Actuarial Pricing Game

A. Charpentier (Université de Rennes 1 & Chaire actinfo)

Aegina, Greece, May 2017

Dependence Modelling with Applications in Finance and Insurance Conference

1

Insurance Ratemaking "the contribution of the many to the misfortune of the few"

Finance: risk neutral valuation $\pi = \mathbb{E}_{\mathbb{Q}}[S_1 | \mathcal{F}_0] = \mathbb{E}_{\mathbb{Q}_0}[S_1]$, where $S_1 = \sum_{i=1}^{N_1} Y_i$

Insurance: risk sharing (pooling) $\pi = \mathbb{E}_{\mathbb{P}}[S_1]$ or, with segmentation $\pi(\omega) = \mathbb{E}_{\mathbb{P}}[S_1 | \Omega = \omega]$ for some (unobservable?) risk factor Ω

imperfect information given some (observable) risk variables $\boldsymbol{X} = (X_1, \cdots, X_k)$ $\pi(\boldsymbol{x}) = \mathbb{E}_{\mathbb{P}}[S_1 | \boldsymbol{X} = \boldsymbol{x}]$

In a competitive market, insurers can use different sets of variables and different models, with GLMs, $N_t | \mathbf{X} \sim \mathcal{P}(\lambda_{\mathbf{X}} \cdot t)$ and $Y | \mathbf{X} \sim \mathcal{G}(\mu_{\mathbf{X}}, \varphi)$

$$z_j = \widehat{\pi}_j(\boldsymbol{x}) = \widehat{\mathbb{E}}\left[N_1 \big| \boldsymbol{X} = \boldsymbol{x}\right] \cdot \widehat{\mathbb{E}}\left[Y \big| \boldsymbol{X} = \boldsymbol{x}\right] = \underbrace{\exp(\widehat{\boldsymbol{\alpha}}^{\mathsf{T}} \boldsymbol{x})}_{\text{Poisson } \mathcal{P}(\lambda_{\boldsymbol{x}})} \cdot \underbrace{\exp(\widehat{\boldsymbol{\beta}}^{\mathsf{T}} \boldsymbol{x})}_{\text{Gamma } \mathcal{G}(\mu_{\boldsymbol{X}}, \varphi)}$$

(see Kaas et al. (2008)) or any other statistical model (see Hastie et al. (2009))

$$z_j = \widehat{\pi}_j(\boldsymbol{x}) \text{ where } \widehat{\pi}_j \in \operatorname*{argmin}_{m \in \mathcal{F}_j: \Pi_{\mathcal{X}_j} \to \mathbb{R}} \left\{ \sum_{i=1}^n \ell(s_i, m(\boldsymbol{x}_i)) \right\}$$

With d competitors, each insured i has to choose among d premiums, $\boldsymbol{\pi}_i = (\widehat{\pi}_1(\boldsymbol{x}_i), \cdots, \widehat{\pi}_d(\boldsymbol{x}_i)) \in \mathbb{R}^d_+.$

More and more price differentiation ?

Consider
$$\pi_1 = \mathbb{E}[S_1]$$
 and $\pi_2(x) = \mathbb{E}[S_1|X = x]$
Observe that $\mathbb{E}[\pi(X)] = \sum_{x \in \mathcal{X}} \pi(x) \cdot \mathbb{P}[x] = \pi_1$
$$= \sum_{x \in \mathcal{X}_1} \pi(x) \cdot \mathbb{P}[x] + \sum_{x \in \mathcal{X}_2} \pi(x) \cdot \mathbb{P}[x]$$

- Insured with $x \in \mathcal{X}_1$: choose Ins1
- Insured with $x \in \mathcal{X}_2$: choose $\mathsf{Ins2}$

$$\sum_{\boldsymbol{x}\in\mathcal{X}_1} \pi_1(\boldsymbol{x}) \cdot \mathbb{P}_{\mathsf{lns1}}[\boldsymbol{x}] \neq \mathbb{E}[S|\boldsymbol{X}\in\mathcal{X}_1] = \mathbb{E}_{\mathsf{lns1}}[S]$$
$$\sum_{\boldsymbol{x}\in\mathcal{X}_2} \pi_2(\boldsymbol{x}) \cdot \mathbb{P}_{\mathsf{lns2}}[\boldsymbol{x}] = \mathbb{E}[S|\boldsymbol{X}\in\mathcal{X}_2] = \mathbb{E}_{\mathsf{lns2}}[S]$$

Insurance Ratemaking Competition (episode 1, season 3) **comonotonicity?**

Insurance Ratemaking Competition (episode 1, season 3) **comonotonicity?**

Gender = 'Male'

Gender = 'Female'

Age in [17,25]

Age in [70,100]

Category = 'Small'

Category = 'Medium'

Category = 'Large'

We need a **Decision Rule** to select premium chosen by insured i

Ins1	Ins2	Ins3	Ins4	Ins5	Ins6
787.93	706.97	1032.62	907.64	822.58	603.83
170.04	197.81	285.99	212.71	177.87	265.13
473.15	447.58	343.64	410.76	414.23	425.23
337.98	336.20	468.45	339.33	383.55	672.91

Basic 'rational rule' $\pi_i = \min\{\widehat{\pi}_1(\boldsymbol{x}_i), \cdots, \widehat{\pi}_d(\boldsymbol{x}_i)\} = \widehat{\pi}_{1:d}(\boldsymbol{x}_i)$

Ins1	Ins2	Ins3	Ins4	Ins5	Ins6
787.93	706.97	1032.62	907.64	822.58	603.83
170.04	197.81	285.99	212.71	177.87	265.13
473.15	447.58	343.64	410.76	414.23	425.23
337.98	336.20	468.45	339.33	383.55	672.91

A more realistic rule $\pi_i \in \{\widehat{\pi}_{1:d}(\boldsymbol{x}_i), \widehat{\pi}_{2:d}(\boldsymbol{x}_i), \widehat{\pi}_{3:d}(\boldsymbol{x}_i)\}$

Ins1	Ins2	Ins3	Ins4	Ins5	Ins6
787.93	706.97	1032.62	907.64	822.58	603.83
170.04	197.81	285.99	212.71	177.87	265.13
473.15	447.58	343.64	410.76	414.23	425.23
337.98	336.20	468.45	339.33	383.55	672.91

A Game with Rules... but no Goal

Two datasets : a training one, and a pricing one (without the losses in the later)

 ${\bf Step}\ {\bf 1}$: provide premiums to all contracts in the pricing dataset

Step 2 : allocate insured among players

Season 1 13 players

Season 2 14 players

Step 3 [season 2] : provide additional information (premiums of competitors)

Season 3 23 players (3 markets, 8+8+7)

Step 3-6 [season 3] : dynamics, 4 years

Actuarial Pricing Game (season 3)

Actuarial Pricing Game (episode 1, season 3)

Actuarial Pricing Game (episode 1, season 3)

Actuarial Pricing Game (episode 1, season 3)

Actuarial Pricing Game (episodes 1-3, season 3)

Actuarial Pricing Game (episodes 1-3, season 3)

Actuarial Pricing Game (season 3)

