- rnorm(1,m=Z*0+(1-Z)*xbar,
+ sd=sqrt(1*Z))
+ sigma2[i] <- 1/rgamma(1,shape=n/2+1,
+ rate <- (1/2)*(sum((x-mu[i])∧2))+1)
+ }
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Gibbs Sampler

Example Consider some vector X = (X1, · · · , Xd) with indépendent
components, Xi ∼ E(λi). We sample to sample from X given XT1 > s for some
threshold s > 0.

• start with some starting point x0 such that xT
0 1 > s

• pick up (randomly) i ∈ {1, · · · , d}

Xi given Xi > s− xT
(−i)1 has an Exponential distribution E(λi)

draw Y ∼ E(λi) and set xi = y + (s− xT
(−i)1)+ until xT

(−i)1 + xi > s

E.g. losses and allocated expenses
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Gibbs Sampler

> sim <- NULL
> lambda <- c(1,2)
> X <- c(3,3)
> s <- 5
> for(k in 1:1000){
+ i <- sample(1:2,1)
+ X[i] <- rexp(1,lambda[i])+
+ max(0,s-sum(X[-i]))
+ while(sum(X)<s){
+ X[i] <- rexp(1,lambda[i])+
+ max(0,s-sum(X[-i])) }
+ sim <- rbind(sim,X) }
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JAGS and STAN

Martyn Plummer developed JAGS Just another Gibbs sampler in 2007 (stable
since 2013) in library(runjags). It is an open-source, enhanced, cross-platform
version of an earlier engine BUGS (Bayesian inference Using Gibbs Sampling).

STAN library(Rstan) is a newer tool that uses the Hamiltonian Monte Carlo
(HMC) sampler.

HMC uses information about the derivative of the posterior probability density
to improve the algorithm. These derivatives are supplied by algorithm
differentiation in C/C++ codes.
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JAGS on the N (µ, σ2) distribution

> library(runjags)
> jags.model <- "
+ model {
+ mu ∼ dnorm(mu0, 1/(sigma0∧2))
+ g ∼ dgamma(k0, theta0)
+ sigma <- 1 / g
+ for (i in 1:n) {
+ logLR[i] ∼ dnorm(mu, g∧2)
+ }
+ }"

> jags.data <- list(n=length(LR),
+ logLR=log(LR), mu0=-.2, sigma0=0.02,
+ k0=1, theta0=1)

> jags.init <- list(list(mu=log(1.2),
+ g=1/0.5∧2),
+ list(mu=log(.8),
+ g=1/.2∧2))

> model.out <- autorun.jags(jags.model,
+ data=jags.data, inits=jags.init,
+ monitor=c("mu", "sigma"), n.chains=2)
> traceplot(model.out$mcmc)
> summary(model.out)
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STAN on the N (µ, σ2) distribution

> library(rstan)
> stan.model <- "
+ data {
+ int<lower=0> n;
+ vector[n] LR;
+ real mu0;
+ real<lower=0> sigma0;
+ real<lower=0> k0;
+ real<lower=0> theta0;
+ }
+ parameters {
+ real mu;
+ real<lower=0> sigma;
+ }

+ model {
+ mu ∼ normal(mu0, sigma0);
+ sigma ∼ inv_gamma(k0, theta0);
+ for (i in 1:n)
+ log(LR[i]) ∼ normal(mu, sigma);
+ }"

> stan.data <- list(n=length(LR), r=LR, mu0=mu0,
+ sigma0=sigma0, k0=k0, theta0=theta0)
> stan.out <- stan(model_code=stan.model,
+ data=stan.data, seed=2)
> traceplot(stan.out)
> print(stan.out, digits_summary=2)
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MCMC and Loss Models

Example Consider some simple time series of Loss Ratios,

LRt ∼ N (µt, σ
2) where µt = φµt−1 + εt

E.g. in JAGS we can define the vector µ = (µ1, · · · , µT ) recursively

+ model {
+ mu[1] ∼ dnorm(mu0, 1/(sigma0∧2))
+ for (t in 2:T) { mu[t] ∼ dnorm(mu[t-1], 1/(sigma0∧2)) }
+ }
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MCMC and Claims Reserving

Consider the following (cumulated) triangle, {Ci,j},

0 1 2 3 4 5

0 3209 4372 4411 4428 4435 4456

1 3367 4659 4696 4720 4730 4752.4

2 3871 5345 5398 5420 5430.1 5455.8

3 4239 5917 6020 6046.1 6057.4 6086.1

4 4929 6794 6871.7 6901.5 6914.3 6947.1

5 5217 7204.3 7286.7 7318.3 7331.9 7366.7

λj 0000 1.3809 1.0114 1.0043 1.0018 1.0047

σj 0000 0.7248 0.3203 0.04587 0.02570 0.02570

(from Markus’ library(ChainLadder)).
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A Bayesian version of Chain Ladder

0 1 2 3 4 5

0 1.362418 1.008920 1.003854 1.001581 1.004735

1 1.383724 1.007942 1.005111 1.002119

2 1.380780 1.009916 1.004076

3 1.395848 1.017407

4 1.378373

λj 1.380900 1.011400 1.004300 1.001800 1.004700

σj 0.724800 0.320300 0.0458700 0.0257000 0.0257000

Assume that λi,j ∼ N
(
µj ,

τj
Ci,j

)
.

We can use Gibbs sampler to get the distribution of the transition factors, as well
as a distribution for the reserves,
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> source("http://freakonometrics.free.fr/
triangleCL.R")
> source("http://freakonometrics.free.fr/
bayesCL.R")
> mcmcCL<-bayesian.triangle(PAID)
> plot.mcmc(mcmcCL$Lambda[,1])
> plot.mcmc(mcmcCL$Lambda[,2])
> plot.mcmc(mcmcCL$reserves[,6])
> plot.mcmc(mcmcCL$reserves[,7])

> library(ChainLadder)
> MCL<-MackChainLadder(PAID)
> m<-sum(MCL$FullTriangle[,6]-
+ diag(MCL$FullTriangle[,6:1]))
> stdev<-MCL$Total.Mack.S.E
> hist(mcmcCL$reserves[,7],probability=TRUE,
> breaks=20,col="light blue")
> x=seq(2000,3000,by=10)
> y=dnorm(x,m,stdev)
> lines(x,y,col="red")
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A Bayesian analysis of the Poisson Regression Model

In a Poisson regression model, we have a sample (x,y) = {(xi, yi)},

yi ∼ P(µi) with logµi = β0 + β1xi.

In the Bayesian framework, β0 and β1 are random variables.

Example: for instance library(arm), (see also library(INLA))

The code is very simple : from
> reg<-glm(dist∼speed,data=cars,family=poisson)

get used to
> regb <- bayesglm(dist∼speed,data=cars,family=poisson)
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A Bayesian analysis of the Poisson Regression Model

> newd <- data.frame(speed=0:30)
> predreg <- predict(reg,newdata=
+ newd,type="response")
> plot(cars,axes)
> lines(newd$speed,predreg,lwd=2)

> library(arm)
> beta01<-coef(sim(regb))

> for(i in 1:100){
> lines(newd$speed,exp(beta01[i,1]+
> beta01[i,2]*newd$speed))}

> plot.mcmc(beta01[,1])
> plot.mcmc(beta01[,2])
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Other alternatives to classical statistics

Consider a regression problem, µ(x) = E(Y |X = x), and assume that smoothed
splines are used,

µ(x) =
k∑
i=1

βjhj(x)

Let H be the n× k matrix, H = [hj(xi)] = [h(xi)], then β̂ = (HTH)−1HTy,
and

ŝe(µ̂(x)) = [h(x)T(HTH)−1h(x)]
1
2 σ̂

With a Gaussian assumption on the residuals, we can derive (approximated)
confidence bands for predictions µ̂(x).
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Smoothed regression with splines

> dtf <- read.table(
+ "http://freakonometrics.free.fr/

theftinsurance.txt",sep=";",
+ header=TRUE)
> names(dtf)<-c("x","y")

> library(splines)
> reg=lm(y∼bs(x,df=4),data=dtf)

> yp=predict(reg,type="response",
+ newdata=new,interval="confidence")
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Bayesian interpretation of the regression problem

Assume here that β ∼ N (0, τΣ) as the priori distribution for β.

Then, if (x,y) = {(xi, yi), i = 1, · · · , n}, the posterior distribution of µ(x) will be
Gaussian, with

E(µ(x)|x,y) = h(x)T
(
HTH +

σ2

τ
Σ−1

)−1
HTy

cov(µ(x), µ(x′)|x,y) = h(x)T
(
HTH +

σ2

τ
Σ−1

)−1
h(x′)σ2

Example Σ = I
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Bayesian interpretation of the regression problem

> tau <- 100
> sigma <- summary(reg)$sigma
> H=cbind(rep(1,nrow(dtf)),matrix(bs(b$x,
+ df=4),nrow=nrow(dtf)))
> h=cbind(rep(1,nrow(new)),matrix(bs(new$x,
+ df=4),nrow=nrow(new)))
> E=h%*%solve(t(H)%*%H + sigma∧2/tau*
+ diag(1,ncol(H)))%*%t(H)%*%dtf$y
> V=h%*%solve(t(H)%*%H + sigma∧2/tau*
+ diag(1,ncol(H)))%*% t(h) * sigma∧2
> z=E+t(chol(V))%*%rnorm(length(E))
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Bootstrap strategy

Assume that Y = µ(x) + ε, and based on the estimated model, generate pseudo
observations, y?i = µ̂(xi) + ε̂?i .

Based on (x,y?) = {(xi, y?i ), i = 1, · · · , n}, derive the estimator µ̂?(?)

(and repeat)
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Bootstrap strategy

> for(b in 1:1000) {
+ i=sample(1:nrow(dtf),size=nrow(dtf),
+ replace=TRUE)
+ regb=lm(y∼bs(x,df=4),data=dtf[i,])
+ ypb[,b]=predict(regb,type="response",
+ newdata=new))
+ }

Observe that the bootstrap is the Bayesian
case, when τ →∞.
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Some additional references (before a conclusion)
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Take-Away Conclusion

Kendrick (2006), about computational economics: “our the-

sis is that computational economics offers a way to improve this

situation and to bring new life into the teaching of economics in

colleges and universities [...] computational economics provides an

opportunity for some students to move away from too much use

of the lecture-exam paradigm and more use of a laboratory-paper

paradigm in teaching under graduate economics. This opens the

door for more creative activity on the part of the students by giv-

ing them models developed by previous generations and challenging

them to modify those models.”

It is probably the same about computational actuarial science,
thanks to R...
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Take-Away Conclusion

Efron (2004) claimed that “Bayes rule is a very attractive way of reasoning, and
fun to use, but using Bayes rule doesn’t make one a Bayesian ”.

Bayesian models offer an interesting alternative to stan-
dard statistical techniques, on small datasets as well as
on large ones (see applications to hierarchical and longi-
tudinal models).

Computational issues are not that complicated... once you
get used to the bayesian way of seen a statistical model.
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