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“it’s time to adopt modern Bayesian data analysis as standard procedure in our

scientific practice and in our educational curriculum. Three reasons:

1. Scientific disciplines from astronomy to zoology are moving to Bayesian analysis.
We should be leaders of the move, not followers.

. Modern Bayesian methods provide richer information, with greater flexibility and
broader applicability than 20th century methods. Bayesian methods are

intellectually coherent and intuitive.
Bayesian analyses are readily computed with modern software and hardware.

. Null-hypothesis significance testing (NHST), with its reliance on p values, has

many problems.
There is little reason to persist with NHST now that Bayesian methods are accessible

to everyone.

My conclusion from those points is that we should do whatever we can to encourage the

move to Bayesian data analysis.” John Kruschke,

(quoted in Meyers & Guszcza (2013))
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Bayes vs. Frequentist, inference on heads/tails

Consider some Bernoulli sample © = {z1, 22, - ,x,}, where x; € {0, 1}.
X,’s are i.i.d. B(p) variables, fx(z) = p*[1 —p|'~%, x € {0,1}.
Standard frequentist approach

D= sz = argmln{ ﬁfx (x; }

=1

-~

L(p;x)

From the central limit theorem

AN

—p
\f\/p(l —p)

we can derive an approximated 95% confidence interval

1.96
pi—\/p 1—p

5 N(0,1) as n — oo
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Bayes vs. Frequentist, inference on heads/tails

Example out of 1,047 contracts, 159 claimed a loss

— (True) Binomial Distribution
—— Poisson Approximation
—— Gaussian Approximation

Probability
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Small Data and Black Swans

Example |Operational risk| What if our sample
is ¢ = {0,0,0,0,0} ?

How would we derive a confidence interval for p 7

“INA’s chief executive officer, dressed as Santa Claus, how baves

asked an unthinkable question: Could anyone predict k{%_‘)the emgma code

the probability of two planes colliding in midair? Santa

was asking his chief actuary, L. H. Longley-Cook, to hunted down russian

make a prediction based on no experience at all. There submarines & emerQEd
had never been a serious midair collision of commer- triumphant from tWO)&,;
cial planes. Without any past experience or repetitive centuries of Controversy
experimentation, any orthodox statistician had to an-

swer Santa’s question with a resounding no.”
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Bayes, the theory that would not die

Liu et al. (1996) claim that “Statistical methods
with a Bayesian flavor |...| have long been used in the theory

the insurance industry’. that would
not die

History of Bayesian statistics, the theory that would how bayes’ rule cracked
the enigma code,
hunted down russian
submarines, & emerged
triumphant from two
centuries of controversy

not die by Sharon Bertsch McGrayne

“[Arthur] Bailey spent his first year in New York [in
1918] trying to prove to himself that ‘all of the fancy
actuarial [Bayesian| procedures of the casualty busi-
ness were mathematically unsound.’ After a year of in-
tense mental struggle, however, realized to his conster-

nation that actuarial sledgehammering worked” |...]
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Bayes, the theory that would not die

|...] “He even preferred it to the elegance of frequen-
tism. He positively liked formulae that described ‘ac-
tual data . . . I realized that the hard-shelled under-
writers were recognizing certain facts of life neglected
by the statistical theorists.” He wanted to give more
weight to a large volume of data than to the frequen-
tists small sample; doing so felt surprisingly ‘logical
and reasonable’. He concluded that only a ‘suicidal’
actuary would use Fishers method of mazrimum likeli-
hood, which assigned a zero probability to nonevents.
Since many businesses file no insurance claims at all,
Fishers method would produce premiums too low to

cover future losses.”

arthur bailey

After the Second World War the first public challenge to the anti-Bayesian
status quo came not from the military or university mathematicians and stat-
isticians but from a Bible-quoting business executive named Arthur L. Bailey.

Bailey was an insurance actuary whose father had been fired and black-
balled by every bank in Boston for telling his employers they should not be
lending large sums of money to local politicians. So ostracized was the family
that even Arthur’s schoolmates stopped inviting him and his sister to par-
ties. Turning his back on the New England establishment, Bailey enrolled at
the University of Michigan in Ann Arbor. There he studied statistics in the
mathematics department’s actuarial program, earned a bachelor of science
degree in 1928, and met his wife, Helen, who became an actuary for John
Hancock Mutual Life before their children were born.'

Bailey’s first jobwas, he liked to say, “in bananas,” that is, in the statistics
department of the United Fruit Company headquarters in Boston. When the
department was eliminated during the Depression, Bailey wound up driving
a fruit truck and chasing escaped tarantulas down Boston streets. He was
lucky to have the job, and his family never lacked for bananas and oranges.

In 1937, after nine years in bananas, Bailey got a job in an unrelated field
in New York City. There he was in charge of setting premium rates to cover
risks involving automobiles, aircraft, manufacturing, burglary, and theft for
the American Mutual Alliance, a consortium of mutual insurance companies.

Preferring church and community connections to the fair-weather
friends of his youth, Bailey hid his growing professional success by living

quietly in unpretentious New York suburbs. He relaxed by gardening, hiking
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Bayes’s theorem

Consider some hypothesis H and some evidence E, then

Pp(H) = P(H|E) = P(g(gf) _ P(H)ﬁ(i()E’H)

Bayes rule,

prior probability P(H )

versus posterior probability after receiving evidence E, Pg(H)

In Bayesian (parametric) statistics, H = {6 € ©} and F = {X = x}.

Bayes’ Theorem,

f(x) [ f(x]|0)m(0)do
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Small Data and Black Swans

Consider sample & = {0,0,0,0,0}.
Here the likelihood is

(w:l0) = 67 [1 — ]~
f(]0) = 6= 11 — g)n ="

and we need a priori distribution 7 () e.g.

a beta distribution

~6¥[1—6)°
- B(a,8)

Hoz—l—a:-rl[l . Q]B—i—n—le

()

m(0la) = Bla+x™l,4+n—xT1)
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On Bayesian Philosophy, Confidence vs. Credibility

for frequentists, a probability is a measure of the the frequency of repeated events
— parameters are fixed (but unknown), and data are random
for Bayesians, a probability is a measure of the degree of certainty about values

— parameters are random and data are fixed

“Bayesians : Given our observed data, there is a 95% probability that the true value of 6

falls within the credible region

vs. Frequentists : There is a 95% probability that when I compute a confidence interval

from data of this sort, the true value of 0 will fall within it.” in Vanderplas (2014)

Example see Jaynes (1976), e.g. the truncated exponential
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is a 95% confidence interval
of a proportion ? Here * = 159 and n = 1047.

1. draw sets (Z1,:-- ,Zn)x With X; ~ B(Z/n)

2. compute for each set of values confidence

intervals

. determine the fraction of these confidence

interval that contain T

— the parameter is fixed, and we guarantee
that 95% of the confidence intervals will con-

tain it.
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On Bayesian Philosophy, Confidence vs. Credibility

Example What is 95% credible region of a pro-
portion 7 Here T = 159 and n = 1047.

1. draw random parameters p; with from the

posterior distribution, 7(-|x)
2. sample sets (Z1,- - ,Zp)r With X; x ~ B(pg)
3. compute for each set of values means

4. look at the proportion of those Ty
that are within this credible region

TI-1(.025|2); II-1(.975|)]

— the credible region is fixed, and we guarantee
that 95% of possible values of T will fall within it
it.

13
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Difficult concepts ? Difficult computations ?

We have a sample * = {z1, -+ ,x4) i.i.d. from distribution fy(-).

In predictive modeling, we need E(g(X)|x) = [ 2 fp|o(x)dx where

Fora(@) = f(alz) = / £(210) - 7(6])do

How can we derive w(0|x) ?

Can we sample from 7(f|x) (use monte carlo technique to approximate the
integral) 7

Computations not that simple... until the 90’s : MCMC
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Markov Chain

Stochastic process, (X)ten, , on some discrete space (2
P(Xi1 =yl Xe =2, X, 1 =x,_1) =P(Xp1 = y[Xt =2) = P(z,y)

where P is a transition probability, that can be stored in a transition matrix,

P = [P.,) = [P(x.,y)]

Observe that P(X;, 1 = y|X; = z) = Py(x,y) where P" = [P,(z,y)].

Under some condition, lim P"™ = A = [)\T],
n—oo

Problem given a distribution A, is it possible to generate a Markov Chain that

converges to this distribution 7
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Bonus Malus and Markov Chains

Ex no-claim bonus, see Lemaire (1995).

HONG KONG
Table B-9. Hong Kong System

Class Premium Class After

]
Claims

Starting class: 6.

Assume that the number of claims is
N ~ P(10.536), so that P(N = 0) =
10%.
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Hastings-Metropolis
Back to our problem, we want to sample from 7(6|x)
i.e. generate 61, ---,0,,--- from w(0|x).

Hastings-Metropolis sampler will generate a Markov Chain (6;) as follows,

e generate 0;
e generate 6* and U ~ U([0, 1]),

z) P(6:]6%)

)
) P(6%]0:—1)
if U < R set (9t_|_1 — 0"

(0*
(0+]

(0" |x
compute R =
CAE"

if U > R set (975—1—1 = (975

R is the acceptance ratio, we accept the new state * with probability min{1, R}.
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Hastings-Metropolis

Observe that
m(0*) - f(x|0%) P(0:]0%)

m(0;) - f(x|0;) P(0*]0;-1)

R —

In a more general case, we can have a Markov process, not a Markov chain.

E.g. P(6*|6,) ~ N(6;,1)
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Using MCMC to generate Gaussian values

metropl <- function(n=1000,eps=0.5){
vec <- vector("numeric", n)

x=0

vec[1l] <- x

for (i in 2:n) {

innov <- runif(1,-eps,eps)

mov <- xX+innov

aprob <- min(1,dnorm(mov)/dnorm(x))
u <- runif (1)

if (u < aprob)

X <- mov

vec[i] <- x

+

return(vec) }

>
-+
-
-+
-
-
-+
-
-+
-
-
-+
-
-+
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Using MCMC to generate Gaussian values

Histogram of mcmc.out

plot.mcmc <- function(mcmc.out) {

op <- par(mfrow=c(2,2))

plot (ts(mcmc.out),col="red")

hist (mcmc.out,30,probability=TRUE,
col="1light blue")
lines(seq(-4,4,by=.01) ,dnorm(seq(-4,4,
by=.01)),col="red") : @°5ﬂ;@ e
qgnorm(mcmc . out)

Normal Q-Q Plot

abline (a=mean (mcmc.out) ,b=sd(mcmc.out))
acf (mcmc.out,col="blue",lag.max=100)
par (op) }

>
-
-
-
-
+
-
-
-
-
-

metrop.out<-metropl(10000,1)
> plot.mcmc (metrop.out)
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Heuristics on Hastings-Metropolis

In standard Monte Carlo, generate 6;’s i.i.d., then

~ 3" 9(6.) = Elg(0)

(strong law of large numbers).

Well-behaved Markov Chains (P aperiodic, irreducible, positive recurrent) can
satisfy some ergodic property, similar to that LLN. More precisely,

e P has a unique stationary distribution A, i.e. A=A X P

e crgodic theorem

SWORY FONCL

even if 6;’s are not independent.
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Heuristics on Hastings-Metropolis

Remark The conditions mentioned above are

e aperiodic, the chain does not regularly return to any state in multiples of

some k.

e irreducible, the state can go from any state to any other state in some finite

number of steps

e positively recurrent, the chain will return to any particular state with

probability 1, and finite expected return time
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MCMC and Loss Models
Example A Tweedie model, E(X) = ;4 and Var(X) = ¢ - uP. Here assume that ¢

and p are given, and p is the unknown parameter.
— need a predictive distribution for p given x.

Consider the following transition kernel (a Gamma distribution)

:u‘:ut ~ g (ﬂa&)
(87

with E(u|p:) = pe and CV(u) =

Use some a priori distribution, e.g. G (g, Bo).
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MCMC and Loss Models

e generate [y

e at step t : generate u* ~ G (oz_l,ut,Oé) and U ~ U(|0, 1]),

m(p*) - flxe|p*) Polue|0)
m(e) - f(2]0y) Po(0%|0i-1)

if U < R set (9t_|_1 — 0"

compute R =

if U Z R set (9t_|_1 — (9t

where
n

f(@lp) = L(p) = ][ f(@ilup, ¢),

i=1
f(x - |u, p, ) being the density of the Tweedie distribution, dtweedie function

(x, p, mu, phi) from library(tweedie).
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>
>
>
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-
-
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-
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-
-
-
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-
-
-
>

p=2 ; phi=2/5

set.seed(1) ; X <- rtweedie(50,p,10,phi)
metrop2 <- function(n=10000,a0=10,
b0=1,alpha=1){

vec <- vector("numeric", n)

mu <- rgamma(l,a0,b0)

vec[1l] <- mu

for (i in 2:n) {

mustar <- rgamma(l,vec[i-1]/alpha,alpha)
R=prod(dtweedie (X,p,mustar,phi) /dtweedie
(X,p,vec[i-1],phi)) *dgamma (mustar,al,b0)/
dgamma (vec[i-1],a0,b0)* dgamma(vec[i-1],
mustar/alpha,alpha)/dgamma(mustar,
vec[i-1]/alpha,alpha)

aprob <- min(1,R)

u <- runif(1)

ifelse(u < aprob,vec[i]<-mustar,
vec[i]<-vec[i-1]) }

return(vec) }
metrop.output<-metrop2(10000,alpha=1)

T
0

T
2000

4000 6000 8000 10000

Time

Normal Q-Q Plot

Histogram of mcmc.out
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Gibbs Sampler

For a multivariate problem, it is possible to use Gibbs sampler.

Example Assume that the loss ratio of a company has a lognormal distribution,
LN(p,0%), .e.g

> LR <- c(0.958, 0.614, 0.977, 0.921, 0.756)

Example Assume that we have a sample  from a N (u, 0?). We want the
posterior distribution of @ = (u, 0?) given x . Observe here that if priors are
Gaussian N (o, 72) and the inverse Gamma distribution IG(a,b), them

)
o2 nr? o272 )

Ho + X
o2 + nr? 02 4+n7t2 " 02 4 nr2

plo?, x NN(

2 n B 2
e 16 (§ g Y 0}

1=1

\

More generally, we need the conditional distribution of 0|0 _, x, for all k.

> x <- log(LR)
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>
>
>
>
>
-
>
-
-
-+
-
-
-

Gibbs Sampler

xbar <- mean(x)

mu <- sigma2=rep(0,10000)

sigma2[1] <- 1/rgamma(l,shape=1,rate=1)
Z <- sigma2[1]/(sigma2[1]+nx*1)

mul[l] <- rnorm(1,m=Z*x0+(1-Z)*xbar,

i

sd=sqrt (1*Z))
for (i in 2:10000){
Z <- sigma2[i-1]/(sigma2[i-1]+n*1)

T T T T
2000 4000 6000 8000

Time

Normal Q-Q Plot

mul[i] <- rnorm(1,m=Z*x0+(1-Z)*xbar,
sd=sqrt (1*Z))

sigma2[i] <- 1/rgamma(1l,shape=n/2+1,
rate <- (1/2)*(sum((x-mul[i])”"2))+1)
+

Histogram of mcmc.out

-0.188 -0.186 -0.184 -0.182 -0.180

mecmc.out

Series mcmc.out

T
-2 0 2

Theoretical Quantiles
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Gibbs Sampler

Example Consider some vector X = (Xq,---, Xy) with indépendent

components, X; ~ £(\;). We sample to sample from X given X '1 > s for some
threshold s > 0.

e start with some starting point xg such that xj1 > s

e pick up (randomly) ¢ € {1,--- ,d}

X; given X; > s — 332__ y1 has an Exponential distribution E(Ai)

1

draw Y ~ E(\;) and set x; =y + (s — a:(T y1)+ until c_yl+x;>s

—1

E.g. losses and allocated expenses
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>
>
>
>
>
-
-
+
-
-
-
-

sim <- NULL

lambda <- c(1,2)

X <- ¢(3,3)

s <- b

for(k in 1:1000){

i <- sample(1:2,1)

X[i] <- rexp(1l,lambdali])+
max (0, s-sum(X[-i]))

while (sum(X)<s){

X[i] <- rexp(1l,lambdali])+
max (0,s-sum(X[-1i])) }

sim <- rbind(sim,X) }

Gibbs Sampler
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JAGS and STAN

Martyn Plummer developed JAGS Just another Gibbs sampler in 2007 (stable
since 2013) in library(runjags). It is an open-source, enhanced, cross-platform

version of an earlier engine BUGS (Bayesian inference Using Gibbs Sampling).

STAN 1library(Rstan) is a newer tool that uses the Hamiltonian Monte Carlo
(HMC) sampler.

HMC uses information about the derivative of the posterior probability density
to improve the algorithm. These derivatives are supplied by algorithm
differentiation in C/C++ codes.
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>
>
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-
-
-
-

JAGS on the N (u,o0?) distribution

library(runjags)

jags.model <- "

model {

mu ~ dnorm(muO, 1/(sigma0”2))
g ~ dgamma(kO, thetal)

sigma <- 1 / g

for (i in 1:n) {

logLR[i] ~ dnorm(mu, g"2)

+

}ll

jags.data <- list(n=length(LR),
logLR=log(LR), mu0O=-.2, sigma0=0.02,
kO=1, thetal=1)

jags.init <- list(list(mu=log(1.2),
g=1/0.5"2),

list(mu=log(.8),

g=1/.2"2))

model.out <- autorun.jags(jags.model,
data=jags.data, inits=jags.init,
monitor=c("mu", "sigma"), n.chains=2)
traceplot (model.out$mcmc)

summary (model.out)
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STAN on the N (u,c?) distribution

library(rstan)
stan.model <- "

data {

int<lower=0> n;
vector[n] LR;

real muO;
real<lower=0> sigmaOl;
real<lower=0> kO;
real<lower=0> thetal;
}

parameters {

real mu;
real<lower=0> sigma;

}

model {

mu ~ normal (mu0, sigmaOl);

sigma ~ inv_gamma(k0, thetal);
for (i in 1:n)

log(LR[i]) ~ normal(mu, sigma);
}ll

stan.data <- list(n=length(LR), r=LR, muO=mu0,
sigmaO=sigmaO, kO0=k0, thetaO=thetal)

stan.out <- stan(model_code=stan.model,
data=stan.data, seed=2)

traceplot(stan.out)

print(stan.out, digits_summary=2)
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MCMC and Loss Models

Example Consider some simple time series of Loss Ratios,

LR; ~ N (ut,0%) where py = ¢py—1 + &

E.g. in JAGS we can define the vector o = (1, -+ , ) recursively

model {
mu[1] ~ dnorm(mu0, 1/(sigma0”2))

for (t in 2:T) { mu[t] ~ dnorm(mu[t-1], 1/(sigma0”2)) %}
+
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MCMC and Claims Reserving

Consider the following (cumulated) triangle, {C; ,},

0 1 2 3 4 5
4372 4411 4428 4435 4456
4659 4696 4720 4730 | 4752.4
5345 5398 5420 | 5430.1 5455.8
0917 6020 | 6046.1 6057.4 6086.1
6794 | 6871.7 6901.5 6914.3 6947.1

7204.3  7286.7 7318.3 7331.9 7366.7

1.3809 1.0114 1.0043 1.0018 1.0047
o 0.7248 0.3203 0.04587 0.02570 0.02570

(from Markus’ library(ChainLadder)).
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A Bayesian version of Chain Ladder

1 2 3 4 5
1.362418 1.008920 1.003854 1.001581 1.004735
1.383724 1.007942 1.005111 1.002119
1.380780 1.009916 1.004076
1.395848 1.017407
1.378373

Aj 1.3809 1.0114 1.0043 1.0018 1.0047
o 0.7248 0.3203 0.04587 0.02570 0.02570

Assume that \; ; ~ N (,uj, gj )
2]

We can use Gibbs sampler to get the distribution of the transition factors, as well

as a distribution for the reserves,
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> source("http://freakonometrics.free.fr/
t I' i angl e CL . R " ) Histogram of memc.out

> source("http://freakonometrics.free.fr/
bayesCL.R")
> mcmcCL<-bayesian.triangle(PAID)
> plot.mcmc (mcmcCL$Lambdal,1])
plot.mcmc (mcmcCL$Lambdal,2])
plot.mcmc (mcmcCL$reserves[,6])

plot.mcmc (mcmcCL$reserves[,7])

0 200 400 600 800 1000

library(ChainLadder) Noml 0- Pl
MCL<-MackChainlLadder (PAID)
m<-sum(MCL$FullTriangle[,6] -
diag(MCL$FullTriangle[,6:1]1))
stdev<-MCL$Total .Mack.S.E c
hist(mcmcCL$reserves[,7],probability=TRUE,g“
breaks=20,col="1ight blue")
x=seq(2000,3000,by=10)

y=dnorm(x,m,stdev)

>
>
>
-
>
>
>
>
>
>

lines(x,y,col="red")
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A Bayesian analysis of the Poisson Regression Model

In a Poisson regression model, we have a sample (x,y) = {(x;, i)},

yi ~ P(p;) with log p; = Bo + Biz;.

In the Bayesian framework, 5y and $; are random variables.
Example: for instance library(arm), (see also library (INLA))

The code is very simple : from

> reg<-glm(dist~speed,data=cars,family=poisson)

get used to

> regb <- bayesglm(dist~speed,data=cars,family=poisson)
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A Bayesian analysis of the Poisson Regression Model

newd <- data.frame(speed=0:30)
predreg <- predict(reg,newdata=
newd,type="response")
plot(cars,axes)
lines(newd$speed,predreg,lwd=2)

library(arm)
betall<-coef (sim(regb))

for(i in 1:100){
lines (newd$speed,exp(betalO1[i, 1]+
betalO1l[i, 2] *newd$speed))}

plot.mcmc(betaO1[,1])
plot.mcmc(betalO1[,2])
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Other alternatives to classical statistics

Consider a regression problem, u(x) = E(Y|X = z), and assume that smoothed

splines are used,

pl@) = 3 Bh; (@)

Let H be the n x k matrix, H = |h;(x;)] = |h(z;)], then ,@ = (HTH)_lﬂTy,
and
$e(fi(x)) = [h(x)"(H"H) 'h(2)]25

With a Gaussian assumption on the residuals, we can derive (approximated)

confidence bands for predictions ji(x).
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Smoothed regression with splines

dtf <- read.table(
"http://freakonometrics.free.fr/
theftinsurance.txt",sep=";",
header=TRUE)

names (dtf)<-c("x","y")

library(splines)
reg=lm(y~bs(x,df=4) ,data=dtf)

yp=predict (reg,type="response",
+ newdata=new,interval="confidence")
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Bayesian interpretation of the regression problem
Assume here that 3 ~ A (0,7X) as the priori distribution for 3.

Then, if (x,y) = {(z;,y;),i = 1,--- ,n}, the posterior distribution of u(x) will be
Gaussian, with

E(u(z)|x, y) = h(z)T (HTH + "—22—1> B HTy

T

cov(pu(), u(a e, y) = hiz)T (HH ; %2—1)  h(@)o?

Example X =1
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Bayesian interpretation of the regression problem

tau <- 100

sigma <- summary(reg)$sigma

H=cbind (rep(1,nrow(dtf)) ,matrix(bs(b$x,
df=4) ,nrow=nrow(dtf)))
h=cbind(rep(1,nrow(new)) ,matrix(bs(new$x,
df=4) ,nrow=nrow(new)))
E=h¥%*%solve (t (H)%*%H + sigma’2/taux*
diag(1l,ncol (H)))%*/%t (H) %*x%dtfSy
V=h%*Ysolve (t (H)%*%H + sigma”2/tau*
diag(1,ncol(H)))%*% t(h) * sigma’2
z=E+t (chol (V)) %*’rnorm(length(E))

>
>
>
-
>
-
>
-
>
-
>
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Bootstrap strategy

Assume that Y = u(x) + €, and based on the estimated model, generate pseudo
observations, y! = u(x;) + €.

Based on (x,y*) = {(x;,y}),¢ = 1,--- ,n}, derive the estimator u*(x)

(and repeat)
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Bootstrap strategy

for(b in 1:1000) {
i=sample(1l:nrow(dtf) ,size=nrow(dtf),
replace=TRUE)

regb=1m(y~bs(x,df=4) ,data=dtf[i,])
ypb[,bl=predict(regb,type="response",
newdata=new) )

}

Observe that the bootstrap is the Bayesian

case, when 7 — oo.
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Some additional references (before a conclusion)

o S .
Bayesian Core
A Practical Approach 88

to/Computational-
BayesmanStatistics §

) Springer

Bayesiar Saismics i1 Pyt

Christian P. Robert
George Casella

Afteny B, Eorimey

Texts in Statistical Science

Bayesian
Data Analysis

SEcCoOND EDITION

Andrew Gelman, John B. Carlin,
Hal S. Stern and Donald B. Rubin

* CHAPMAN & HALL/CRC

The Bayesian
Choice

oo Desr 00 " et Foandations i
fampatatiznal Implemestation

John K. Kruschke @;

~

-, S

Doing Bayesian
Data Analysis

A Tutorial with R and BUGS

Eric A. Suess - Bruce E. Trumbo

Jim Albert

the theory g

<2 that would

not die /&3

how bayes’ rule cracked
*=<., the enigma code,
hunted down russian
submarines & emerged
triumphant from two &~
centuries of controversy
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The R Series

Computational
Actuarial Science
with R

Edited by
Arthur Charpentier

Take- Away Conclusion

Kendrick (2006), about computational economics: “our the-
s1s 1s that computational economics offers a way to improve this
situation and to bring new life into the teaching of economics in
colleges and universities |...| computational economics provides an
opportunity for some students to move away from too much use
of the lecture-exam paradigm and more use of a laboratory-paper
paradigm wn teaching under graduate economics. This opens the
door for more creative activity on the part of the students by giv-
ing them models developed by previous generations and challenging

them to modify those models.”

It is probably the same about computational actuarial science,
thanks to R...
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Take-Away Conclusion

Efron (2004) claimed that “ Bayes rule is a very attractive way of reasoning, and

fun to use, but using Bayes rule doesn’t make one a Bayesian ”.

Bayesian models offer an interesting alternative to stan-
dard statistical techniques, on small datasets as well as
on large ones (see applications to hierarchical and longi-

tudinal models).

Computational issues are not that complicated... once you

get used to the bayesian way of seen a statistical model.
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