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Agenda

1. Introduction to Statistical Learning

2. Classification yi ∈ {0, 1}, or yi ∈ {•, •}

3. Regression yi ∈ R (possibly yi ∈ N)

4. Model selection, feature engineering, etc

All those topics are related to computational issues, so codes will be mentioned

@freakonometrics 3



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Inside Black boxes

The goal of the course is to describe philosophical difference
between machine learning techniques, and standard statistical
/ econometric ones, to describe algorithms used in machine
learning, but also to see them in action.
A machine learning technique is

• an algorithm

• a code (implementation of the algorithm)

@freakonometrics 4
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Prose and Verse (Spoiler)

MAÎTRE DE PHILOSOPHIE: Sans doute. Sont-ce des vers que vous lui voulez écrire?
MONSIEUR JOURDAIN: Non, non, point de vers.
MAÎTRE DE PHILOSOPHIE: Vous ne voulez que de la prose?
MONSIEUR JOURDAIN: Non, je ne veux ni prose ni vers.
MAÎTRE DE PHILOSOPHIE: Il faut bien que ce soit l’un, ou l’autre.
MONSIEUR JOURDAIN: Pourquoi?
MAÎTRE DE PHILOSOPHIE: Par la raison, Monsieur, qu’il n’y a pour s’exprimer que la prose, ou
les vers.
MONSIEUR JOURDAIN: Il n’y a que la prose ou les vers?
MAÎTRE DE PHILOSOPHIE: Non, Monsieur: tout ce qui n’est point prose est vers; et tout ce qui
n’est point vers est prose.
MONSIEUR JOURDAIN: Et comme l’on parle qu’est-ce que c’est donc que cela?
MAÎTRE DE PHILOSOPHIE: De la prose.
MONSIEUR JOURDAIN: Quoi? quand je dis: "Nicole, apportez-moi mes pantoufles, et me donnez
mon bonnet de nuit" , c’est de la prose?
MAÎTRE DE PHILOSOPHIE: Oui, Monsieur.
MONSIEUR JOURDAIN: Par ma foi! il y a plus de quarante ans que je dis de la prose sans que
j’en susse rien, et je vous suis le plus obligé du monde de m’avoir appris cela. Je voudrais
donc lui mettre dans un billet: Belle Marquise, vos beaux yeux me font mourir d’amour;
mais je voudrais que cela fût mis d’une manière galante, que cela fût tourné gentiment.

‘Le Bourgeois Gentilhomme ’, Molière (1670)
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Part 1.
Statistical/Machine Learning

@freakonometrics 6
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Statistical Learning and Philosophical Issues

From Machine Learning and Econometrics, by Hal Varian :

“Machine learning use data to predict some variable as a function of other
covariables,

• may, or may not, care about insight, importance, patterns

• may, or may not, care about inference (how y changes as some x change)

Econometrics use statistical methodes for prediction, inference and causal
modeling of economic relationships

• hope for some sort of insight (inference is a goal)

• in particular, causal inference is goal for decision making.”

→ machine learning, ‘new tricks for econometrics’

@freakonometrics 7

http://web.stanford.edu/class/ee380/Abstracts/140129-slides-Machine-Learning-and-Econometrics.pdf


Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Statistical Learning and Philosophical Issues

Remark machine learning can also learn from econometrics, especially with non
i.i.d. data (time series and panel data)

Remark machine learning can help to get better predictive models, given good
datasets. No use on several data science issues (e.g. selection bias).

@freakonometrics 8
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Statistical Learning and Philosophical Issues

“Ceteris Paribus: causal effect with other things being held constant; partial
derivative

Mutatis mutandis: correlation effect with other things changing as they will; total
derivative

Passive observation: If I observe price change of dxj , how do I expect quantity
sold y to change?

Explicit manipulation: If I explicitly change price by dxj , how do I expect
quantity sold y to change?”

@freakonometrics 9
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Non-Supervised and Supervised Techniques

Just xi’s, here, no yi: unsupervised.

Use principal components to reduce dimension: we want d vectors z1, · · · , zd
such that

xi ∼
d∑
j=1

ωi,jzj or X ∼ ZΩT

where Ω is a k × d matrix, with d < k.
First Compoment is z1 = Xω1 where

ω1 = argmax
‖ω‖=1

{
‖X · ω‖2} = argmax

‖ω‖=1

{
ωTXTXω

}
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Second Compoment is z2 = Xω2 where

ω2 = argmax
‖ω‖=1

{
‖X̃

(1)
· ω‖2

}
where X̃

(1)
= X −Xω1︸ ︷︷ ︸

z1

ωT
1
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Non-Supervised and Supervised Techniques

... etc, see Galton (1889) or MacDonell (1902).

k-means and hierarchical clustering can be used to get clusters of the n
observations.
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Datamining, Explantory Analysis, Regression, Statistical Learning, Predictive
Modeling, etc

In statistical learning, data are approched with little priori information.

In regression analysis, see Cook & Weisberg (1999)

i.e. we would like to get the distribution of the response variable Y conditioning
on one (or more) predictors X.

Consider a regression model, yi = m(xi) + εi, where εi ’s are i.i.d. N (0, σ2),
possibly linear yi = xT

i β + εi, where εi’s are (somehow) unpredictible.

@freakonometrics 12
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Machine Learning and ‘Statistics’

Machine learning and statistics seem to be very similar, they share the same
goals—they both focus on data modeling—but their methods are affected by
their cultural differences.

“The goal for a statistician is to predict an interaction between variables with
some degree of certainty (we are never 100% certain about anything). Machine
learners, on the other hand, want to build algorithms that predict, classify, and
cluster with the most accuracy, see Why a Mathematician, Statistician & Machine
Learner Solve the Same Problem Differently

Machine learning methods are about algorithms, more than about asymptotic
statistical properties.

@freakonometrics 13
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Machine Learning and ‘Statistics’

See also nonparametric inference: “Note that the non-parametric model is not
none-parametric: parameters are determined by the training data, not the model.
[...] non-parametric covers techniques that do not assume that the structure of a
model is fixed. Typically, the model grows in size to accommodate the
complexity of the data.” see wikipedia

Validation is not based on mathematical properties, but on properties out of
sample: we must use a training sample to train (estimate) model, and a testing
sample to compare algorithms.

@freakonometrics 14

https://en.wikipedia.org/wiki/Nonparametric_statistics


Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Goldilock Principle: the Mean-Variance Tradeoff

In statistics and in machine learning, there will be parameters and
meta-parameters (or tunning parameters. The first ones are estimated, the
second ones should be chosen.

See Hill estimator in extreme value theory. X has a Pareto distribution above
some threshold u if

P[X > x|X > u] =
(u
x

) 1
ξ for x > u.

Given a sample x, consider the Pareto-QQ plot, i.e. the scatterplot{
− log

(
1− i

n+ 1

)
, log xi:n

}
i=n−k,··· ,n

for points exceeding Xn−k:n. The slope is ξ, i.e.

logXn−i+1:n ≈ logXn−k:n + ξ

(
− log i

n+ 1 − log n+ 1
k + 1

)
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Goldilock Principle: the Mean-Variance Tradeoff

Hence, consider estimator ξ̂k = 1
k

k−1∑
i=0

log xn−i:n − log xn−k:n.

1 > library (evir)

2 > data( danish )

3 > hill(danish , "xi")

Standard mean-variance tradeoff,

• k large: bias too large, variance too small

• k small: variance too large, bias too small

@freakonometrics 16
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Goldilock Principle: the Mean-Variance Tradeoff

Same holds in kernel regression, with bandwidth h (length of neighborhood)

1 > library (np)

2 > nw <- npreg (y ~ x, data=db , bws=h,

3 + ckertype = " gaussian ")

Standard mean-variance tradeoff,

• h large: bias too large, variance too small

• h small: variance too large, bias too small

@freakonometrics 17
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Goldilock Principle: the Mean-Variance Tradeoff

More generally, we estimate θ̂h or m̂h(·)
Use the mean squared error for θ̂h

E
[(
θ − θ̂h

)2
]

or mean integrated squared error m̂h(·),

E
[∫

(m(x)− m̂h(x))2
dx

]
In statistics, derive an asymptotic expression for these quantities, and find h?

that minimizes those.

@freakonometrics 18
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Goldilock Principle: the Mean-Variance Tradeoff

For kernel regression, the MISE can be approximated by

h4

4

(∫
x2K(x)dx

)2 ∫ (
m′′(x) + 2m′(x)f

′(x)
f(x)

)
dx+ 1

nh
σ2
∫
K2(x)dx

∫
dx

f(x)

where f is the density of x’s. Thus the optimal h is

h? = n−
1
5


σ2 ∫ K2(x)dx

∫ dx

f(x)(∫
x2K(x)dx

)2 ∫ (∫
m′′(x) + 2m′(x)f

′(x)
f(x)

)2
dx


1
5

(hard to get a simple rule of thumb... up to a constant, h? ∼ n− 1
5 )

Use bootstrap, or cross-validation to get an optimal h

@freakonometrics 19
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Randomization is too important to be left to chance!

Bootstrap (resampling) algorithm is very important (nonparametric monte carlo)

→ data (and not model) driven algorithm

@freakonometrics 20
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Randomization is too important to be left to chance!

Consider some sample x = (x1, · · · , xn) and some statistics θ̂. Set θ̂n = θ̂(x)

Jackknife used to reduce bias: set θ̂(−i) = θ̂(x(−i)), and θ̃ = 1
n

n∑
i=1

θ̂(−i)

If E(θ̂n) = θ +O(n−1) then E(θ̃n) = θ +O(n−2).

See also leave-one-out cross validation, for m̂(·)

mse = 1
n

n∑
i=1

[yi − m̂(−i)(xi)]2

Boostrap estimate is based on bootstrap samples: set θ̂(b) = θ̂(x(b)), and

θ̃ = 1
n

n∑
i=1

θ̂(b), where x(b) is a vector of size n, where values are drawn from

{x1, · · · , xn}, with replacement. And then use the law of large numbers...

See Efron (1979).

@freakonometrics 21
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Statistical Learning and Philosophical Issues

From (yi,xi), there are different stories behind, see Freedman (2005)

• the causal story : xj,i is usually considered as independent of the other
covariates xk,i. For all possible x, that value is mapped to m(x) and a noise
is atatched, ε. The goal is to recover m(·), and the residuals are just the
difference between the response value and m(x).

• the conditional distribution story : for a linear model, we usually say that Y
given X = x is a N (m(x), σ2) distribution. m(x) is then the conditional
mean. Here m(·) is assumed to really exist, but no causal assumption is
made, only a conditional one.

• the explanatory data story : there is no model, just data. We simply want to
summarize information contained in x’s to get an accurate summary, close to
the response (i.e. min{`(yi,m(xi))}) for some loss function `.

@freakonometrics 22
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Machine Learning vs. Statistical Modeling

In machine learning, given some dataset (xi, yi), solve

m̂(·) = argmin
m(·)∈F

{
n∑
i=1

`(yi,m(xi))
}

for some loss functions `(·, ·).

In statistical modeling, given some probability space (Ω,A,P), assume that yi
are realization of i.i.d. variables Yi (given Xi = xi) with distribution Fi. Then
solve

m̂(·) = argmin
m(·)∈F

{logL(m(x);y)} = argmin
m(·)∈F

{
n∑
i=1

log f(yi;m(xi))
}

where logL denotes the log-likelihood.

@freakonometrics 23
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Loss Functions

Fitting criteria are based on loss functions (also called cost functions). For a
quantitative response, a popular one is the quadratic loss,
`(y,m(x)) = [y −m(x)]2.

Recall that 
E(Y ) = argmin

m∈R
{‖Y −m‖`2} = argmin

m∈R
{E
(
[Y −m]2

)
}

Var(Y ) = min
m∈R
{E
(
[Y −m]2

)
} = E

(
[Y − E(Y )]2

)
The empirical version is

y = argmin
m∈R

{
n∑
i=1

1
n

[yi −m]2}

s2 = min
m∈R
{
n∑
i=1

1
n

[yi −m]2} =
n∑
i=1

1
n

[yi − y]2

@freakonometrics 24
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Loss Functions

Robust estimation is based on a different loss function, `(y,m(x)) = |y −m(x)|.

In the context of classification, we can use a misclassification indicator,
`(y,m(x)) = 1(y 6= m(x))

Note that those loss functions have symmetric weighting.

@freakonometrics 25
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Computational Aspects: Optimization

Econometrics, Statistics and Machine Learning rely on the same object:
optimization routines.

A gradient descent/ascent algorithm A stochastic algorithm

@freakonometrics 26
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Linear Predictors

In the linear model, least square estimator yields

ŷ = Xβ̂ = X[XTX]−1XT︸ ︷︷ ︸
H

Y

We have a linear predictor if the fitted value ŷ at point x can be written

ŷ = m̂(x) =
n∑
i=1

Sx,iyi = ST
xy

where Sx is some vector of weights (called smoother vector), related to a n× n
smoother matrix,

ŷ = Sy

where prediction is done at points xi’s.

@freakonometrics 27
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Degrees of Freedom and Model Complexity

E.g.
Sx = X[XTX]−1x

that is related to the hat matrix, ŷ = Hy.

Note that
T = ‖SY −HY ‖

trace([S −H]T[S −H])

can be used to test a linear assumtion: if the model is linear, then T has a Fisher
distribution.

In the context of linear predictors, trace(S) is usually called equivalent number of
parameters and is related to n− effective degrees of freedom (as in Ruppert et al.
(2003)).

@freakonometrics 28
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Model Evaluation

In linear models, the R2 is defined as the proportion of the variance of the the
response y that can be obtained using the predictors.

But maximizing the R2 usually yields overfit (or unjustified optimism in Berk
(2008)).

In linear models, consider the adjusted R2,

R
2 = 1− [1−R2] n− 1

n− p− 1

where p is the number of parameters (or more generally trace(S)).

@freakonometrics 29

http://www.springer.com/us/book/9780387775005
http://www.springer.com/us/book/9780387775005


Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Model Evaluation

Alternatives are based on the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC), based on a penalty imposed on some
criteria (the logarithm of the variance of the residuals),

AIC = log
(

1
n

n∑
i=1

[yi − ŷi]2
)

+ 2p
n

BIC = log
(

1
n

n∑
i=1

[yi − ŷi]2
)

+ log(n)p
n

In a more general context, replace p by trace(S)

@freakonometrics 30
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Model Evaluation

One can also consider the expected prediction error (with a probabilistic model)

E[`(Y, m̂(X)]

We cannot claim (using the law of large number) that

1
n

n∑
i=1

`(yi, m̂(xi))
a.s.9 E[`(Y,m(X)]

since m̂ depends on (yi,xi)’s.

Natural option : use two (random) samples, a training one and a validation one.

Alternative options, use cross-validation, leave-one-out or k-fold.

@freakonometrics 31
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Underfit / Overfit and Variance - Mean Tradeoff

@freakonometrics 32
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Underfit / Overfit and Variance - Mean Tradeoff

Goal in predictive modeling: reduce uncertainty in our predictions.

Need more data to get a better knowledge.

Unfortunately, reducing the error of the prediction on a dataset does not
generally give a good generalization performance

−→ need a training and a validation dataset

@freakonometrics 33
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Overfit, Training vs. Validation and Complexity (Vapnik Dimension)

complexity ←→ polynomial degree

@freakonometrics 34
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Overfit, Training vs. Validation and Complexity (Vapnik Dimension)

complexity ←→ number of neighbors (k)

@freakonometrics 35
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Themes in Data Science

Predictive Capability we want here to have a model that predict well for new
observations

Bias-Variance Tradeoff A very smooth prediction has less variance, but a large
bias. We need to find a good balance between the bias and the variance

Loss Functions In machine learning, goodness of fit is discussed based on
disparities between predicted values, and observed one, based on some loss
function

Tuning or Meta Parameters Choice will be made in terms of tuning parameters

Interpretability Does it matter to have a good model if we cannot interpret it ?

Coding Issues Most of the time, there are no analytical expression, just an
alogrithm that should converge to some (possibly) optimal value

Data Data collection is a crucial issue (but will not be discussed here)

@freakonometrics 36
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Scalability Issues

Dealing with big (or massive) datasets, large number of observations (n) and/or
large number of predictors (features or covariates, k).

Ability to parallelize algorithms might be important (map-reduce).

n can be large, but limited
(portfolio size)
large variety k
large volume nk

→ Feature Engineering

@freakonometrics 37
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Part 2.
Classification, y ∈ {0, 1}

@freakonometrics 38
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Classification?

Example: Fraud detection, automatic reading (classifying handwriting
symbols), face recognition, accident occurence, death, purchase of optinal
insurance cover, etc
Here yi ∈ {0, 1} or yi ∈ {−1,+1} or yi ∈ {•, •}.

We look for a (good) predictive model here.
There will be two steps,

• the score function, s(x) = P(Y = 1|X = x) ∈ [0, 1]

• the classification function s(x)→ Ŷ ∈ {0, 1}.
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Modeling a 0/1 random variable

Myocardial infarction of patients admited in E.R.

◦ heart rate (FRCAR),
◦ heart index (INCAR)
◦ stroke index (INSYS)
◦ diastolic pressure (PRDIA)
◦ pulmonary arterial pressure (PAPUL)
◦ ventricular pressure (PVENT)
◦ lung resistance (REPUL)
◦ death or survival (PRONO)

1 > myocarde =read. table ("http:// freakonometrics .free.fr/ myocarde .csv",

head=TRUE ,sep=";")
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Logistic Regression
Assume that P(Yi = 1) = πi,

logit(πi) = X ′iβ, where logit(πi) = log
(

πi
1− πi

)
,

or
πi = logit−1(X ′iβ) = exp[X ′iβ]

1 + exp[XT
i β]

.

The log-likelihood is

logL(β) =
n∑
i=1

yi log(πi)+(1−yi) log(1−πi) =
n∑
i=1

yi log(πi(β))+(1−yi) log(1−πi(β))

and the first order conditions are solved numerically

∂ logL(β)
∂βk

=
n∑
i=1

Xk,i[yi − πi(β)] = 0.
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Logistic Regression, Output (with R)
1 > logistic <- glm( PRONO ~. , data=myocarde , family = binomial )

2 > summary ( logistic )

3

4 Coefficients :

5 Estimate Std. Error z value Pr(>|z|)

6 ( Intercept ) -10.187642 11.895227 -0.856 0.392

7 FRCAR 0.138178 0.114112 1.211 0.226

8 INCAR -5.862429 6.748785 -0.869 0.385

9 INSYS 0.717084 0.561445 1.277 0.202

10 PRDIA -0.073668 0.291636 -0.253 0.801

11 PAPUL 0.016757 0.341942 0.049 0.961

12 PVENT -0.106776 0.110550 -0.966 0.334

13 REPUL -0.003154 0.004891 -0.645 0.519

14

15 ( Dispersion parameter for binomial family taken to be 1)

16

17 Number of Fisher Scoring iterations : 7
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Logistic Regression, Output (with R)

1 > library (VGAM)

2 > mlogistic <- vglm( PRONO ~. , data=myocarde , family = multinomial )

3 > summary ( mlogistic )

4

5 Coefficients :

6 Estimate Std. Error z value

7 ( Intercept ) 10.1876411 11.8941581 0.856525

8 FRCAR -0.1381781 0.1141056 -1.210967

9 INCAR 5.8624289 6.7484319 0.868710

10 INSYS -0.7170840 0.5613961 -1.277323

11 PRDIA 0.0736682 0.2916276 0.252610

12 PAPUL -0.0167565 0.3419255 -0.049006

13 PVENT 0.1067760 0.1105456 0.965901

14 REPUL 0.0031542 0.0048907 0.644939

15

16 Name of linear predictor : log(mu [ ,1]/mu [ ,2])
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Logistic (Multinomial) Regression

In the Bernoulli case, y ∈ {0, 1},

P(Y = 1) = eX
Tβ

1 + eX
Tβ

= p1

p0 + p1
∝ p1 and P(Y = 0) = 1

1 + eX
T = p0

p0 + p1
∝ p0

In the multinomial case, y ∈ {A,B,C}

P(X = A) = pA
pA + pB + pC

∝ pA i.e. P(X = A) = eX
TβA

eX
TβB + eX

TβB + 1

P(X = B) = pB
pA + pB + pC

∝ pB i.e. P(X = B) = eX
TβB

eX
TβA + eX

TβB + 1

P(X = C) = pC
pA + pB + pC

∝ pC i.e. P(X = C) = 1
eX

TβA + eX
TβB + 1
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Logistic Regression, Numerical Issues

The algorithm to compute β̂ is

1. start with some initial value β0

2. define βk = βk−1 −H(βk−1)−1∇ logL(βk−1)

where ∇ logL(β)is the gradient, and H(β) the Hessian matrix, also called
Fisher’s score.

The generic term of the Hessian is

∂2 logL(β)
∂βk∂β`

=
n∑
i=1

Xk,iX`,i[yi − πi(β)]

Define Ω = [ωi,j ] = diag(π̂i(1− π̂i)) so that the gradient is writen

∇ logL(β) = ∂ logL(β)
∂β

= X ′(y − π)
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Logistic Regression, Numerical Issues

and the Hessian
H(β) = ∂2 logL(β)

∂β∂β′
= −X ′ΩX

The gradient descent algorithm is then

βk = (X ′ΩX)−1X ′ΩZ where Z = Xβk−1 +X ′Ω−1(y − π),

From maximum likelihood properties,

√
n(β̂ − β) L→ N (0, I(β)−1).

From a numerical point of view, this asymptotic variance I(β)−1 satisfies
I(β)−1 = −H(β).
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Logistic Regression, Numerical Issues
1 > X= cbind (1,as. matrix ( myocarde [ ,1:7]))

2 > Y= myocarde $ PRONO ==" Survival "

3 > beta=as. matrix (lm(Y~0+X)$ coefficients ,ncol =1)

4 > for(s in 1:9){

5 + pi=exp(X%*%beta[,s])/(1+ exp(X%*%beta[,s]))

6 + gradient =t(X)%*%(Y-pi)

7 + omega = matrix (0, nrow(X),nrow(X));diag( omega )=( pi*(1-pi))

8 + Hessian =-t(X)%*% omega %*%X

9 + beta= cbind (beta ,beta[,s]- solve ( Hessian )%*% gradient )}

10 > beta

11 > -solve ( Hessian )

12 > sqrt(-diag( solve ( Hessian )))
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Predicted Probability

Let m(x) = E(Y |X = x). With a logistic regression, we can get a prediction

m̂(x) = exp[xTβ̂]
1 + exp[xTβ̂]

1 > predict (logistic ,type=" response ") [1:5]

2 1 2 3 4 5

3 0.6013894 0.1693769 0.3289560 0.8817594 0.1424219

4 > predict ( mlogistic ,type=" response ")[1:5 ,]

5 Death Survival

6 1 0.3986106 0.6013894

7 2 0.8306231 0.1693769

8 3 0.6710440 0.3289560

9 4 0.1182406 0.8817594

10 5 0.8575781 0.1424219
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Predicted Probability

m̂(x) = exp[xTβ̂]
1 + exp[xTβ̂]

= exp[β̂0 + β̂1x1 + · · ·+ β̂kxk]
1 + exp[β̂0 + β̂1x1 + · · ·+ β̂kxk]

use
1 > predict (fit_glm , newdata = data , type=" response ")

e.g.

1 > GLM <- glm( PRONO ~ PVENT + REPUL , data =

myocarde , family = binomial )

2 > pred_GLM = function (p,r){

3 + return ( predict (GLM , newdata =

4 + data. frame ( PVENT =p, REPUL =r), type=" response ")}
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Predictive Classifier

To go from a score to a class:

if s(x) > s, then Ŷ (x) = 1 and s(x) ≤ s, then Ŷ (x) = 0

Plot TP (s) = P[Ŷ = 1|Y = 1] against FP (s) = P[Ŷ = 1|Y = 0]
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Predictive Classifier

With a threshold (e.g. s = 50%) and the predicted probabilities, one can get a
classifier and the confusion matrix

1 > probabilities <- predict (logistic , myocarde , type=" response ")

2 > predictions <- levels ( myocarde $ PRONO )[( probabilities >.5) +1]

3 > table ( predictions , myocarde $ PRONO )

4

5 predictions Death Survival

6 Death 25 3

7 Survival 4 39

@freakonometrics 51



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Visualization of a Classifier in Higher Dimension...
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Point z = (z1, z2, 0, · · · , 0) −→ x = (x1, x2, · · · , xk).
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... but be carefull about interpretation !

1 > prediction = predict (logistic ,type=" response ")

Use a 25% probability threshold
1 > table ( prediction >.25 , myocarde $ PRONO )

2 Death Survival

3 FALSE 19 2

4 TRUE 10 40

or a 75% probability threshold
1 > table ( prediction >.75 , myocarde $ PRONO )

2 Death Survival

3 FALSE 27 9

4 TRUE 2 33
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Why a Logistic and not a Probit Regression?
Bliss (1934)) suggested a model such that

P(Y = 1|X = x) = H(xTβ) where H(·) = Φ(·)

the c.d.f. of the N (0, 1) distribution. This is the probit model.
This yields a latent model, yi = 1(y?i > 0) where

y?i = xT
i β + εi is a nonobservable score.

In the logistic regression, we model the odds ratio,

P(Y = 1|X = x)
P(Y 6= 1|X = x) = exp[xTβ]

P(Y = 1|X = x) = H(xTβ) where H(·) = exp[·]
1 + exp[·]

which is the c.d.f. of the logistic variable, see Verhulst (1845)
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k-Nearest Neighbors (a.k.a. k-NN)

In pattern recognition, the k-Nearest Neighbors algorithm (or k-NN for short) is
a non-parametric method used for classification and regression. (Source:
wikipedia).

E[Y |X = x] ∼ 1
k

∑
d(xi,x) small

yi

For k-Nearest Neighbors, the class is usually the majority vote of the k closest
neighbors of x.

1 > library ( caret )

2 > KNN <- knn3( PRONO ~ PVENT + REPUL , data =

myocarde , k = 15)

3 >

4 > pred_KNN = function (p,r){

5 + return ( predict (KNN , newdata =

6 + data. frame ( PVENT =p, REPUL =r), type="prob")[ ,2]}
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k-Nearest Neighbors

Distance d(·, ·) should not be sensitive to units: normalize by standard deviation

1 > sP <- sd( myocarde $ PVENT ); sR <- sd( myocarde $

REPUL )

2 > KNN <- knn3( PRONO ~ I( PVENT /sP) + I( REPUL /sR),

data = myocarde , k = 15)

3 > pred_KNN = function (p,r){

4 + return ( predict (KNN , newdata =

5 + data. frame ( PVENT =p, REPUL =r), type="prob")[ ,2]}
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k-Nearest Neighbors and Curse of Dimensionality

The higher the dimension, the larger the distance to the closest neigbbor

min
i∈{1,··· ,n}

{d(a,xi)},xi ∈ Rd.
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Classification (and Regression) Trees, CART

one of the predictive modelling approaches used in statistics, data mining and
machine learning [...] In tree structures, leaves represent class labels and
branches represent conjunctions of features that lead to those class labels.
(Source: wikipedia).

1 > library ( rpart )

2 > cart <-rpart ( PRONO ~., data = myocarde )

3 > library ( rpart .plot)

4 > library ( rattle )

5 > prp(cart , type =2, extra =1)

or
1 > fancyRpartPlot (cart , sub="")
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Classification (and Regression) Trees, CART

The impurity is a function ϕ of the probability to have 1 at node N , i.e.
P[Y = 1| node N ], and

I(N) = ϕ(P[Y = 1| node N ])

ϕ is nonnegative (ϕ ≥ 0), symmetric (ϕ(p) = ϕ(1− p)), with a minimum in 0 and
1 (ϕ(0) = ϕ(1) < ϕ(p)), e.g.

• Bayes error: ϕ(p) = min{p, 1− p}

• cross-entropy: ϕ(p) = −p log(p)− (1− p) log(1− p)

• Gini index: ϕ(p) = p(1− p)

Those functions are concave, minimum at p = 0 and 1, maximum at p = 1/2.
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Classification (and Regression) Trees, CART

To split N into two {NL, NR}, consider

I(NL, NR)
∑

x∈{L,R}

nx
n
I(Nx)

e.g. Gini index (used originally in CART, see Breiman et al. (1984))

gini(NL, NR) = −
∑

x∈{L,R}

nx
n

∑
y∈{0,1}

nx,y
nx

(
1− nx,y

nx

)

and the cross-entropy (used in C4.5 and C5.0)

entropy(NL, NR) = −
∑

x∈{L,R}

nx
n

∑
y∈{0,1}

nx,y
nx

log
(
nx,y
nx

)
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Classification (and Regression) Trees, CART
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Pruning Trees

One can grow a big tree, until leaves have a (preset) small number of
observations, and then possibly go back and prune branches (or leaves) that do
not improve gains on good classification sufficiently.

Or we can decide, at each node, whether we split, or not.
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Pruning Trees

In trees, overfitting increases with the number of steps, and leaves. Drop in
impurity at node N is defined as

∆I(NL, NR) = I(N)− I(NL, NR) = I(N)−
(nL
n
I(NL)− nR

n
I(NR)

)

1 > library ( rpart )

2 > CART <- rpart ( PRONO ~ PVENT + REPUL , data =

myocarde , minsplit = 20)

3 >

4 > pred_CART = function (p,r){

5 + return ( predict (CART , newdata =

6 + data. frame ( PVENT =p, REPUL =r)[," Survival "])}
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−→ we cut if ∆I(NL, NR)/I(N) (relative gain) exceeds cp (complexity
parameter, default 1%).
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Pruning Trees

1 > library ( rpart )

2 > CART <- rpart ( PRONO ~ PVENT + REPUL , data =

myocarde , minsplit = 5)

3 >

4 > pred_CART = function (p,r){

5 + return ( predict (CART , newdata =

6 + data. frame ( PVENT =p, REPUL =r)[," Survival "])}
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See also
1 > library ( mvpart )

2 > ? prune

Define the missclassification rate of a tree R(tree)
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Pruning Trees

Given a cost-complexity parameter cp (see tunning parameter in Ridge-Lasso)
define a penalized R(·)

Rcp(tree) = R(tree)︸ ︷︷ ︸
loss

+ cp‖tree‖︸ ︷︷ ︸
complexity

If cp is small the optimal tree is large, if cp is large the optimal tree has no leaf,
see Breiman et al. (1984).

1 > cart <- rpart ( PRONO ~ .,data = myocarde , minsplit

=3)

2 > plotcp (cart)

3 > prune (cart , cp =0.06)
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Bagging

Bootstrapped Aggregation (Bagging) , is a machine learning ensemble
meta-algorithm designed to improve the stability and accuracy of machine
learning algorithms used in statistical classification (Source: wikipedia).

It is an ensemble method that creates multiple models of the same type from
different sub-samples of the same dataset [boostrap]. The predictions from each
separate model are combined together to provide a superior result [aggregation].

→ can be used on any kind of model, but interesting for trees, see Breiman (1996)

Boostrap can be used to define the concept of margin,

margini = 1
B

B∑
b=1

1(ŷi = yi)−
1
B

B∑
b=1

1(ŷi 6= yi)

Remark Probability that ith raw is not selection (1− n−1)n → e−1 ∼ 36.8%, cf
training / validation samples (2/3-1/3)
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Bagging Trees
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1 > margin <- matrix (NA ,1e4 ,n)

2 > for(b in 1:1 e4){

3 + idx = sample (1:n,size=n, replace =TRUE)

4 > cart <- rpart ( PRONO ~ PVENT +REPUL ,

5 + data= myocarde [idx ,], minsplit = 5)

6 > margin [j ,] <- ( predict (cart2 , newdata =

myocarde ,type="prob")[," Survival "] >.5)!=

( myocarde $ PRONO ==" Survival ")

7 + }

8 > apply (margin , 2, mean)
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Bagging
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Bagging Trees

Interesting because of instability in CARTs (in terms of tree structure, not
necessarily prediction)
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Bagging and Variance, Bagging and Bias

Assume that y = m(x) + ε. The mean squared error over repeated random
samples can be decomposed in three parts Hastie et al. (2001)

E[(Y − m̂(x))2] = σ2︸︷︷︸
1

+
[
E[m̂(x)]−m(x)

]2︸ ︷︷ ︸
2

+E
([
m̂(x)− E[(m̂(x)]

]2)︸ ︷︷ ︸
3

1 reflects the variance of Y around m(x)

2 is the squared bias of m̂(x)

3 is the variance of m̂(x)

−→ bias-variance tradeoff. Boostrap can be used to reduce the bias, and he
variance (but be careful of outliers)
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1 > library ( ipred )

2 > BAG <- bagging ( PRONO ~ PVENT + REPUL , data =

myocarde )

3 >

4 > pred_BAG = function (p,r){

5 + return ( predict (BAG , newdata =

6 + data. frame ( PVENT =p, REPUL =r), type="prob")[ ,2])}
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Random Forests

Strictly speaking, when boostrapping among observations, and aggregating, we
use a bagging algorithm.

In the random forest algorithm, we combine Breiman’s bagging idea and the
random selection of features, introduced independently by Ho (1995)) and Amit
& Geman (1997))

1 > library ( randomForest )

2 > RF <- randomForest ( PRONO ~ PVENT + REPUL , data =

myocarde )

3 >

4 > pred_RF = function (p,r){

5 + return ( predict (RF , newdata =

6 + data. frame ( PVENT =p, REPUL =r), type="prob")[ ,2])}
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Random Forest

At each node, select
√
k covariates out of k (randomly).
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Random Forest

can deal with small n large k-problems

Random Forest are used not only for prediction, but also to assess variable
importance (see last section).
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Support Vector Machine

SVMs were developed in the 90’s based on previous work, from Vapnik & Lerner
(1963), see Vailant (1984)
Assume that points are linearly separable, i.e. there is ω
and b such that

Y =

 +1 if ωTx+ b > 0
−1 if ωTx+ b < 0

Problem: infinite number of solutions, need a good one,
that separate the data, (somehow) far from the data.

Concept : VC dimension. Let H : {h : Rd 7→ {−1,+1}}. Then H is said
to shatter a set of points X is all dichotomies can be achieved.
E.g. with those three points, all configurations can be achieved
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Support Vector Machine
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E.g. with those four points, several configurations cannot be achieved
(with some linear separator, but they can with some quadratic one)

@freakonometrics 76



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Support Vector Machine

Vapnik’s (VC) dimension is the size of the largest shattered subset of X.

This dimension is intersting to get an upper bound of the probability of
miss-classification (with some complexity penalty, function of VC(H)).

Now, in practice, where is the optimal hyperplane ?

The distance from x0 to the hyperplane ωTx+ b is

d(x0, Hω,b) = ωTx0 + b

‖ω‖

and the optimal hyperplane (in the separable case) is

argmin
{

min
i=1,··· ,n

d(xi, Hω,b)
}
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Support Vector Machine

Define support vectors as observations such that

|ωTxi + b| = 1

The margin is the distance between hyperplanes defined by
support vectors.

The distance from support vectors to Hω,b is ‖ω‖−1, and the margin is then
2‖ω‖−1.

−→ the algorithm is to minimize the inverse of the margins s.t. Hω,b separates
±1 points, i.e.

min
{

1
2ω

Tω

}
s.t. Yi(ωTxi + b) ≥ 1, ∀i.
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Support Vector Machine

Problem difficult to solve: many inequality constraints (n)

−→ solve the dual problem...

In the primal space, the solution was

ω =
∑

αiYixi with
∑
i=1

αiYi = 0.

In the dual space, the problem becomes (hint: consider the Lagrangian)

max
{∑
i=1

αi −
1
2
∑
i=1

αiαjYiYjx
T
i xj

}
s.t.

∑
i=1

αiYi = 0.

which is usually written

min
α

{
1
2α

TQα− 1Tα

}
s.t.

 0 ≤ αi ∀i
yTα = 0

where Q = [Qi,j ] and Qi,j = yiyjx
T
i xj .
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Support Vector Machine

Now, what about the non-separable case?

Here, we cannot have yi(ωTxi + b) ≥ 1 ∀i.

−→ introduce slack variables, ωTxi + b ≥ +1− ξi when yi = +1
ωTxi + b ≤ −1 + ξi when yi = −1

where ξi ≥ 0 ∀i. There is a classification error when ξi > 1.

The idea is then to solve

min
{

1
2ω

Tω + C1T1ξ>1

}
, instead ofmin

{
1
2ω

Tω

}
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Support Vector Machines, with a Linear Kernel

So far,
d(x0, Hω,b) = min

x∈Hω,b

{‖x0 − x‖`2}

where ‖ · ‖`2 is the Euclidean (`2) norm,

‖x0 − x‖`2 =
√

(x0 − x) · (x0 − x) =
√
x0·x0 − 2x0·x+ x·x

1 > library ( kernlab )

2 > SVM2 <- ksvm( PRONO ~ PVENT + REPUL , data =

myocarde ,

3 + prob. model = TRUE , kernel = " vanilladot ")

4 > pred_SVM2 = function (p,r){

5 + return ( predict (SVM2 , newdata =

6 + data. frame ( PVENT =p, REPUL =r), type=" probabilities

")[ ,2])} 0 5 10 15 20
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Support Vector Machines, with a Non Linear Kernel

More generally,
d(x0, Hω,b) = min

x∈Hω,b

{‖x0 − x‖k}

where ‖ · ‖k is some kernel-based norm,

‖x0 − x‖k =
√
k(x0,x0)− 2k(x0,x) + k(x·x)

1 > library ( kernlab )

2 > SVM2 <- ksvm( PRONO ~ PVENT + REPUL , data =

myocarde ,

3 + prob. model = TRUE , kernel = " rbfdot ")

4 > pred_SVM2 = function (p,r){

5 + return ( predict (SVM2 , newdata =

6 + data. frame ( PVENT =p, REPUL =r), type=" probabilities

")[ ,2])} 0 5 10 15 20
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Still Hungry ?

There are still several (machine learning) techniques that can be used for
classification

• Fisher’s Linear or Quadratic Discrimination (closely related to logistic
regression, and PCA), see Fisher (1936))

X|Y = 0 ∼ N (µ0,Σ0) and X|Y = 1 ∼ N (µ1,Σ1)
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Still Hungry ?

• Perceptron or more generally Neural Networks In machine learning, neural
networks are a family of statistical learning models inspired by biological
neural networks and are used to estimate or approximate functions that can
depend on a large number of inputs and are generally unknown. wikipedia,
see Rosenblatt (1957)

• Boosting (see next section)

• Naive Bayes In machine learning, naive Bayes classifiers are a family of
simple probabilistic classifiers based on applying Bayes’ theorem with strong
(naive) independence assumptions between the features. wikipedia, see Russell
& Norvig (2003)

See also the (great) package
1 > library ( caret )
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Difference in Differences

In many applications (e.g. marketing), we do need two
models to analyze the impact of a treatment. We need
two groups, a control and a treatment group.
Data : {(xi, yi)} with yi ∈ {•, •}
Data : {(xj , yj)} with yi ∈ {�, �}
See clinical trials, treatment vs. control group
E.g. direct mail campaign in a bank

Control � Promotion •

No Purchase 85.17% 61.60%
Purchase 14.83% 38.40%
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overall uplift effect +23.57%, see Guelman et al. (2014) for more details.
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Part 3.
Regression
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Regression?

In statistics, regression analysis is a statistical process for estimating the
relationships among variables [...] In a narrower sense, regression may refer
specifically to the estimation of continuous response variables, as opposed to the
discrete response variables used in classification. (Source: wikipedia).

Here regression is opposed to classification (as in the CART algorithm). y is
either a continuous variable y ∈ R or a counting variable y ∈ N .
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Regression? Parametrics, nonparametrics and machine learning

In many cases in econometric and actuarial literature we simply want a good fit
for the conditional expectation, E[Y |X = x].

Regression analysis estimates the conditional expectation of the dependent
variable given the independent variables (Source: wikipedia).

Example: A popular nonparametric technique, kernel based regression,

m̂(x) =
∑
i Yi ·Kh(Xi − x)∑
iKh(Xi − x)

In econometric litterature, interest on asymptotic normality properties and
plug-in techniques.

In machine learning, interest on out-of sample cross-validation algorithms.
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Linear, Non-Linear and Generalized Linear

Linear Model:

• (Y |X = x) ∼ N (θx, σ2)

• E[Y |X = x] = θx = xTβ

1 > fit <- lm(y ~ x, data = df)
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Linear, Non-Linear and Generalized Linear

NonLinear / NonParametric Model:

• (Y |X = x) ∼ N (θx, σ2)

• E[Y |X = x] = θx = m(x)

1 > fit <- lm(y ~ poly(x, k), data = df)

2 > fit <- lm(y ~ bs(x), data = df)
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Linear, Non-Linear and Generalized Linear

Generalized Linear Model:

• (Y |X = x) ∼ L(θx, ϕ)

• E[Y |X = x] = h−1(θx) = h−1(xTβ)

1 > fit <- glm(y ~ x, data = df ,

2 + family = poisson (link = "log")

@freakonometrics 91



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Linear Model

Consider a linear regression model, yi = xT
i β + εi.

β is estimated using ordinary least squares, β̂ = [XTX]−1XTY

−→ best linear unbiased estimator

Unbiased estimators in important in statistics because they have nice
mathematical properties (see Cramér-Rao lower bound).

Looking for biased estimators (bias-variance tradeoff) becomes important in
high-dimension, see Burr & Fry (2005)
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Linear Model and Loss Functions

Consider a linear model, with some general loss function `, set `(x, y) = R(x− y)
and consider,

β̂ ∈ argmin
{

n∑
i=1

`(yi,xT
i β)

}
If R is differentiable, the first order condition would be

n∑
i=1

R′
(
yi − xT

i β
)
· xT

i = 0.

i.e.
n∑
i=1

ω
(
yi − xT

i β
)︸ ︷︷ ︸

ωi

·
(
yi − xT

i β
)
xT
i = 0 with ω(x) = R′(x)

x
,

It is the first order condition of a weighted `2 regression.
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Linear Model and Loss Functions

But weights are unknown: use and iterative algorithm
1 > e <- residuals ( lm(Y~X,data=db) )

2 > for( i in 1:100) {

3 + W <- omega (e)

4 + e <- residuals ( lm(Y~X,data=db , weight (W)) )

5 + }
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Bagging Linear Models

1 > V= matrix (NA ,100 ,251)

2 > for(i in 1:100) {

3 + ind <- sample (1:n,size=n, replace =TRUE)

4 + V[i ,] <- predict (lm(Y ~ X+ps(X),

5 + data = db[ind ,]) ,

6 + newdata = data. frame (Y = u))}
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Regression Smoothers, natura non facit saltus

In statistical learning procedures, a key role is played by basis functions. We will
see that it is common to assume that

m(x) =
M∑
m=0

βMhm(x),

where h0 is usually a constant function and hm defined basis functions.

For instance, hm(x) = xm for a polynomial expansion with
a single predictor, or hm(x) = (x − sm)+ for some knots
sm’s (for linear splines, but one can consider quadratic or
cubic ones).
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Regression Smoothers: Polynomial Functions

Stone-Weiestrass theorem every continuous function defined on a closed
interval [a, b] can be uniformly approximated as closely as desired by a
polynomial function

1 > fit <- lm(Y ~ poly(X,k), data = db)

2 > predict (fit , newdata = data. frame (X=x))
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Regression Smoothers: Spline Functions

1 > fit <- lm(Y ~ bs(X,k, degree =1) , data = db)

2 > predict (fit , newdata = data. frame (X=x))
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Regression Smoothers: Spline Functions

1 > fit <- lm(Y ~ bs(X,k, degree =2) , data = db)

2 > predict (fit , newdata = data. frame (X=x))

see Generalized Additive Models.
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Fixed Knots vs. Optimized Ones

1 > library ( freeknotsplines )

2 > gen <- freelsgen (db$X, db$Y, degree =2,

numknot =s)

3 > fit <- lm(Y ~ bs(X, gen$optknot , degree =2)

, data = db)

4 > predict (fit , newdata = data. frame (X=x))
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Penalized Smoothing

We have mentioned in the introduction that usually, we penalize a criteria (R2 or
log-likelihood) but it is also possible to penalize while fitting.

Heuristically, we have to minimuize the following objective function,

objective(β) = L(β)︸ ︷︷ ︸
training loss

+ R(β)︸ ︷︷ ︸
regularization

The regression coefficient can be shrunk toward 0, making fitted values more
homogeneous.

Consider a standard linear regression. The Ridge estimate is

β̂ = argmin
β


n∑
i=1

[yi − β0 − xT
i β]2 + λ ‖β‖`2︸ ︷︷ ︸

1Tβ2


for some tuning parameter λ.
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Observe that β̂ = [XTX + λI]−1XTy.

We‘ inflate’ the XTX matrix by λI so that it is positive definite whatever k,
including k > n.

There is a Bayesian interpretation: if β has a N (0, τ2I)-prior and if resiuals are
i.i.d. N (0, σ2), then the posteriory mean (and median) β̂ is the Ridge estimator,
with λ = σ2/τ2.

The Lasso estimate is

β̂ = argmin
β


n∑
i=1

[yi − β0 − xT
i β]2 + λ ‖β‖`1︸ ︷︷ ︸

1T|β|

.


No explicit formulas, but simple nonlinear estimator (and quadratic
programming routines are necessary).
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The elastic net estimate is

β̂ = argmin
β

{
n∑
i=1

[yi − β0 − xT
i β]2 + λ11T|β|+ λ21Tβ2.

}

See also LARS (Least Angle Regression) and Dantzig estimator.
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Interpretation of Ridge and Lasso Estimators

Consider here the estimation of the mean,

• OLS, min
{

n∑
i=1

[yi −m]2
}
, m? = y = 1

n

n∑
i=1

yi

• Ridge, min
{

n∑
i=1

[yi −m]2 + λm2

}
,

• Lasso, min
{

n∑
i=1

[yi −m]2 + λ|m|

}
,
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Some thoughts about Tuning parameters

Regularization is a key issue in machine learning, to avoid overfitting.

In (traditional) econometrics are based on plug-in methods: see Silverman
bandwith rule in Kernel density estimation,

h? =
(

4σ̂5

3n

)
∼ 1.06σ̂n−1/5.

In machine learning literature, use on out-of-sample cross-validation methods for
choosing amount of regularization.
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Optimal LASSO Penalty

Use cross validation, e.g. K-fold,

β̂(−k)(λ) = argmin

{∑
i6∈Ik

[yi − xT
i β]2 + λ

∑
k

|βk|


then compute the sum or the squared errors,

Qk(λ) =
∑
i 6∈Ik

[yi − xT
i β̂(−k)(λ)]2

and finally solve

λ? = argmin
{
Q(λ) = 1

K

∑
k

Qk(λ)
}

Note that this might overfit, so Hastie, Tibshiriani & Friedman (2009) suggest the
largest λ such that

Q(λ) ≤ Q(λ?) + se[λ?] with se[λ]2 = 1
K2

K∑
k=1

[Qk(λ)−Q(λ)]2

@freakonometrics 106

http://statweb.stanford.edu/~tibs/ElemStatLearn/


Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Big Data, Oracle and Sparcity

Assume that k is large, and that β ∈ Rk can be partitioned as
β = (βimp,βnon-imp), as well as covariates x = (ximp,xnon-imp), with important
and non-important variables, i.e. βnon-imp ∼ 0.

Goal : achieve variable selection and make inference of βimp

Oracle property of high dimensional model selection and estimation, see Fan and
Li (2001). Only the oracle knows which variables are important...

If sample size is large enough (n >> kimp

(
1 + log k

kimp

)
) we can do inference as

if we knew which covariates were important: we can ignore the selection of
covariates part, that is not relevant for the confidence intervals. This provides
cover for ignoring the shrinkage and using regularstandard errors, see Athey &
Imbens (2015).
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Why Shrinkage Regression Estimates ?

Interesting for model selection (alternative to peanlized criterions) and to get a
good balance between bias and variance.

In decision theory, an admissible decision rule is a rule for making a decisionsuch
that there is not any other rule that is always better than it.

When k ≥ 3, ordinary least squares are not admissible, see the improvement by
James–Stein estimator.
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Regularization and Scalability

What if k is (extremely) large? never trust ols with more than five regressors
(attributed to Zvi Griliches in Athey & Imbens (2015))

Use regularization techniques, see Ridge, Lasso, or subset selection

β̂ = argmin
β

{
n∑
i=1

[yi − β0 − xT
i β]2 + λ‖β‖`0 where ‖β‖`0 =

∑
k

1(βk 6= 0).
}
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Penalization and Splines

In order to get a sufficiently smooth model, why not penalyse the sum of squares
of errors,

n∑
i=1

[yi −m(xi)]2 + λ

∫
[m′′(t)]2dt

for some tuning parameter λ. Consider some cubic spline basis, so that

m(x) =
J∑
j=1

θjNj(x)

then the optimal expression for m is obtained using

θ̂ = [NTN + λΩ]−1NTy

where N i,j is the matrix of Nj(Xi)’s and Ωi,j =
∫
N ′′i (t)N ′′j (t)dt
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Smoothing with Multiple Regressors

Actually
n∑
i=1

[yi −m(xi)]2 + λ

∫
[m′′(t)]2dt

is based on some multivariate penalty functional, e.g.

∫
[m′′(t)]2dt =

∫ ∑
i

(
∂2m(t)
∂t2i

)2

+ 2
∑
i,j

(
∂2m(t)
∂ti∂tj

)2
 dt
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Regression Trees

The partitioning is sequential, one covariate at a time (see adaptative neighbor
estimation).

Start with Q =
n∑
i=1

[yi − y]2

For covariate k and threshold t, split the data according to {xi,k ≤ t} (L) or
{xi,k > t} (R). Compute

yL =
∑
i,xi,k≤t yi∑
i,xi,k≤t 1 and yR =

∑
i,xi,k>t

yi∑
i,xi,k>t

1

and let

m
(k,t)
i =

 yL if xi,k ≤ t
yR if xi,k > t
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Regression Trees

Then compute (k?, t?) = argmin
{

n∑
i=1

[yi −m(k,t)
i ]2

}
, and partition the space

intro two subspace, whether xk? ≤ t?, or not.

Then repeat this procedure, and minimize

n∑
i=1

[yi −mi]2 + λ ·#{leaves},

(cf LASSO).

One can also consider random forests with regression trees.
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Local Regression

1 > W <- ( abs(db$X-x)<h )*1

2 > fit <- lm(Y ~ X, data = db , weights = W)

3 > predict (fit , newdata = data. frame (X=x))
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Local Regression

1 > W <- ( abs(db$X-x)<h )*1

2 > fit <- lm(Y ~ X, data = db , weights = W)

3 > predict (fit , newdata = data. frame (X=x))
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Local Regression : Nearest Neighbor

1 > W <- (rank( abs(db$X-x)<h ) <= k)*1

2 > fit <- lm(Y ~ X, data = db , weights = W)

3 > predict (fit , newdata = data. frame (X=x))
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Local Regression : Kernel Based Smoothing

1 > library ( KernSmooth )

2 > W <- dnorm ( abs(db$X-x)<h )/h

3 > fit <- lm(Y ~ X, data = db , weights = W)

4 > predict (fit , newdata = data. frame (X=x))

5 > library ( KernSmooth )

6 > library (sp)

@freakonometrics 117



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Local Regression : Kernel Based Smoothing

1 > library (np)

2 > fit <- npreg (Y ~ X, data = db , bws = h,

3 + ckertype = " gaussian ")

4 > predict (fit , newdata = data. frame (X=x))
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k-Nearest Neighbors and Imputation

Several packages deal with missing values, see e.g. VIM
1 > library (VIM)

2 > data(tao)

3 > y <- tao[, c("Air.Temp", " Humidity ")]

4 > summary (y)

5 Air.Temp Humidity

6 Min. :21.42 Min. :71.60

7 1st Qu .:23.26 1st Qu .:81.30

8 Median :24.52 Median :85.20

9 Mean :25.03 Mean :84.43

10 3rd Qu .:27.08 3rd Qu .:88.10

11 Max. :28.50 Max. :94.80

12 NA ’s :81 NA ’s :93
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Missing humidity giving the temperature
1 > y<-tao[,c("Air.Temp"," Humidity ")]

2 > histMiss (y)

22 24 26 28

0
20

40
60

80

Air.Temp

m
is

si
ng

/o
bs

er
ve

d 
in

 H
um

id
ity

m
is

si
ng

1 > y<-tao[,c(" Humidity ","Air.Temp")]

2 > histMiss (y)
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k-Nearest Neighbors and Imputation

This package countains a k-Neareast
Neighbors algorithm for imputation

1 > tao_kNN <- kNN(tao , k = 5)

Imputation can be visualized using
1 vars <- c("Air.Temp"," Humidity ","

Air.Temp_imp"," Humidity _imp")

2 marginplot (tao_kNN[,vars],

delimiter ="imp", alpha =0.6)
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From Linear to Generalized Linear Models

The (Gaussian) Linear Model and the logistic regression have been extended to
the wide class of the exponential family,

f(y|θ, φ) = exp
(
yθ − b(θ)
a(φ) + c(y, φ)

)
,

where a(·), b(·) and c(·) are functions, θ is the natural - canonical - parameter
and φ is a nuisance parameter.

The Gaussian distribution N (µ, σ2) belongs to this family

θ = µ︸ ︷︷ ︸
θ↔E(Y )

, φ = σ2︸ ︷︷ ︸
φ↔Var(Y )

, a(φ) = φ, b(θ) = θ2/2
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From Linear to Generalized Linear Models

The Bernoulli distribution B(p) belongs to this family

θ = log p

1− p︸ ︷︷ ︸
θ=g?(E(Y ))

, a(φ) = 1, b(θ) = log(1 + exp(θ)), and φ = 1

where the g?(·) is some link function (here the logistic transformation): the
canonical link.

Canonical links are
1 binomial (link = " logit ")

2 gaussian (link = " identity ")

3 Gamma (link = " inverse ")

4 inverse . gaussian (link = "1/mu ^2")

5 poisson (link = "log")

6 quasi (link = " identity ", variance = " constant ")

7 quasibinomial (link = " logit ")

8 quasipoisson (link = "log")
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From Linear to Generalized Linear Models

Observe that

µ = E(Y ) = b′(θ) and Var(Y ) = b′′(θ) · φ = b′′([b′]−1(µ)) · φ︸ ︷︷ ︸
variance function V (µ)

−→ distributions are characterized by this variance function, e.g. V (µ) = 1 for
the Gaussian family (homoscedastic models), V (µ) = µ for the Poisson and
V (µ) = µ2 for the Gamma distribution, V (µ) = µ3 for the inverse-Gaussian
family.

Note that g?(·) = [b′]−1(·) is the canonical link.

Tweedie (1984) suggested a power-type variance function V (µ) = µγ · φ. When
γ ∈ [1, 2], then Y has a compound Poisson distribution with Gamma jumps.

1 > library ( tweedie )

@freakonometrics 124



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

From the Exponential Family to GLM’s

So far, there no regression model. Assume that

f(yi|θi, φ) = exp
(
yiθi − b(θi)

a(φ) + c(yi, φ)
)

where θi = g−1
? (g(xT

i β))

so that the log-likelihood is

L(θ, φ|y) =
n∏
i=1

f(yi|θi, φ) = exp
(∑n

i=1 yiθi −
∑n
i=1 b(θi)

a(φ) +
n∑
i=1

c(yi, φ)
)
.

To derive the first order condition, observe that we can write

∂ logL(θ, φ|yi)
∂βj

= ωi,jxi,j [yi − µi]

for some ωi,j (see e.g. Müller (2004)) which are simple when g? = g.
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From the Exponential Family to GLM’s

The first order conditions can be writen

XTW−1[y − µ] = 0

which are first order conditions for a weighted linear regression model.

As for the logistic regression, W depends on unkown β’s : use an iterative
algorithm

1. Set µ̂0 = y, θ0 = g(µ̂0) and

z0 = θ0 + (y − µ̂0)g′(µ̂0).

Define W 0 = diag[g′(µ̂0)2Var(ŷ)] and fit a (weighted) lineare regression of Z0 on
X, i.e.

β̂1 = [XTW−1
0 X]−1XTW−1

0 z0

2. Set µ̂k = Xβ̂k, θk = g(µ̂k) and

zk = θk + (y − µ̂k)g′(µ̂k).
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From the Exponential Family to GLM’s

Define W k = diag[g′(µ̂k)2Var(ŷ)] and fit a (weighted) lineare regression of Zk on
X, i.e.

β̂k+1 = [XTW−1
k X]−1XTW−1

k Zk

and loop... until changes in β̂k+1 are (sufficiently) small.

Under some technical conditions, we can prove that β̂ P→ β and

√
n(β̂ − β) L→ N (0, I(β)−1).

where numerically I(β) = φ · [XTW−1
∞X]).
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From the Exponential Family to GLM’s

We estimate (see linear regression estimation) φ by

φ̂ = 1
n− dim(X)

n∑
i=1

ωi,i
[yi − µ̂i]
Var(µ̂i)

This asymptotic expression can be used to derive confidence intervals, or tests.
But is might be a poor approximation when n is small. See use of boostrap in
claims reserving.

Those are theorerical results: in practice, the algorithm may fail to converge

@freakonometrics 128



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

GLM’s outside the Exponential Family?

Actually, it is possible to consider more general distributions, see Yee (2014))

1 > library (VGAM)

2 > vglm(y ~ x, family = Makeham )

3 > vglm(y ~ x, family = Gompertz )

4 > vglm(y ~ x, family = Erlang )

5 > vglm(y ~ x, family = Frechet )

6 > vglm(y ~ x, family = pareto1 ( location =100) )

Those functions can also be used for a multivariate response y
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GLM: Link and Distribution
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GLM: Distribution?

From a computational point of view, the Poisson regression is not (really) related
to the Poisson distribution.

Here we solve the first order conditions (or normal equations)∑
i

[Yi − exp(XT
i β)]Xi,j = 0 ∀j

with unconstraint β, using Fisher’s scoring technique βk+1 = βk −H
−1
k ∇k

where Hk = −
∑
i

exp(XT
i βk)XiX

T
i and ∇k =

∑
i

XT
i [Yi − exp(XT

i βk)]

−→ There is no assumption here about Y ∈ N: it is possible to run a Poisson
regression on non-integers.
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The Exposure and (Annual) Claim Frequency

In General Insurance, we should predict blueyearly claims frequency. Let Ni
denote the number of claims over one year for contrat i.

We did observe only the contract for a period of time Ei
Let Yi denote the observed number of claims, over period [0, Ei].
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The Exposure and (Annual) Claim Frequency

Assuming that claims occurence is driven by a Poisson process of intensity λ, if
N1 ∼ P(λ), then Yi ∼ P(λ · Ei).

L(λ,Y ,E) =
n∏
i=1

e−λEi [λEi]Yi
Yi!

the first order condition is

∂

∂λ
logL(λ,Y ,E) = −

n∑
i=1

Ei + 1
λ

n∑
i=1

Yi = 0

for

λ̂ =
∑n
i=1 Yi∑n
i=1 Ei

=
n∑
i=1

ωi
Yi
Ei

where ωi = Ei∑n
i=1 Ei
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The Exposure and (Annual) Claim Frequency

Assume that
Yi ∼ P(λi · Ei) where λi = exp[X ′iβ].

Here E(Yi|Xi) = Var(Yi|Xi) = λi = exp[X ′iβ + logEi].

logL(β;Y ) =
n∑
i=1

Yi · [X ′iβ + logEi]− (exp[X ′iβ] + logEi)− log(Yi!)

1 > model <- glm(y~x, offset =log(E),family = poisson )

2 > model <- glm(y~x + offset (log(E)),family = poisson )

Taking into account the exposure in other models is difficult...
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Boosting

Boosting is a machine learning ensemble meta-algorithm for reducing bias
primarily and also variance in supervised learning, and a family of machine
learning algorithms which convert weak learners to strong ones. (source:
Wikipedia)

The heuristics is simple: we consider an iterative process where we keep modeling
the errors.

Fit model for y, m1(·) from y and X, and compute the error, ε1 = y −m1(X).

Fit model for ε1, m2(·) from ε1 and X, and compute the error,
ε2 = ε1 −m2(X), etc. Then set

m(·) = m1(·)︸ ︷︷ ︸
∼y

+m2(·)︸ ︷︷ ︸
∼ε1

+m3(·)︸ ︷︷ ︸
∼ε2

+ · · ·+mk(·)︸ ︷︷ ︸
∼εk−1
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Boosting

With (very) general notations, we want to solve

m? = argmin{E[`(Y,m(X))]}

for some loss function `.

It is an iterative procedure: assume that at some step k we have an estimator
mk(X). Why not constructing a new model that might improve our model,

mk+1(X) = mk(X) + h(X).

What h(·) could be?
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Boosting

In a perfect world, h(X) = y −mk(X), which can be interpreted as a residual.

Note that this residual is the gradient of 1
2 [y −m(x)]2

A gradient descent is based on Taylor expansion

f(xk)︸ ︷︷ ︸
〈f,xk〉

∼ f(xk−1)︸ ︷︷ ︸
〈f,xk−1〉

+ (xk − xk−1)︸ ︷︷ ︸
α

∇f(xk−1)︸ ︷︷ ︸
〈∇f,xk−1〉

But here, it is different. We claim we can write

fk(x)︸ ︷︷ ︸
〈fk,x〉

∼ fk−1(x)︸ ︷︷ ︸
〈fk−1,x〉

+ (fk − fk−1)︸ ︷︷ ︸
β

?︸︷︷︸
〈fk−1,∇x〉

where ? is interpreted as a ‘gradient’.
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Boosting

Here, fk is a Rd → R function, so the gradient should be in such a (big)
functional space → want to approximate that function.

mk(x) = mk−1(x) + argmin
f∈F

{
n∑
i=1

`(Yi,mk−1(x) + f(x))
}

where f ∈ F means that we seek in a class of weak learner functions.

If learner are two strong, the first loop leads to some fixed point, and there is no
learning procedure, see linear regression y = xTβ + ε. Since ε ⊥ x we cannot
learn from the residuals.
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Boosting with some Shrinkage

Consider here some quadratic loss function.

In order to make sure that we learn weakly, we can use some shrinkage
parameter ν (or collection of parameters νj) so that

E[Y |X = x] = m(x) ∼ mM (x) =
M∑
j=1

νjhj(x)

The problem is always the same. At stage j, we should solve

min
h(·)


n∑
i=1

[yi −mj−1(xi)︸ ︷︷ ︸
εi,j−1

−h(xi)]2



@freakonometrics 139



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Boosting with some Shrinkage

The algorithm is then

• start with some (simple) model y = h1(x)

• compute the residuals (including ν), ε1 = y − νh1(x)

and at step j,

• consider some (simple) model εj = hj(x)

• compute the residuals (including ν), εj+1 = εj − νhj(x)

and loop. And set finally

ŷ =
M∑
j=1

νhj(x)
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Boosting with Piecewise Linear Spline Functions
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Boosting with Trees (Stump Functions)
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Boosting for Classification

Still seek m?(·) = argmin{E[`(Y,m(X))]}

Here y ∈ {−1,+1}, and use `(y,m(x)) = e−y·m(x) : AdaBoot algorithm.

Note that
P[Y = +1|X = x] = 1

1 + e2m?x

cf probit transform... Can be seen as iteration on weights. At step k solve

argmin
h(·)


n∑
i=1

eyi·mk(xi)︸ ︷︷ ︸
ωi,k

·eyi·h(xi)
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Exponential distribution, deviance, loss function, residuals, etc

• Gaussian distribution ←→ `2 loss function

Deviance is
n∑
i=1

(yi −m(xi))2, with gradient ε̂i = yi −m(xi)

• Laplace distribution ←→ `1 loss function

Deviance is
n∑
i=1
|yi −m(xi))|, with gradient ε̂i = sign(yi −m(xi))
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Exponential distribution, deviance, loss function, residuals, etc

• Bernoullli {−1,+1} distribution ←→ `adaboost loss function

Deviance is
n∑
i=1

e−yim(xi), with gradient ε̂i = −yie−[yi]m(xi)

• Bernoullli {0, 1} distribution

Deviance 2
n∑
i=1

[yi · log
(

yi
m(xi)

)
(1− yi) log

(
1− yi

1−m(xi)

)
with gradient

ε̂i = yi −
exp[m(xi)]

1 + exp[m(xi)]

• Poisson distribution

Deviance 2
n∑
i=1

(
yi · log

(
yi

m(xi)

)
− [yi −m(xi)]

)
with gradient ε̂i = yi −m(xi)√

m(xi)

@freakonometrics 145



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Regularized GLM

In Regularized GLMs, we introduced a penalty in the loss function (the
deviance), see e.g. `1 regularized logistic regression

max


n∑
i=1

(
yi[β0 + xT

i β − log[1 + eβ0+xT
iβ]]
)
− λ

k∑
j=1
|βj |


1 > library ( glmnet )

2 > y <- myocarde $ PRONO

3 > x <- as. matrix ( myocarde [ ,1:7])

4 > glm_ ridge <- glmnet (x, y, alpha =0, lambda =seq

(0,2,by =.01) , family =" binomial ")

5 > plot(lm_ ridge )
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Collective vs. Individual Model

Consider a Tweedie distribution, with variance function power p ∈ (0, 1), mean µ
and scale parameter φ, then it is a compound Poisson model,

• N ∼ P(λ) with λ = φµ2−p

2− p

• Yi ∼ G(α, β) with α = −p− 2
p− 1 and β = φµ1−p

p− 1

Consversely, consider a compound Poisson model N ∼ P(λ) and Yi ∼ G(α, β),

• variance function power is p = α+ 2
α+ 1

• mean is µ = λα

β

• scale parameter is φ = [λα]
α+2
α+1−1β2−α+2

α+1

α+ 1

seems to be equivalent... but it’s not.
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Collective vs. Individual Model

In the context of regression

Ni ∼ P(λi) with λi = exp[XT
i βλ]

Yj,i ∼ G(µi, φ) with µi = exp[XT
i βµ]

Then Si = Y1,i + · · ·+ YN,i has a Tweedie distribution

• variance function power is p = φ+ 2
φ+ 1

• mean is λiµi

• scale parameter is λ
1

φ+1−1
i

µ
φ
φ+1
i

(
φ

1 + φ

)

There are 1 + 2dim(X) degrees of freedom.
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Collective vs. Individual Model

Note that the scale parameter should not depend on i. A Tweedie regression is

• variance function power is p =∈ (0, 1)

• mean is µi = exp[XT
i βTweedie]

• scale parameter is φ

There are 2 + dim(X) degrees of freedom.

Note that oone can easily boost a Tweedie model
1 > library ( TDboost )
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Part 4.
Model Choice, Feature Selection, etc.
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AIC, BIC

AIC and BIC are both maximum likelihood estimate driven and penalize useless
parameters(to avoid overfitting)

AIC = −2 log[likelihood] + 2k and BIC = −2 log[likelihood] + log(n)k

AIC focus on overfit, while BIC depends on n so it might also avoid underfit

BIC penalize complexity more than AIC does.

Minimizing AIC ⇔ minimizing cross-validation value, Stone (1977).

Minimizing BIC ⇔ k-fold leave-out cross-validation, Shao (1997), with
k = n[1− (logn− 1)]

−→ used in econometric stepwise procedures
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Cross-Validation

Formally, the leave-one-out cross validation is based on

CV = 1
n

n∑
i=1

`(yi, m̂−i(xi))

where m̂−i is obtained by fitting the model on the sample where observation i
has been dropped.

The Generalized cross-validation, for a quadratic loss function, is defined as

GCV = 1
n

n∑
i=1

[
yi − m̂−i(xi)

1− trace(S)/n

]2
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Cross-Validation for kernel based local regression

Econometric approach
Define m̂(x) = β̂

[x]
0 + β̂

[x]
1 x with

(β̂[x]
0 , β̂

[x]
1 ) = argmin

(β0,β1)

{
n∑
i=1

ω
[x]
h? [yi − (β0 + β1xi)]2

}

where h? is given by some rule of thumb
(see previous discussion).
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Cross-Validation for kernel based local regression

Bootstrap based approach

Use bootstrap samples, compute h?b , and get m̂b(x)’s.
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Cross-Validation for kernel based local regression

Statistical learning approach (Cross Validation (leave-one-out))

Given j ∈ {1, · · · , n}, given h, solve

(β̂[(i),h]
0 , β̂

[(i),h]
1 ) = argmin

(β0,β1)

∑
j 6=i

ω
(i)
h [Yj − (β0 + β1xj)]2


and compute m̂[h]

(i)(xi) = β̂
[(i),h]
0 + β̂

[(i),h]
1 xi. Define

mse(h) =
n∑
i=1

[yi − m̂[h]
(i)(xi)]

2

and set h? = argmin{mse(h)}.

Then compute m̂(x) = β̂
[x]
0 + β̂

[x]
1 x with

(β̂[x]
0 , β̂

[x]
1 ) = argmin

(β0,β1)

{
n∑
i=1

ω
[x]
h? [yi − (β0 + β1xi)]2

}
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Cross-Validation for kernel based local regression
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Cross-Validation for kernel based local regression

Statistical learning approach (Cross Validation (k-fold))

Given I ∈ {1, · · · , n}, given h, solve

(β̂[(I),h]
0 , β̂

[xi,h]
1 ) = argmin

(β0,β1)

∑
j /∈I

ω
(I)
h [yj − (β0 + β1xj)]2


and compute m̂[h]

(I)(xi) = β̂
[(i),h]
0 + β̂

[(i),h]
1 xi, ∀i ∈ I. Define

mse(h) =
∑
I

∑
i∈I

[yi − m̂[h]
(I)(xi)]

2

and set h? = argmin{mse(h)}.

Then compute m̂(x) = β̂
[x]
0 + β̂

[x]
1 x with

(β̂[x]
0 , β̂

[x]
1 ) = argmin

(β0,β1)

{
n∑
i=1

ω
[x]
h? [yi − (β0 + β1xi)]2

}
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Cross-Validation for kernel based local regression

@freakonometrics 158



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Cross-Validation for Ridge & Lasso

1 > library ( glmnet )

2 > y <- myocarde $ PRONO

3 > x <- as. matrix ( myocarde [ ,1:7])

4 > cvfit <- cv. glmnet (x, y, alpha =0, family =

5 + " binomial ", type = "auc", nlambda = 100)

6 > cvfit $ lambda .min

7 [1] 0.0408752

8 > plot( cvfit )

9 > cvfit <- cv. glmnet (x, y, alpha =1, family =

10 + " binomial ", type = "auc", nlambda = 100)

11 > cvfit $ lambda .min

12 [1] 0.03315514

13 > plot( cvfit )
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Variable Importance for Trees

Given some random forest with M trees, set I(Xk) = 1
M

∑
m

∑
t

Nt
N

∆i(t)

where the first sum is over all trees, and the second one is over all nodes where
the split is done based on variable Xk.

1 > RF= randomForest ( PRONO ~ .,data = myocarde )

2 > varImpPlot (RF ,main="")

3 > importance (RF)

4 MeanDecreaseGini

5 FRCAR 1.107222

6 INCAR 8.194572

7 INSYS 9.311138

8 PRDIA 2.614261

9 PAPUL 2.341335

10 PVENT 3.313113

11 REPUL 7.078838
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Partial Response Plots

One can also compute Partial Response Plots,

x 7→ 1
n

n∑
i=1

Ê[Y |Xk = x,Xi,(k) = xi,(k)]

1 > importanceOrder <- order (-RF$ importance )

2 > names <- rownames (RF$ importance )[ importanceOrder

]

3 > for (name in names )

4 + partialPlot (RF , myocarde , eval(name), col="red",

main="", xlab=name)
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Feature Selection

Use Mallow’s Cp, from Mallow (1974) on all subset of predictors, in a regression

Cp = 1
S2

n∑
i=1

[Yi − Ŷi]2 − n+ 2p,

1 > library ( leaps )

2 > y <- as. numeric ( train _ myocarde $ PRONO )

3 > x <- data. frame ( train _ myocarde [ , -8])

4 > selec = leaps (x, y, method ="Cp")

5 > plot( selec $size -1, selec $Cp)
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Feature Selection

Use random forest algorithm, removing some features at each iterations (the less
relevent ones).

The algorithm uses shadow attributes (obtained from existing features by
shuffling the values).

1 > library ( Boreta )

2 > B <- Boruta ( PRONO ~ ., data=myocarde , ntree =500)

3 > plot(B)
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Feature Selection

Use random forests, and variable importance plots

1 > library ( varSelRFBoot )

2 > X <- as. matrix ( myocarde [ ,1:7])

3 > Y <- as. factor ( myocarde $ PRONO )

4 > library ( randomForest )

5 > rf <- randomForest (X, Y, ntree = 200 , importance

= TRUE)

6 > V <- randomVarImpsRF (X, Y, rf , usingCluster =

FALSE )

7 > VB <- varSelRFBoot (X, Y, usingCluster = FALSE )

8 > plot(VB)
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ROC (and beyond)
Y = 0 Y = 1 prvalence

Ŷ = 0
true negative

N00

false negative
(type II)
N01

negative
predictive

value

NPV=N00
N0·

false
omission

rate

FOR=N01
N0·

Ŷ = 1
false positive

(type I)
N10

true positive

N11

false
discovery

rate

FDR=N10
N1·

positive
predictive

value

PPV=N11
N1·

(precision)

negative
likelihood

ratio
LR-=FNR/TNR

true negative
rate

TNR=N00
N·0

(specificity)

false negative
rate

FNR=N01
N·1

positive
likelihood

ratio
LR+=TPR/FPR

false positive
rate

FPR=N10
N·0

(fall out)

true positive rate

TPR=N11
N·1

(sensitivity)

diagnostic odds
ratio = LR+/LR-
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Comparing Classifiers: ROC Curves
1 > library ( randomForest )

2 > fit= randomForest ( PRONO ~.,data= train _ myocarde )

3 > train _Y=( train _ myocarde $ PRONO ==" Survival ")

4 > test_Y =( test_ myocarde $ PRONO ==" Survival ")

5 > train _S= predict (fit ,type="prob",newdata = train

_ myocarde )[ ,2]

6 > test_S= predict (fit ,type="prob",newdata =test_

myocarde )[ ,2]

7 > vp=seq (0,1, length =101)

8 > roc_ train =t( Vectorize ( function (u) roc. curve (

train _Y, train _S,s=u))(vp))

9 > roc_test=t( Vectorize ( function (u) roc. curve (

test_Y,test_S,s=u))(vp))

10 > plot(roc_train ,type="b",col="blue",xlim =0:1 ,

ylim =0:1)
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Comparing Classifiers: ROC Curves

The Area Under the Curve, AUC, can be interpreted as the probability that a
classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative one, see Swets, Dawes & Monahan (2000)

Many other quantities can be computed, see
1 > library ( hmeasures )

2 > HMeasure (Y,S)$ metrics [ ,1:5]

3 Class labels have been switched from (DECES , SURVIE ) to (0 ,1)

4 H Gini AUC AUCH KS

5 scores 0.7323154 0.8834154 0.9417077 0.9568966 0.8144499

with the H-measure (see hmeasure), Gini and AUC, as well as the area under the
convex hull (AUCH).
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Comparing Classifiers: ROC Curves
Consider our previous logistic regression (on heart at-
tacks)

1 > logistic <- glm( PRONO ~. , data=myocarde ,

family = binomial )

2 > Y <- myocarde $ PRONO

3 > S <- predict (logistic , type=" response ")

For a standard ROC curve
1 > library (ROCR)

2 > pred <- prediction (S,Y)

3 > perf <- performance (pred , "tpr", "fpr")

4 > plot(perf)
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Comparing Classifiers: ROC Curves

On can get econfidence bands (obtained using bootstrap
procedures)

1 > library (pROC)

2 > roc <- plot.roc(Y, S, main="", percent =TRUE ,

ci=TRUE)

3 > roc.se <- ci.se(roc , specificities =seq (0, 100 ,

5))

4 > plot(roc.se , type=" shape ", col=" light blue")
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see also for Gains and Lift curves
1 > library ( gains )
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Comparing Classifiers: Accuracy and Kappa

Kappa statistic κ compares an Observed Accuracy with an Expected Accuracy
(random chance), see Landis & Koch (1977).

Y = 0 Y = 1

Ŷ = 0 TN FN TN+FN

Ŷ = 1 FP TP FP+TP

TN+FP FN+TP n

See also Obsersed and Random Confusion Tables
Y = 0 Y = 1

Ŷ = 0 25 3 28

Ŷ = 1 4 39 43

29 42 71

Y = 0 Y = 1

Ŷ = 0 11.44 16.56 28

Ŷ = 1 17.56 25.44 43

29 42 71

total accuracy = TP + TN

n
∼ 90.14%

random accuracy = [TN + FP ] · [TP + FN ] + [TP + FP ] · [TN + FN ]
n2 ∼ 51.93%

κ = total accuracy− random accuracy
1− random accuracy ∼ 79.48%
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Comparing Models on the myocarde Dataset
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Comparing Models on the myocarde Dataset

If we average over all training samples
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Gini and Lorenz Type Curves

Consider an ordered sample {y1, · · · , yn} of incomes, with y1 ≤ y2 ≤ · · · ≤ yn,
then Lorenz curve is

{Fi, Li} with Fi = i

n
and Li =

∑i
j=1 yj∑n
j=1 yj

1 > L <- function (u,vary=" income "){

2 + base=base[ order (base[,vary], decreasing = FALSE ) ,]

3 + base$cum =(1: nrow(base))/nrow(base)

4 + return (sum(base[base$cum <=u,vary ])/

5 + sum(base[,vary ]))}

6 > vu <- seq (0,1, length =nrow(base)+1)

7 > vv <- Vectorize ( function (u) L(u))(vu)

8 > plot(vu , vv , type = "l") 0 20 40 60 80 100

0
20

40
60

80
10

0

Proportion (%)

In
co

m
e 

(%
)

poorest ← → richest

@freakonometrics 173



Arthur CHARPENTIER - Big Data and Machine Learning with an Actuarial Perspective - IA|BE

Gini and Lorenz Type Curves

The theoretical curve, given a distribution F , is

u 7→ L(u) =
∫ F−1(u)
−∞ tdF (t)∫ +∞
−∞ tdF (t)

see Gastwirth (1972).

One can also sort them from high to low incomes, y1 ≥ y2 ≥ · · · ≥ yn

1 > L <- function (u,vary=" income "){

2 + base=base[ order (base[,vary], decreasing =TRUE) ,]

3 + base$cum =(1: nrow(base))/nrow(base)

4 + return (sum(base[base$cum <=u,vary ])/

5 + sum(base[,vary ]))}

6 > vu <- seq (0,1, length =nrow(base)+1)

7 > vv <- Vectorize ( function (u) L(u))(vu)

8 > plot(vu , vv , type = "l") 0 20 40 60 80 100
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Gini and Lorenz Type Curves

We want to compare two regression models, m̂1(·) and m̂2(·), in the context of
insurance pricing, see Frees, Meyers & Cummins (2014). We have observed losses
yi and premiums m̂(xi). Consider an ordered sample by the model,

m̂(x1) ≥ m̂(x2) ≥ · · · ≥ m̂(xn)

then plot {Fi, Li} with Fi = i

n
and Li =

∑i
j=1 yj∑n
j=1 yj

1 > L <- function (u,varx=" premium ",vary=" losses "){

2 + base=base[ order (base[,varx], decreasing =TRUE) ,]

3 + base$cum =(1: nrow(base))/nrow(base)

4 + return (sum(base[base$cum <=u,vary ])/

5 + sum(base[,vary ]))}

6 > vu <- seq (0,1, length =nrow(base)+1)

7 > vv <- Vectorize ( function (u) L(u))(vu)

8 > plot(vu , vv , type = "l") 0 20 40 60 80 100
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Model Selection, or Aggregation?

We have k models, m̂1(x), · · · , m̂k(x) for the same y-variable, that can be trees,
vsm, regression, etc.

Instead of selecting the best model, why not consider

m̂?(x) =
k∑
κ=1

ωκm̂κ(x)

for some weights ωκ.

New problem: solve min
ω1,··· ,ωk

{
n∑
i=1

`

(
yi −

k∑
κ=1

ωκm̂κ(xi)
)}

Note that it might be interesting to regularize, by adding a Lasso-type penalty

term, based on λ
k∑
κ=1
|ωκ|
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Brief Summary

k-nearest neighbors
+ very intuitive
— sensitive to irrelevant features, does not work in high dimension
trees and forests
+ single tree easy to interpret, tolerent to irrelevant features, works with big

data
— cannot handle linear combinations of features
support vector machine
+ good predictive power
— looks like a black box
boosting
+ intuitive and efficient
— looks like a black box
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