Actuarial Pricing Game

A. Charpentier (Université de Rennes $1 \&$ Chaire actinfo)

Aegina, Greece, May 2017
Dependence Modelling with Applications in Finance and Insurance Conference

Insurance Ratemaking "the contribution of the many to the misfortune of the few"

Finance: risk neutral valuation $\pi=\mathbb{E}_{\mathbb{Q}}\left[S_{1} \mid \mathcal{F}_{0}\right]=\mathbb{E}_{\mathbb{Q}_{0}}\left[S_{1}\right]$, where $S_{1}=\sum_{i=1}^{N_{1}} Y_{i}$
Insurance: risk sharing (pooling) $\pi=\mathbb{E}_{\mathbb{P}}\left[S_{1}\right]$
or, with segmentation $\pi(\omega)=\mathbb{E}_{\mathbb{P}}\left[S_{1} \mid \Omega=\omega\right]$ for some (unobservable?) risk factor Ω
imperfect information given some (observable) risk variables $\boldsymbol{X}=\left(X_{1}, \cdots, X_{k}\right)$ $\pi(\boldsymbol{x})=\mathbb{E}_{\mathbb{P}}\left[S_{1} \mid \boldsymbol{X}=\boldsymbol{x}\right]$

Insurance Ratemaking Competition

In a competitive market, insurers can use different sets of variables and different models, with GLMs, $N_{t} \mid \boldsymbol{X} \sim \mathcal{P}\left(\lambda_{\boldsymbol{X}} \cdot t\right)$ and $Y \mid \boldsymbol{X} \sim \mathcal{G}\left(\mu_{\boldsymbol{X}}, \varphi\right)$

$$
z_{j}=\widehat{\pi}_{j}(\boldsymbol{x})=\widehat{\mathbb{E}}\left[N_{1} \mid \boldsymbol{X}=\boldsymbol{x}\right] \cdot \widehat{\mathbb{E}}[Y \mid \boldsymbol{X}=\boldsymbol{x}]=\underbrace{\exp \left(\widehat{\boldsymbol{\alpha}}^{\top} \boldsymbol{x}\right)}_{\text {Poisson } \mathcal{P}\left(\lambda_{\boldsymbol{x}}\right)} \cdot \underbrace{\exp \left(\widehat{\boldsymbol{\beta}}^{\top} \boldsymbol{x}\right)}_{\text {Gamma } \mathcal{G}\left(\mu_{\boldsymbol{X}}, \varphi\right)}
$$

(see Kaas et al. (2008)) or any other statistical model (see Hastie et al. (2009))

$$
z_{j}=\widehat{\pi}_{j}(\boldsymbol{x}) \text { where } \widehat{\pi}_{j} \in \underset{m \in \mathcal{F}_{j}: \Pi_{\mathcal{X}_{j}} \rightarrow \mathbb{R}}{\operatorname{argmin}}\left\{\sum_{i=1}^{n} \ell\left(s_{i}, m\left(\boldsymbol{x}_{i}\right)\right)\right\}
$$

With d competitors, each insured i has to choose among d premiums, $\boldsymbol{\pi}_{i}=\left(\widehat{\pi}_{1}\left(\boldsymbol{x}_{i}\right), \cdots, \widehat{\pi}_{d}\left(\boldsymbol{x}_{i}\right)\right) \in \mathbb{R}_{+}^{d}$.

More and more price differentiation ?

Consider $\pi_{1}=\mathbb{E}\left[S_{1}\right]$ and $\pi_{2}(\boldsymbol{x})=\mathbb{E}\left[S_{1} \mid \boldsymbol{X}=\boldsymbol{x}\right]$
Observe that $\mathbb{E}[\pi(\boldsymbol{X})]=\sum_{\boldsymbol{x} \in \mathcal{X}} \pi(\boldsymbol{x}) \cdot \mathbb{P}[\boldsymbol{x}]=\pi_{1}$

$$
=\sum_{\boldsymbol{x} \in \mathcal{X}_{1}} \pi(\boldsymbol{x}) \cdot \mathbb{P}[\boldsymbol{x}]+\sum_{\boldsymbol{x} \in \mathcal{X}_{2}} \pi(\boldsymbol{x}) \cdot \mathbb{P}[\boldsymbol{x}]
$$

- Insured with $\boldsymbol{x} \in \mathcal{X}_{1}$: choose Ins1
- Insured with $\boldsymbol{x} \in \mathcal{X}_{2}$: choose Ins2

$$
\begin{aligned}
& \sum_{\boldsymbol{x} \in \mathcal{X}_{1}} \pi_{1}(\boldsymbol{x}) \cdot \mathbb{P}_{\mathrm{lns} 1}[\boldsymbol{x}] \neq \mathbb{E}\left[S \mid \boldsymbol{X} \in \mathcal{X}_{1}\right]=\mathbb{E}_{\mathrm{lns} 1}[S] \\
& \sum_{\boldsymbol{x} \in \mathcal{X}_{2}} \pi_{2}(\boldsymbol{x}) \cdot \mathbb{P}_{\mathrm{lns} 2}[\boldsymbol{x}]=\mathbb{E}\left[S \mid \boldsymbol{X} \in \mathcal{X}_{2}\right]=\mathbb{E}_{\mathrm{lns} 2}[S]
\end{aligned}
$$

Insurance Ratemaking Competition (episode 1, season 3) comonotonicity?

Insurance Ratemaking Competition (episode 1, season 3) comonotonicity?

Insurance Ratemaking Competition (episode 1, season 1)

Insurance Ratemaking Competition (episode 1, season 1)

Insurance Ratemaking Competition (episode 1, season 1)

Age in $[17,25]$

Insurance Ratemaking Competition (episode 1, season 1)

Insurance Ratemaking Competition (episode 1, season 1)

Insurance Ratemaking Competition (episode 1, season 1)

Insurance Ratemaking Competition (episode 1, season 1)

Category = 'Medium'

Insurance Ratemaking Competition (episode 1, season 1)

Insurance Ratemaking Competition

We need a Decision Rule to select premium chosen by insured i

Ins1	Ins2	Ins3	Ins4	Ins5	Ins6
787.93	706.97	1032.62	907.64	822.58	603.83
170.04	197.81	285.99	212.71	177.87	265.13
473.15	447.58	343.64	410.76	414.23	425.23
337.98	336.20	468.45	339.33	383.55	672.91

Insurance Ratemaking Competition

Basic 'rational rule' $\pi_{i}=\min \left\{\widehat{\pi}_{1}\left(\boldsymbol{x}_{i}\right), \cdots, \widehat{\pi}_{d}\left(\boldsymbol{x}_{i}\right)\right\}=\widehat{\pi}_{1: d}\left(\boldsymbol{x}_{i}\right)$
Ins1 Ins2 Ins3 Ins4 Ins5 Ins6

787.93	706.97	1032.62	907.64	822.58	603.83

$\begin{array}{llllll}170.04 & 197.81 & 285.99 & 212.71 & 177.87 & 265.13\end{array}$
$\begin{array}{llllll}473.15 & 447.58 & 343.64 & 410.76 & 414.23 & 425.23\end{array}$
$\begin{array}{llllll}337.98 & 336.20 & 468.45 & 339.33 & 383.55 & 672.91\end{array}$

Insurance Ratemaking Competition
A more realistic rule $\pi_{i} \in\left\{\widehat{\pi}_{1: d}\left(\boldsymbol{x}_{i}\right), \widehat{\pi}_{2: d}\left(\boldsymbol{x}_{i}\right), \widehat{\pi}_{3: d}\left(\boldsymbol{x}_{i}\right)\right\}$

	Ins1	Ins2	Ins3	Ins4	Ins5	Ins6
	787.93	706.97	1032.62	907.64	822.58	603.83
	170.04	197.81	285.99	212.71	177.87	265.13
	473.15	447.58	343.64	410.76	414.23	425.23
	337.98	336.20	468.45	339.33	383.55	672.91

Insurance Ratemaking Competition

Insurance Ratemaking Competition

Insurance Ratemaking Competition

Insurance Ratemaking Competition

A Game with Rules... but no Goal

Two datasets : a training one, and a pricing one (without the losses in the later)
Step 1 : provide premiums to all contracts in the pricing dataset
Step 2 : allocate insured among players
Season 113 players
Season 214 players
Step 3 [season 2] : provide additional information (premiums of competitors)
Season 323 players (3 markets, $8+8+7$)
Step 3-6 [season 3] : dynamics, 4 years

Actuarial Pricing Game (season 3)

Actuarial Pricing Game (episode 1, season 3)

Actuarial Pricing Game (episode 1, season 3)

Actuarial Pricing Game (episode 1, season 3)

Actuarial Pricing Game (episodes 1-3, season 3)

Actuarial Pricing Game (episodes 1-3, season 3)

Actuarial Pricing Game (season 3)

