Modeling Dynamic Incentives an Application to Basketball Games

Arthur Charpentier¹, Nathalie Colombier² & Romuald Élie³

 $^{1}\mathrm{UQAM}$ $^{2}\mathrm{Universit\acute{e}}$ de Rennes 1 & CREM $^{3}\mathrm{Universit\acute{e}}$ Paris Est & CREST

charpentier.arthur@uqam.ca

http://freakonometrics.hypotheses.org/

GERAD SEMINAR, JUNE 2014

Why such an interest in basketball?

Recent preprint '*Can Losing Lead to Winning*?' by Berger and Pope (2009). See also A Slight Deficit Can Actually Be an Edge nytimes.com, When Being Down at Halftime Is a Good Thing, wsj.com, etc.

Focus on winning probability in basketball games,

win_i = $\alpha + \beta$ (losing at half time)_i + δ (score difference at half time)_i + $\gamma X_i + \varepsilon_i$

 \boldsymbol{X}_i is a matrix of *control variables* for game *i*

Modeling dynamic incentives?

Dataset on college basketball match, but the original dataset had much more information : score difference from halftime until the end (per minute).

 \implies a dynamic model to understand *when* losing lead to losing

(or winning lead to winning).

Talk on '*Point Record Incentives, Moral Hazard and Dynamic Data*' by Dionne, Pinquet, Maurice & Vanasse (2011)

Study on incentive mechanisms for road safety, with time-dependent disutility of effort

Agenda of the talk

- From basketball to labor economics
- An optimal effort control problem
 - A simple control problem
 - Nash equilibrium of a stochastic game
 - Numerical computations
- Understanding the dynamics : modeling processes
 - The score process
 - The score difference process
 - A proxy for the effort process
- Modeling winning probabilities

Incentives and tournament in labor economics

The pay schemes : Flat wage pay *versus* Piece rate or rank-order tournament (relative performance evaluation).

Impact of relative performance evaluation (Lazear, 1989) :

- motivate employees to work harder
- demoralizing and create excessively competitive workplace

Incentives and tournament in labor economics

For a given pay scheme : how intensively should the organization provide his employees with information about their relative performance?

- An employee who is informed he is an underdog
 may be discouraged and lower his performance
 works harder to preserve to avoid shame
- A frontrunner who learns that he is well ahead
 may think that he can afford to slack
 - $\circ\,$ becomes more enthusia
stic and increases his effort

Incentives and tournament in labor economics

- \Rightarrow impact on overall perfomance?
- Theoritical models conclude to a positive impact (Lizzeri, Meyer and Persico, 2002; Ederer, 2004)
- Empirical literature :
 - if payment is independant of the other's performance : positive impact to observe each other's effort (Kandel and Lazear, 1992).
 - in relative performance (both tournament and piece rate) : does not lead frontrunners to slack off but significantly reduces the performance of underdogs (quantity vs. quality) (Eriksson, Poulsen and Villeval, 2009).

The dataset for 2008/2009 NBA match

The dataset for 2008/2009 NBA match

Atlantic Division	W	\mathbf{L}	Northwest Division	W	\mathbf{L}
Boston Celtics	62	20	Denver Nuggets	54	28
Philadelphia 76ers	41	41	Portland Trail Blazers	54	28
New Jersey Nets	34	48	Utah Jazz	48	34
Toronto Raptors	33	49	Minnesota Timberwolves	24	58
New York Knicks	32	50	Oklahoma City Thunder	23	59
DCentral Division	W	\mathbf{L}	Pacific Division	W	\mathbf{L}
Cleveland Cavaliers	66	16	Los Angeles Lakers	65	17
Chicago Bulls	41	41	Phoenix Suns	46	36
Detroit Pistons	39	43	Golden State Warriors	29	53
Indiana Pacers	36	46	Los Angeles Clippers	19	63
Milwaukee Bucks	34	48	Sacramento Kings	17	65
Southeast Division	W	\mathbf{L}	Southwest Division	W	\mathbf{L}
Orlando Magic	59	23	San Antonio Spurs	54	28
Atlanta Hawks	47	35	Houston Rockets	53	29
Miami Heat	43	39	Dallas Mavericks	50	32
Charlotte Bobcats	35	47	New Orleans Hornets	49	33
Washington Wizards	19	63	Memphis Grizzlies	24	58

A Brownian process to model the season (LT)?

Variance of the process $(t^{-1/2}S_t)$, (S_t) being the cumulated score over the season, after t games (+1 winning, -1 losing)

time in the season t	20 games	40 games	60 games	80 games	
$\operatorname{Var}\left(t^{-1/2}S_t\right)$	3.627	5.496	7.23	9.428	
	(2.06, 5.193)	(3.122, 7.87)	(3.944, 4.507)	(3.296, 3.766)	

A Brownian process to model the season (LT)?

Time (t) in the season (number of games)

A Brownian process to model the score difference (ST)?

Variance of the process $(t^{-1/2}S_t)$, (S_t) being the score difference at time t.

time in the game t	12 min.	24 min.	36 min.	48 min.
$\operatorname{Var}\left(t^{-1/2}S_t\right)$	5.010	4.196 4.21		3.519
	(4.692, 5.362)	(3.930, 4.491)	(3.944, 4.507)	(3.296, 3.766)

A Brownian process to model the score difference (ST)?

Time (t) in the game (in min.)

Let (S_t) denote the score difference, A wins if $S_T > 0$ and B wins if $S_T < 0$.

The score difference can be driven by a diffusion $dS_t = \mu dt + \sigma dW_t$

The score difference can be driven by a diffusion $dS_t = [\mu_A - \mu_B]dt + \sigma dW_t$

Here, $\mu_A < \mu_B$

The score difference can be driven by a diffusion $dS_t = [\mu_A - \mu_B]dt + \sigma dW_t$

Time (min.)

The score difference can be driven by a diffusion $dS_t = [\mu_A - \mu_B]dt + \sigma dW_t$

at time $\tau = 24$ min., team B can change its effort level, $dS_t = [\mu_A - 0]dt + \sigma dW_t$

The score difference can be driven by a diffusion $dS_t = [\mu_A - \mu_B]dt + \sigma dW_t$

Time (min.)

The score difference is now driven by a diffusion $dS_t = [\mu_A - 0]dt + \sigma dW_t$

at time $\tau = 36$ min., team B can change its effort level, $dS_t = [\mu_A - \mu_B]dt + \sigma dW_t$

There are two players (teams), 1 and 2, playing a **game** over a period [0, T]. Let (S_t) denote the score difference (in favor of team 1 w.r.t. team 2)

• team 1 :
$$\max_{(u_1)\in\mathcal{U}_1} \left\{ \mathbb{E}\left(\left[\alpha_1 \mathbf{1}(S_T > 0) \right] + \int_{\tau}^T e^{-\delta_1 t} L_1(\alpha_1 - u_{1,t}) \right) dt \right\}$$

• team 2 :
$$\max_{(u_2)\in\mathcal{U}_2} \left\{ \mathbb{E}\left(\left[\alpha_2 \mathbf{1}(S_T < 0) \right] + \int_{\tau}^T e^{-\delta_2 t} L_2(\alpha_2 - u_{2,t}) \right) dt \right\}$$

where (S_t) is a stochastic process

There are two players (teams), 1 and 2, playing a **game** over a period [0, T]. Let (S_t) denote the score difference (in favor of team 1 w.r.t. team 2)

• team 1 :
$$\max_{(u_1)\in\mathcal{U}_1} \left\{ \mathbb{E}\left(\left[\alpha_1 \mathbf{1}(S_T > 0) \right] + \int_{\tau}^T e^{-\delta_1 t} L_1(\alpha_1 - u_{1,t}) \right) dt \right\}$$

• team 2 :
$$\max_{(u_2)\in\mathcal{U}_2} \left\{ \mathbb{E}\left(\left[\alpha_2 \mathbf{1}(S_T < 0) \right] + \int_{\tau}^T e^{-\delta_2 t} L_2(\alpha_2 - u_{2,t}) \right) dt \right\}$$

where (S_t) is a stochastic process driven by

 $dS_t = [u_1(S_t) - u_2(S_t)]dt + \sigma dW_t$ on [0, T].

Assume for instance that the first team changed its effort after 38 minutes,

... or changed its effort after 24 minutes, and again after 36 minutes,

An optimal control stochastic game

There are two players (teams), 1 and 2, playing a **game** over a period [0, T]. Let (S_t) denote the score difference (in favor of team 1 w.r.t. team 2)

• team 1:
$$u_{1,\tau}^{\star} \in \underset{(u_1) \in \mathcal{U}_1}{\operatorname{argmax}} \left\{ \mathbb{E} \left(\left[\alpha_1 \mathbf{1}(S_T > 0) \right] + \int_{\tau}^{T} e^{-\delta_1 t} L_1(\alpha_1 - u_{1,t}^{\star}(S_t)) \right) dt \right\}$$

• team 2: $u_{2,\tau}^{\star} \in \underset{(u_2) \in \mathcal{U}_2}{\operatorname{argmax}} \left\{ \mathbb{E} \left(\left[\alpha_2 \mathbf{1}(S_T < 0) \right] + \int_{\tau}^{T} e^{-\delta_2 t} L_2(\alpha_2 - u_{2,t}^{\star}(S_t)) \right) dt \right\}$

where (S_t) is a stochastic process driven by

 $dS_t = [u_{1,t}^{\star}(S_t) - u_{2,t}^{\star}(S_t)]dt + \sigma dW_t \text{ on } [0,T].$

 \implies non-cooperative stochastic (dynamic) game with 2 players and non-null sum

An optimal control problem

Consider now not a game, but a standard optimal control problem, where an agent faces the optimization program

$$\max_{(\boldsymbol{\gamma}_t)_{t\in[\tau,T]}} \left\{ \mathbb{E}\left(\mathbf{1}(\boldsymbol{S}_T > 0) + \int_{\tau}^T e^{-\delta t} L(\alpha - \boldsymbol{u}_t) dt\right) \right\},\$$

with

$$dS_t = u_t(S_t)dt + \sigma dW_t$$

where L is an increasing convex utility function, with $\alpha > 0$, and $\delta > 0$.

Consider a two-value effort model,

- if $u_t = 0$, there is fixed utility $u(\alpha)$
- if $u_t = u > 0$, there an **decrease** of utility $L(\alpha u) < L(\alpha)$, but also an **increase** of $\mathbb{P}(S_T > 0)$ since the 'Brownian process' now has a positive drift.

When should a team stop playing (with high effort)?

The team starts playing with a high effort (u), and then, stop effort at some time τ : utility gains exceed changes in the probability to win, i.e.

$$\int_{\tau}^{T} e^{-\delta t} L(\alpha - u) dt + \mathbb{P}(S_T > 0 | S_{\tau}, \text{ positive drift on } [\tau, T])$$
$$> \int_{\tau}^{T} e^{-\delta t} L(\alpha) dt + \mathbb{P}(S_T > 0 | S_{\tau}, \text{ no drift on } [\tau, T])$$

Recall that, if $Z = S_T - S_\tau$

 $\mathbb{P}(S_T > 0 | S_\tau = d, \text{ no drift on } [\tau, T]) = \mathbb{P}(Z > -d|Z \sim \mathcal{N}(0, \sigma\sqrt{T-\tau}))$ $\mathbb{P}(S_T > 0 | S_\tau = d, \text{ drift on } [\tau, T]) = \mathbb{P}(Z > -d|Z \sim \mathcal{N}(u[T-\tau], \sigma\sqrt{T-\tau}))$ where $\mu = \frac{1}{2}u$.

Thus, the difference between those two probabilities is

$$\Phi\left(\frac{d}{\sigma\sqrt{[T-\tau]}}\right) - \Phi\left(\frac{d+[T-\tau]u}{\sigma\sqrt{[T-\tau]}}\right)$$

Thus, the optimal time τ is solution of

$$[L(\alpha - u) - L(\alpha)] \underbrace{\frac{[e^{-\delta \tau} - e^{-\delta T}]}{\delta}}_{\approx T - \tau} = \Phi\left(\frac{d}{\sigma\sqrt{[T - \tau]}}\right) - \Phi\left(\frac{d + [T - \tau]u}{\sigma\sqrt{[T - \tau]}}\right).$$

i.e.

$$\boldsymbol{\tau} = h(\boldsymbol{d}, \lambda, \boldsymbol{u}, \boldsymbol{L}, \boldsymbol{\sigma}).$$

Thus, the optimal time to stop playing (as a function of the remaining time $T - \tau$ and the score difference d) is the following region,

Region where teams stop making efforts

Obviously, it is too simple.... we need to consider a non-cooperative game.

Optimal strategy on a discretized version of the game

Assume that controls u_1 and u_2 are discrete, taking values in a set \mathcal{U} . Since we consider a non-null sum game, Nash equilibrium have to be searched in extremal points of polytopes of payoff matrices (see).

Looking for Nash equilibriums might not be a great strategy

Here, $(u_1^{\star}, u_2^{\star})$ is solution of maxmin problems

$$u_1^{\star} \in \operatorname*{argmax}_{u_1 \in \mathcal{U}} \left\{ \min_{u_2 \in \mathcal{U}} J_1(u_1, u_2) \right\} \text{ and } u_2^{\star} \in \operatorname*{argmax}_{u_2 \in \mathcal{U}} \left\{ \min_{u_1 \in \mathcal{U}} J_2(u_1, u_2) \right\}$$

where J functions are payoffs.

At time $\tau \in [0, T)$, given $S_{\tau} = x$, player 1 seeks an optimal strategy,

$$u_{1,\tau}^{\star}(x) \in \operatorname*{argmax}_{u_1 \in \mathcal{U}} \left\{ \min_{u_2 \in \mathcal{U}} \mathbb{E} \left(\alpha_1 \mathbf{1}(S_T^{\star} > 0) + \int_{\tau}^{T} L_1(u_{1,s}^{\star}(S_s^{\star})) ds \right) \right\}$$

$$u_{1,\tau}^{\star}(x) \in \operatorname*{argmax}_{u_1 \in \mathcal{U}} \left\{ \min_{u_2 \in \mathcal{U}} \mathbb{E} \left(\alpha_1 \mathbf{1}(S_T^{\star} > 0) + \int_{\tau}^{\tau+h} L_1(u_1) ds + \int_{\tau+h}^{T} L_1(u_{1,s}^{\star}(S_s^{\star})) ds \right) \right\}$$

Consider a discretization of [0, T] so that optimal controls can be updated at times t_k where $0 = t_0 \le t_1 \le t_2 \le \cdots \le t_{n-2} \le t_{n-1} \le t_n = T$.

We solve the problem backward, starting at time t_{n-1} .

... is the sum of two terms, based on

$$\mathbb{P}(S_{t_n} = y | S_{t_{n-2}} = x) = \sum_{s \in \mathcal{S}} \underbrace{\mathbb{P}(S_{t_n} = y | S_{t_{n-1}} = s)}_{\text{function of } (u_{1,n-1}^{\star}(s), u_{2,n-1}^{\star}(s))} \cdot \underbrace{\mathbb{P}(S_{t_{n-1}} = s | S_{t_{n-2}} = x)}_{\text{function of } (u_1, u_2)}$$

... one term is $\mathbb{P}(S_{t_n} > 0 | S_{t_{n-2}} = x)$ (as before), the sum of $L_1(u_1)$ and

$$\mathbb{E}(L_1(u_{1,n-1}^{\star})) = \sum_{s \in \mathcal{S}} L_1(u_{1,n-1}^{\star}(s)) \cdot P(S_{t_{n-1}} = s | S_{t_{n-2}} = x)$$

Based on those probabilities, we have $\mathbb{P}(S_{t_n} > 0 | S_{t_{n-3}} = x)$ and the second term is the sum of $L_1(u_1)$ and $\mathbb{E}(L_1(u_{1,n-2}^{\star}) + L_1(u_{1,n-1}^{\star}))$ i.e.

$$\sum_{s \in \mathcal{S}} L_1(u_{1,n-2}^{\star}(s)) \cdot P(S_{t_{n-2}} = s | S_{t_{n-3}} = x) + \sum_{s \in \mathcal{S}} L_1(u_{1,n-1}^{\star}(s)) \cdot P(S_{t_{n-1}} = s | S_{t_{n-3}} = x)$$

Numerical computation of the discretized game team 1 on the left vs team 2 on the right : \square low effort \square high effort

(simple numerical application, with $\#\mathcal{U} = 60$ and n = 12)

Numerical computation of the discretized game team 1 on the left vs team 2 on the right : \blacksquare low effort \Box high effort $\alpha_1 \uparrow$ $u_{1,\tau}^{\star}(x) \in \operatorname*{argmax}_{u_1 \in \mathcal{U}} \mathbb{E}\left(\alpha_1 \mathbf{1}(S_T^{\star} > 0) + \int_{\tau}^T e^{-\delta_1(s-\tau)}(b_1 - u_{1,s}^{\star}(S_s^{\star}))^{\gamma_1} ds\right)\right\}$

Numerical computation of the discretized game team 1 on the left vs team 2 on the right : \blacksquare low effort \Box high effort $b_1 \uparrow$ $u_{1,\tau}^{\star}(x) \in \operatorname*{argmax}_{u_1 \in \mathcal{U}} \mathbb{E} \left(\alpha_1 \mathbf{1}(S_T^{\star} > 0) + \int_{\tau}^T e^{-\delta_1(s-\tau)} (b_1 - u_{1,s}^{\star}(S_s^{\star}))^{\gamma_1} ds \right) \right\}$

Numerical computation of the discretized game team 1 on the left vs team 2 on the right : I low effort \Box high effort $\gamma_1 \uparrow$ $u_{1,\tau}^{\star}(x) \in \operatorname*{argmax}_{u_1 \in \mathcal{U}} \mathbb{E} \left(\alpha_1 \mathbf{1}(S_T^{\star} > 0) + \int_{\tau}^T e^{-\delta_1(s-\tau)} (b_1 - u_{1,s}^{\star}(S_s^{\star}))^{\gamma_1} ds \right) \right\}$

Numerical computation of the discretized game team 1 on the left vs team 2 on the right : I low effort \Box high effort $\delta_1 \uparrow$ $u_{1,\tau}^{\star}(x) \in \operatorname*{argmax}_{u_1 \in \mathcal{U}} \mathbb{E} \left(\alpha_1 \mathbf{1}(S_T^{\star} > 0) + \int_{\tau}^T e^{-\delta_1(s-\tau)} (b_1 - u_{1,s}^{\star}(S_s^{\star}))^{\gamma_1} ds \right) \right\}$

Description of the dataset

GameID	LineNumber	TimeRemaining	Entry
20081028CLEBOS	1	00:48:00	Start of 1st Quarter
20081028CLEBOS	2	00:48:00	Jump Ball Perkins vs Ilgauskas
20081028CLEBOS	3	00:47:40	[BOS] Rondo Foul:Shooting (1 PF)
20081028CLEBOS	4	00:47:40	[CLE 1-0] West Free Throw 1 of 2 (1 PTS)
20081028CLEBOS	5	00:47:40	[CLE 2-0] West Free Throw 2 of 2 (2 PTS)
20081028CLEBOS	6	00:47:30	[BOS] Garnett Jump Shot: Missed
20081028CLEBOS	7	00:47:28	[CLE] James Rebound (Off:0 Def:1)
20081028CLEBOS	8	00:47:22	[CLE 4-0] James Pullup Jump shot: Made (2 PTS)
20081028CLEBOS	9	00:47:06	[BOS 2-4] Pierce Slam Dunk Shot: Made (2 PTS) Assist: Rondo (1 AST)
20081028CLEBOS	10	00:46:57	[CLE] James 3pt Shot: Missed
20081028CLEBOS	11	00:46:56	[BOS] R. Allen Rebound (Off:0 Def:1)
20081028CLEBOS	12	00:46:47	[BOS 4-4] Garnett Slam Dunk Shot: Made (2 PTS) Assist: Rondo (2 AST)
20081028CLEBOS	13	00:46:24	[CLE 6-4] Ilgauskas Driving Layup Shot: Made (2 PTS) Assist: James (1 AST)
20081028CLEBOS	14	00:46:13	[BOS] Garnett Jump Shot: Missed
20081028CLEBOS	15	00:46:11	[BOS] Perkins Rebound (Off:1 Def:0)
20081028CLEBOS	16	00:46:08	[BOS] Pierce 3pt Shot: Missed
20081028CLEBOS	17	00:46:06	[CLE] Ilgauskas Rebound (Off:0 Def:1)
20081028CLEBOS	18	00:45:52	[CLE] M. Williams Layup Shot: Missed
20081028CLEB0S	19	00:45:51	[BOS] Garnett Rebound (Off:0 Def:1)
20081028CLEB0S	20	00:45:46	[BOS] R. Allen Layup Shot: Missed Block: James (1 BLK)
20081028CLEBOS	21	00:45:44	[CLE] West Rebound (Off:0 Def:1)

Description of the dataset

GameID	LineNumber	TimeRemaining	Entry
20081028CLEBOS	1	00:48:00	Start of 1st Quarter
20081028CLEB0S	2	00:48:00	Jump Ball Perkins vs Ilgauskas
20081028CLEBOS	3	00:47:40	[BOS] Rondo Foul:Shooting (1 PF)
20081028CLEBOS	4	00:47:40	[CLE 1-0] West Free Throw 1 of 2 (1 PTS)
20081028CLEB0S	5	00:47:40	[CLE 2-0] West Free Throw 2 of 2 (2 PTS)
20081028CLEBOS	6	00:47:30	[BOS] Garnett Jump Shot: Missed
20081028CLEBOS	7	00:47:28	[CLE] James Rebound (Off:0 Def:1)
20081028CLEBOS	8	00:47:22	[CLE 4-0] James Pullup Jump shot: Made (2 PTS)
20081028CLEBOS	9	00:47:06	[BOS 2-4] Pierce Slam Dunk Shot: Made (2 PTS) Assist: Rondo (1 AST)
20081028CLEBOS	10	00:46:57	[CLE] James 3pt Shot: Missed
20081028CLEBOS	11	00:46:56	[BOS] R. Allen Rebound (Off:0 Def:1)
20081028CLEB0S	12	00:46:47	[BOS 4-4] Garnett Slam Dunk Shot: Made (2 PTS) Assist: Rondo (2 AST)
20081028CLEBOS	13	00:46:24	[CLE 6-4] Ilgauskas Driving Layup Shot: Made (2 PTS) Assist: James (1 AST)
20081028CLEBOS	14	00:46:13	[BOS] Garnett Jump Shot: Missed
20081028CLEBOS	15	00:46:11	[BOS] Perkins Rebound (Off:1 Def:0)
20081028CLEBOS	16	00:46:08	[BOS] Pierce 3pt Shot: Missed
20081028CLEB0S	17	00:46:06	[CLE] Ilgauskas Rebound (Off:0 Def:1)
20081028CLEBOS	18	00:45:52	[CLE] M. Williams Layup Shot: Missed
20081028CLEBOS	19	00:45:51	[BOS] Garnett Rebound (Off:0 Def:1)
20081028CLEBOS	20	00:45:46	[BOS] R. Allen Layup Shot: Missed Block: James (1 BLK)
20081028CLEBOS	21	00:45:44	[CLE] West Rebound (Off:0 Def:1)

Homogeneity of the scoring process

The scoring process : ex post analysis of the score

The scoring process : ex post analysis of the score

The scoring process : ex post analysis of the score

The scoring process : home versus visitor

The scoring process : team strategies?

cf. Galton's regression to the mean.

Following the idea of Berger and Pope (2009),

$$\operatorname{logit}[p(s,t)] = \log \frac{p}{1-p} = \beta_0 + \beta_1 s + \beta_2 (T-t) + \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\gamma}$$

(simple linear model)

a natural extention

$$\operatorname{logit}[p(s,t)] = \log \frac{p}{1-p} = \beta_0 + \varphi_1[s] + \varphi_2[T-t] + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\gamma}$$

(simple additive model)

or more generally

$$\operatorname{logit}[p(s,t)] = \log \frac{p}{1-p} = \beta_0 + \varphi_1[s,T-t] + \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\gamma}$$

(functional nonlinear model)

Smooth estimation, versus raw data

Smooth estimation, versus raw data

when teams are about to win (90% chance)

(with a more accurate estimation of the change in the slope)

when teams are about to win (80% chance)

when teams are about to win (70% chance)

when teams are about to loose (20% chance to win)

when teams are about to loose (10% chance to win)

NBA players are professionals....

Here are winning probability, college (left) versus NBA (right),

NBA players are professionals....

... when they play at home, college (left) versus NBA (right),

On covariates, and proxy for the *effort*

References

Altmann, S., Falk, A., & Wibral, M. (2012). Promotions and incentives : The case of multistage elimination tournaments. *Journal of Labor Economics.* **30**, 149–174.

Arkes, J. (2011). Do gamblers correctly price momentum in NBA betting markets. Journal of Prediction Markets 5 (1), 31–50

Arkes, J. & Martinez, J. (2011). Evidence for a Momentum Effect in the NBA. Journal of Quantitative Analysis in Sports 7 (3).

Aoyagi, M. (2010). Information feedback in a dynamic tournament. Games and Economic Behavior, 70 242-260

Başar, T. & Olsder, G-.J. (1987). Dynamic Noncooperative Game Theory. Society for Industrial & Applied Mathematics.

Berger, J. & Pope, D. (2011) Can Losing Lead to Winning? Management Science 57(5), 817-827,

Bressan, A. (2011). Noncooperative Differential Games : A Tutorial. Penn State University Lectures Notes.

Coffey, B. & Maloney, M.T. (2010). The thrill of victory : Measuring the incentive to win *Journal of Labor Economics* **28** (1), 87–112.

Courty, P. & Marschke, G.R. (2004). An empirical investigation of gaming responses to explicit performance incentives. *Journal of Labor Economics* **22** :1, 23-56.

Dionne, G., Pinquet, J. Maurice, M. & Vanasse, C. (2011) Incentive Mechanisms for Safe Driving : A Comparative Analysis with Dynamic Data. *Review of Economic Studies* **93** (1), 218–227.

Delfgaauw, J., Dur, R., Non, A. & Verbeke, W. (2014) Dynamic incentive effects of relative performance pay : A field experiment. *Labour Economics*, **28**,1–13.

Durham, Y., Hirschleifer, J. & Smith, V.L. (1998). Do the Rich Get Richer and the Poor Poorer? Experimental Tests of a Model of Power. *American Economic Review*, **88** (4), 970–983.

Ederer, F. (2010). Feedback and motivation in dynamic tournaments Journal of Economics and Management Strategy, **19** (3), 733-769.

Eriksson, T., Poulsen, A. & Villeval, M.C. (2009). Feedback and Incentives : Experimental Evidence. Labour Economics, 16, 679-688.

Everson, P. & Goldsmith-Pinkh, P.S. (2008). Composite Poisson Models for Goal Scoring. Journal of Quantitative Analysis in Sports 4 (2).

Falk, A. & Ichino, A. (2006). Clean Evidence on Peer Effects. Journal of Labor Economics, 24 (1), 39-58.

Gabel, A. & Redner, S. (2012). Random Walk Picture of Basketball Scoring. Journal of Quantitative Analysis in Sports 8 (1), 1–18.

Gandar, J.M., Zuber, R.A. & Lamb, R.P. (2001). The Home Field Advantage Revisited : A Search for the Bias in Other Sports Betting Markets. *Journal of Economics and Business*, **53** :4, 439–453.

Gershkov, A. & Perry, M. (2009). Tournaments with midterm reviews. Games and Economic Behavior, 66, 162–190.

Green, J. R. & Stokey, N. L. (1983). A Comparison of Tournaments and Contracts. *Journal of Political Economy*, **91**, 349–364.

Kahn, L.M. (2000) The Sports Business as a Labor Market Laboratory. Journal of Economic Perspectives, 14:3, 75–94.

Kubatko, J., Oliver, D. Pelton, K. & Rosenbaum, D.T. (2007). A Starting Point for Analyzing Basketball Statistics. Journal of Quantitative Analysis in Sports **3** 1-24.

Lazear, E. P., & Rosen, S. (1981). Rank-order tournaments as optimum labor contracts. *Journal of Political Economy* 89 (5) 841-864.

Lazear, E. P. (1989). Pay Equality and Industrial Politics, Journal of Political Economy 97 (3), 561-580.

Lazear, E.P. & S. Rosen. (1981). Rank-order tournaments as optimum labor contracts. *Journal of Political Economy* **89**(5) 841–864

Lazear, E.P. & Gibbs, M. (2009) Personnel Economics in Practice. Wiley.

Mas, A., & Moretti, E. (2009). Peers at Work. American Economic Review, 99 (1), 112-145.

Massey, C. & Thaler, R.H. (2013). The Loser's Curse : Overconfidence vs. Market Efficiency in the National Football League Draft. *Management Science*, **59** :7, 1479–1495

Meritt, S. & Clauset, A. (2014).Scoring dynamics across professional team sports : tempo, balance and predictability. EPJ Data Science, **3** :4, 1479–1495

Prendergast, C. (1999). The Provision of Incentives in Firms. Journal of Economic Literature 37, 7-63.
Skinner, B. (2010). The Price of Anarchy in Basketball. Journal of Quantitative Analysis in Sports 6.

Soebbing, B. & Humphreys, B. (2010) Do gamblers think that teams tank? Evidence from the NBA. *Contemporary Economic Policy*, **31** 301–313.

Vergin, R. (2000) Winning streaks in sports and the misperception of momentum Journal of Sports Behavior, 23, .

Westfall, P.H. (1990). Graphical Presentation of a Basketball Game The American Statistician, 44:4, 305-307.